On General of Nets in Bitopological spaces

By
Ihsan Jabbar Kadhim Al-Fatlawee
University Of AL-Qadisiya
College of Science
Department of Mathematics

Abstract. We study the concept of θ -convergence of nets in bitopological spaces and we find the relation among this concept and some new concepts as θ -cluster points of a set, θ -adherent points of a set, and θ -closed sets in bitopological spaces. And we introduce the concept of the θ -Hausdorff bitopological space and we fined the relation between this new concept and the concept of θ -convergence of nets in bitopological spaces.

1. Introduction. A bitopological space [2], is a non empty set X with two non identical topologies σ and ρ denoted by (X, σ, ρ) . By a direct set [4,5], we mean a pair (A, \geq) consisting of a non empty set A and a binary relation \geq defined on A which directs A. Let (A, \geq) be a directed set and let $B \subset A$. Then B is said to be a residual subset of A [4,5], if there exists an element $a \in A$ such that $b \in A, b \geq a \implies b \in B$. If for every $a \in A$, there exists an element $b \in B$ such that $b \geq a$, then B is said to be a cofinal subset [4,5].

Definition 1.1.[4,5]. Let (A, \geq) be a directed set and let η be an arbitrary mapping of A into a set X. Then η is said to be a **net** in X and is denoted by (η, X, A, \geq) .

Definition 1.2.[4,5].Let (η, X, A, \geq) be a net and let $Y \subset X$. Then η is said to be eventually in Y, if there exists a residual subset $B \subset A$ such that $\eta(B) \subset Y$, and is said to be frequently in Y, if there exists a cofinal subset $D \subset A$ such that $\eta(D) \subset Y$.

Definition 1.3.[4,5].Let (η, X, A, \geq) and $(\pi, X, B, \geq *)$ be two nets. Then π is said to be a subnet of η if there exists a mapping $\varphi: B \to A$ such that

(i) $\pi = \eta \circ \varphi$ and

(ii) for each $a \in A$, there exists an element $b \in B$ such that $\varphi(x) \ge a$ for every $x \ge *b \in B$.

Definition 1.4.[4].Let (A, \ge) and $(B, \ge *)$ be two directed sets. Then a mapping $\psi : A \to B$ is said to be **isotone**, if $x \ge y \Rightarrow \psi(x) \ge *\psi(y)$ $(x, y \in A)$.

Theorem 1.5.[4] .Let ψ be an isotone map of directed set $(B, \geq *)$ into directed set (A, \geq) such that $\psi(B)$ is cofinal in A.Let (η, X, A, \geq) be a net. Then $\eta \circ \psi$ is a subnet of η .

2. Main results.

Definition 2.1.Let (X, σ, ρ) be a bitopological space and let A be a subset of X. A point $x \in X$ is said to be a $(\sigma - \rho) - \theta$ - cluster point of A, if for every σ - nhd N of x the intersection $(\rho - Cl(N) - \{x\}) \cap A$ is non empty.

Definition 2.2.[1]Let (X, σ, ρ) be a bitopological space and let A be a subset of X. A point N of x the $x \in X$ is said to be a $(\sigma - \rho) - \theta$ – adherent point of A, if for every σ – nhd intersection $(\rho - Cl(N)) \cap A$ is non empty.

Clearly a $(\sigma - \rho) - \theta$ - cluster point of a subset A of a bitopological space (X, σ, ρ) is a $(\sigma - \rho) - \theta$ – adherent point of A.

of rise australiant said to be **Definition 2.3.** Let (X, σ, ρ) be a bitopological space $(\sigma - \rho) - \theta$ - closed, if it consist of all it is $(\sigma - \rho) - \theta$ - cluster points.

Definition 2.4. A bitopological space (X, σ, ρ) is said to be $(\sigma - \rho) - \theta$ – Hausdorff, if for every two distinct points x and y in X, there exist two σ -open sets U and V such that $x \in U, y \in V$ and $\rho - Cl(U) \cap \rho - Cl(V) = \phi$.

Definition 2.5.[3] Let (X, σ, ρ) be a bitopological space and let (η, X, A, \geq) be a net in X. We say that η is $(\sigma - \rho) - \theta$ - converges $(\sigma - weakly convergent with respect to <math>\rho$) to a point $x \in X$, if for every σ – nhd N of x, η is eventually in ρ – Cl(N).

Theorem 2.6. Let (X, σ, ρ) be a bitopological space and let $Y \subset X A$ point $x \in X$ is a $(\sigma - \rho) - \theta$ – adherent point of Y if and only if there exists a net in Y $(\sigma - \rho) - \theta$ – converges to a point $x \in X$.

