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1. Introduction  

Ground Penetrating Radar (GPR) is an electromagnetic 

subsurface device used in engineering for subsurface structure 

identification and non-destructive testing with a wide range of 

uses [1]. It exploits the characteristics of radar waves to 

determine geological material features [2]. Moreover, the 

nature of non-destructive, which works within the microwave 

radio band of GPR, makes a difference in distinguishing various 

materials [3] and offers high-resolution and near-surface bits of 

knowledge [4]. However, flag weakening in a few soil 

conditions confines entrance profundity [5]. Lower frequencies, 

such as 100 MHz or lower, can penetrate deeper into the ground 

but may have lower resolution. Higher frequencies, such as 1 

GHz or higher, provide higher resolution but penetrate less 

deeply, so the seismic GPR utilizes moderate frequency 

Electromagnetic (EM) waves for subsurface imaging to attain 

the advantages of both [6]-[8]. Using pulsed EMW with 

frequencies between 1 and 4000 MHz, GPR technology records 

the time for waves reflected from subsurface contacts to reach 

the surface. Equation (1) can be used to find an interface's depth 

(D): 

𝐷 = 𝑣. 𝑡/2                                (1) 

Where D is the depth of the reflector (interface) beneath the 

surface, 𝑣 is the velocity of the radar wave pulse as it travels 

through the subsurface material, and 𝑡 is the two-way travel 

time of the pulsed radar wave. 

The conductivity of the ground, governed mainly by variables 

like water content, salinity, temperature, density, and the 

frequency of the EMW employed, has a considerable impact on 

the effective penetration depth of radar probing [9]. Reflections 

occur at interfaces with variable dielectric constants rather than 

acoustic impedances, and this process is similar to reflection 

seismology [10]. However, GPR uses electromagnetic energy 

instead of acoustic energy. The electrical dielectric constants of 

soils and rocks have a major role in controlling the propagation 

of EM waves since most have extremely low conductivity, 

around 10-2 S/m. The propagation velocity (𝑣) of radar signals 

is determined by the medium's relative dielectric constant (𝜖𝑟) 

and other factors. For most geological materials with relative 

permeability (𝜇𝑟) close to unity, radar velocity can be 
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approximated by equation (2), where C is the velocity of EMW 

in free space [11]. 

 𝑣 =
𝐶

(𝜇𝑟𝜖𝑟)1 2⁄ ≈
𝐶

(𝜖𝑟)1 2⁄                    (2) 

Where 𝜇𝑟 = 𝜇/𝜇𝑜 is the relative permeability of the medium, 

which is about unity for most earth soils and rocks. 𝜖𝑟 = 𝜖/𝜖𝑜  

is the ratio of the medium's dielectric permittivity to that of free 

space. Geological formations exhibit a wide range of dielectric 

constants, with dry sand/gravel, silt, unaltered hard rocks, 

permafrost soils, and ice having lower values (3-10). In 

contrast, water has a high value of 81. Water content 

significantly impacts electromagnetic wave attenuation, leading 

to the choice of high frequencies for shallow investigations and 

low frequencies for greater depths. The penetration depth is 

limited by ground conductivity, frequency, and radiated power. 

Seismic GPR utilizes seismic waves for subsurface imaging and 

is commonly employed in natural resource exploration, civil 

engineering projects, and geological work [12]. This work 

explores the GPR for identifying subsurface structures in a 

hydrocarbon oil and gas field. The study aims to enhance 

subsurface characterization, imaging, and classification 

accuracy and efficiency by employing a 500MHz GPR system, 

robust feature extraction methods, and various machine 

learning classifiers. The subsequent sections include Machine 

Learning with GPR, which discusses the application of machine 

learning techniques in GPR analysis; The proposed work, 

which specifies the methodology employed; Data 

Preprocessing and Feature Extraction, which describes the 

preprocessing steps and feature extraction methods; Results and 

Discussion, that are presenting and analyzing the experimental 

results; and finally Conclusion, which summarizes the key 

findings and future research directions. 

 

2. Machine Learning with GPR 

Machine Learning (ML) has become pivotal in analyzing GPR 

data due to its proficiency in feature extraction, automating 

tasks such as object identification, geological interface 

detection, and soil property estimation. ML algorithms excel at 

recognizing patterns and subsurface features, including buried 

infrastructure. ML improves the precision and speed of 

extracting properties like electrical conductivity and dielectric 

permittivity in an inversion, enabling detailed subsurface 

characterization. ML assists in material classification based on 

GPR signatures, facilitating the identification of soil types, 

geological layers, and subsurface features. Additionally, it 

supports data fusion, integrating GPR with other geophysical 

data sources for a thorough subsurface overview. The following 

literature reviews offer valuable insights for those exploring the 

combination of ML and GPR. A brand-new near-real-time ML 

modeling technique is created for GPR simulations [13]. 

The ML scheme uses detailed GPR transducer modeling in 

Finite-Difference Time-Domain (FDTD) simulations and PCA 

to identify reinforcing bars in concrete, accurately determining 

size, position, and material qualities using actual and synthetic 

data. A novel ML scheme for GPR is described to estimate the 

diameter of reinforcing bars in concrete frameworks using 

neural networks trained on synthetic data and random forest 

regression. This single A-scan input methodology provides 

real-time data without complex setups or multi-sensor 

techniques [14]. Liu et al. [15] introduced a method for 

automatically detecting and locating rebars in GPR imagery and 

streamlining the manual interpretation process. This method 

employed a Single Shot Multibox Detector (SSD) trained on 

genuine GPR data and migration techniques. The Artificial 

Algorithm (AI) method proposed achieves a detection accuracy 

of 90.9%, completing computations swiftly in 0.47 seconds for 

a 300 × 300 pixel GPR image. Through laboratory experiments, 

it demonstrates depth estimation errors of less than 1.5 mm 

(5%) and lateral position errors of less than 0.7 cm, indicating 

its suitability for real-time operation with handheld GPR 

systems, providing practical depth estimation accuracy. 

Smitha and Singh [16] introduced a new supervised ML 

approach for landmine identification. It highlighted two main 

contributions: firstly, a performance analysis that compares