Proof. The "if" part .Let (η, Y, A, \ge) be a net in $Y(\sigma - \rho) - \theta$ - converges to a point $x \in X$. And σ – nhd of x. Then there exists $a \in A$ such that for every $b \in A, b \ge a \Rightarrow \eta(b) \in \rho - Cl(N)$. Now, $a \ge a$ therefore $\eta(a) \in \rho - Cl(N) \cap Y$ so that $\rho - Cl(N) \cap Y \neq \emptyset$. It follows that x is a $(\sigma - \rho) - \theta$ – adherent point of Y.

The "only if" part .Let x is a $(\sigma - \rho) - \theta$ - adherent point of Y. Then for every σ - nhd N of x, $\rho - Cl(N) \cap Y \neq \emptyset$. Let Ω be the collection of all $\sigma - nhds$ of x, then Ω directed by the inclusion relation \subset . Since $\rho - Cl(N) \cap Y \neq \phi \ \forall N \in \Omega$, by axiom of choice $\forall N \in \Omega$ we must choose $x(N) \in \rho - Cl(N) \cap Y$. Now consider the mapping

 $\eta:\Omega\to Y$ such that $\eta(N)=x(N), \forall N\in\Omega$. Then evidently η is a net in $Y(\sigma-\rho)-\theta$ converges to a point $x \in X$.

Theorem 2.7. Let (X, σ, ρ) be a bitopological space and let $Y \subset X$. A point $x \in X$ is a $(\sigma - \rho) - \theta$ - cluster point of Y if and only if there exists a net in Y - $\{x\}$ $(\sigma - \rho) - \theta$ – converges to a point $x \in X$.

Proof. The "if " part. Let $(\eta, Y - \{x\}, A, \ge)$ be a net in $Y - \{x\}$ which is $(\sigma - \rho) - \theta$ converges to a point $x \in X$. And let N be a $\sigma - nhd$ of x. Then there exists $a \in A$ such that for every $b \in A, b \ge a \Rightarrow \eta(b) \in \rho - Cl(N)$. Now, $a \ge a$ therefore $\eta(a) \in \rho - Cl(N) \cap (Y - \{x\})$ so that $\rho - Cl(N) \cap (Y - \{x\}) \ne \emptyset$. It follows that x is a $(\sigma - \rho) - \theta$ cluster point of Y.

The "only if " part. Let x is a $(\sigma - \rho) - \theta$ - cluster point of Y. Then for every $\sigma - nhd$ N of x, $\rho - Cl(N) \cap (Y - \{x\}) \neq \phi$. Let Ω be the collection of all $\sigma - nhds$ of x, then Ω directed by the inclusion relation \subset . Since $\rho - Cl(N) \cap (Y - \{x\}) \neq \phi$ $\forall N \in \Omega$, by axiom of choice $\forall N \in \Omega$ we must choose $x(N) \in \rho - Cl(N) \cap (Y - \{x\})$. Now consider the mapping $\eta : \Omega \to Y - \{x\}$ such that $\eta(N) = x(N)$, $\forall N \in \Omega$. Then evidently η is a net in $Y - \{x\}$ $(\sigma - \rho) - \theta$ - converges to a point $x \in X$.

Theorem 2.8. Let (X, σ, ρ) be a bitopological space. A subset Y is a $(\sigma - \rho) - \theta$ – closed if and only if no net in Y $(\sigma - \rho) - \theta$ – converges to a point in X = X.

Proof. The "if " part. Suppose that no net in Y $(\sigma - \rho) - \theta$ converges to a point in X - Y. Suppose if possible that Y is not $(\sigma - \rho) - \theta$ closed. Then there exists a is α $(\sigma - \rho) - \theta$ cluster point x of Y such that $x \notin Y$, that is $x \in X - Y$. Then by Theorem 2.7., there exists a net in $Y - \{x\}$ and consequently a net in Y $(\sigma - \rho) - \theta$ converges to a point $x \in X - Y$. But this is a contradiction.

The "only if " part. Suppose that Y is a $(\sigma - \rho) - \theta$ - closed set. Suppose if possible there exists a net η in $Y(\sigma - \rho) - \theta$ - converges to a point $x \in X - Y$. Since $x \notin Y$, η is also a net in $Y - \{x\} (\sigma - \rho) - \theta$ - converges to a point $x \in X - Y$. Hence by Theorem 2.7. x is a $(\sigma - \rho) - \theta$ - cluster point of Y. But this is a contradiction since $x \notin Y$. Hence no net in $Y(\sigma - \rho) - \theta$ - converges to a point in X - Y.

Theorem 2.9. A bitopological space (X, σ, ρ) is $(\sigma - \rho) - \theta$ – Hausdorff if and only if every net in X can $(\sigma - \rho) - \theta$ – converges to at most one point.

Proof. The "if" part. Suppose that every net in X can $(\sigma - \rho) - \theta$ converges to at most one point and suppose if possible, that the space (X, σ, ρ) is not $(\sigma - \rho) - \theta$ Hausdorff. Then there exist two distinct points x and y in X such that

for every $\sigma-nhd$ N of x and every $\sigma-nhd$ M of y the intersection $\rho-Cl(N)\cap\rho-Cl(M)$ is non empty. Let Ω and Φ be the collection of all the $\sigma-nhds$ of x and y respectively. Then Ω and Φ are directed by the inclusion relation \subset . Consider the Cartesian product $P=\Omega\times\Phi$. In this product, we define a relation \geq as follows. Let (A,B) and (C,D) be two element of P. We define $(A,B)\geq (C,D)$ if and only if $A\subset C$ and $B\subset D$. Then P is directed by \geq . We have $\rho-Cl(N)\cap\rho-Cl(M)\neq\phi$, $\forall (N,M)\in P$. Hence by the axiom of choice we may choose a point x(N,M) in $\rho-Cl(N)\cap\rho-Cl(M)$ for all $(N,M)\in P$. Now consider the mapping

 $\eta: P \to X: \quad \eta(N,M) = x(N,M) \quad \forall \quad (N,M) \in P.$

Then η is a net in $X(\sigma-\rho)-\theta$ – converges to both x and y in X. But this is a contradiction. Hence (X, σ, ρ) must be $(\sigma-\rho)-\theta$ – Hausdorff.

The "only if " part. Suppose that (X, σ, ρ) be a $(\sigma - \rho) - \theta$ - Hausdorff .Let x and y be two distinct points of X. Then there exist a $\sigma - nhd$ N of x and $\sigma - nhd$ M of y such that $\rho - Cl(N) \cap \rho - Cl(M) = \phi$. Since a net cannot be eventually in each of two disjoint sets it is evident that no net in X can $(\sigma - \rho) - \theta$ - converges to both x and y in X. Hence a net in X can $(\sigma - \rho) - \theta$ - converges to at most one point .

Definition 2.10. Let (X, σ, ρ) be a bitopological space and let η be a net in X. Then a point $x \in X$ is said to be a $(\sigma - \rho) - \theta$ - cluster point of a net η if η is frequently in the ρ - closure of every σ - nhd of x.

Remark 2.11. Let (X, σ, ρ) be a bitopological space. If a point $x \in X$ is a $(\sigma - \rho) - \theta - limit$ point of a net η in X, then it is $(\sigma - \rho) - \theta - cluster$ point of η .

Theorem 2.12. Let (X, σ, ρ) be a bitopological space and let (η, X, A, \geq) be a net in X. Let Φ be the collection of subset of X satisfying the following two conditions

(i) η is frequently in $\rho - Cl(F)$, $\forall F \in \Phi$.

(ii) If $S,T \in \Phi$, then there exists a member $U \in \Phi \rightarrow U \subset S$ Then there exists a subnet of η which is eventually in $\rho - Cl(F)$,

Proof. It is evident from (ii) that Φ is directed by the inclusion relation C. Now consider the subset B of the Cartesian product $A \times \Phi$ defined by

$$B = \{(a,U) : a \in A, U \in \Phi, \text{ and } \eta(a) \in \rho - Cl(U)\}$$
.

We define a binary relation $\geq *$ in B as follows:

Let (a,S) and (b,T) be any two members of B. Then $(a,S) \ge *(b,T)$ if and only if $a \ge b$ and $S \subset T$. Then B is directed by $\ge *$. Define a mapping

$$\psi: B \to A$$
: $\psi((a,S)) = a \quad \forall (a,S) \in B$

Hence ψ is an isotone mapping. For there $\psi[B]$ is cofinal in A. It follows by Theorem 1.5. the mapping $\varphi = \eta \circ \psi : B \to X$ is a subnet of η . We now show that this subnet is eventually in the ρ -closure of each member of Φ . Let U be an arbitrary member of Φ . By (i), there exists a member $a \in A$, such that $\eta(a) \in \rho - Cl(U)$. Hence by definition of B, b = (a, U) is a member of B. Now let d = (c, V) be an arbitrary element of B such that $d \ge *b$. Then $c \ge a$ and $V \subset U$. We have $\varphi(d) = (\eta \circ \psi)(d) = \eta(\psi(d)) = \eta(\psi(c, V)) = \eta(c) \in \rho - Cl(V) \subset \rho - Cl(U)$. Thus there exists an element $b \in B$, such that for every $d \in B$, $d \ge *b \Rightarrow \varphi(d) \in \rho - Cl(U)$.

Theorem 2.13. Let (X, σ, ρ) be a bitopological space. A point $x \in X$ is a $(\sigma - \rho) - \theta$ – cluster point of a net (η, X, A, \geq) if and only if a subnet $(\pi, X, B, \geq *)$ which $(\sigma - \rho) - \theta$ – converges to x.

Proof. The "if" part. Suppose that η has a subnet π which $(\sigma - \rho) - \theta$ - converges to x. To prove that x is a $(\sigma - \rho) - \theta$ - cluster point of a net η . Let N be a σ - nhd of x and let $a \in A$. Since π is a subnet of η , there exists a mapping $\varphi : B \to A$ such that

(i) $\pi = \eta \circ \varphi$.

(ii) For each $c \in A$, there exists an element $d \in B$ such that $\varphi(x) \ge c, \forall x \ge *d \in B$. Hence by (ii), corresponding to $a \in A$, there exists an element $b \in B$ such that $\varphi(x) \ge a, \forall x \ge *b$. Since $\pi(\sigma - \rho) - \theta$ converges to x, there exists an element $p \ge *b \in B$ such that $\pi(p) \in \rho - Cl(N)$. Now, let $\varphi(p) = q$. Then $q \in A$ and $q \ge a$. Also

$$\eta(q) = \eta(\varphi(p)) = (\eta \circ \varphi)(p) = \pi(p) \in \rho - Cl(N).$$

Thus we have shown that for each element $a \in A$, there exists an element $q \ge a \in A$ such that $\eta(q) \in \rho - Cl(N)$. Hence η is frequently in $\rho - Cl(N)$ for every $\sigma - nhd$ N of x. It follows that x is a $(\sigma - \rho) - \theta$ - cluster point of η .

The "only if " part. Let a point $x \in X$ is a $(\sigma - \rho) - \theta$ - cluster point of a net (η, X, A, \ge) and let Ω be the collection of all σ - nhds of x. If L and M are any two members of Ω , then $L \cap M$ is also a member of Ω . Also since x is a $(\sigma - \rho) - \theta$ - cluster point of η , then η is frequently in the ρ - closure of each member of Ω . Hence by Theorem 2.12. ,there exists a subnet π of η which is eventually in the ρ - closure of each member of Ω . This implies that π is $(\sigma - \rho) - \theta$ - converges to x.

Theorem 2.14. Let (X, σ, ρ) be a $(\sigma - \rho) - \theta$ – Hausder bitopological space. Then every $(\sigma - \rho) - \theta$ – convergent net has a unique $(\sigma - \rho) - \theta$ – limit point of that net.

Proof. We know that in a $(\sigma - \rho) - \theta$ Hausdorff bitoglogical space every $(\sigma - \rho) - \theta$ convergent net has a unique $(\sigma - \rho) - \theta$ limit point by Theorem 2.9. Let p be a unique $(\sigma - \rho) - \theta$ limit point of a $(\sigma - \rho) - \theta$ convergent net η in X. Since every $(\sigma - \rho) - \theta$ limit point is also $(\sigma - \rho) - \theta$ cluster point, p is a $(\sigma - \rho) - \theta$ cluster point of η . Suppose if possible that η has another $(\sigma - \rho) - \theta$ cluster point q distinct from p. Since (X, σ, ρ) be a $(\sigma - \rho) - \theta$ Hausdorff bitopological space, there exists two disjoint σ - nhds N of p and M of q, such that $\rho - Cl(N) \cap \rho - Cl(M) = \phi$. Since p is a $(\sigma - \rho) - \theta$ limit point of η , then η is eventually in $\rho - Cl(N)$ and since $\rho - Cl(M)$ is disjoint from $\rho - Cl(N)$, then η cannot be frequently in $\rho - Cl(M)$. But this contradicts our supposition that q is

 $(\sigma - \rho) - \theta$ - cluster point of η . Hence η cannot has two distinct $(\sigma - \rho) - \theta$ - cluster points.

[1] C.G.Kariofillis "On Pairwise almost compactness" Ann.Soc.Sci.Bruxelles (100)(1986), 129-137.

[2] J.C.Kelly "Bitopological Spaces" proc. London Math. Soc. 3 (13)(1963) ,71-89.

[3] J.Ewert ,Slupsk , Poland." Weak forms of Continuous, Quasi-Continuous and Cliquishness of Maps With Respect to Two Topologies "Glasnik Matematicki 21(41)(1986).179-189.

[4] J.N.Sharma, "Topology" Published by Krishna Pracushna, Mandir, and printed at Mano, (1977).

[5] S. Willard, "General Topology", Addison-Wesry Pub.Co.,Inc.(1970).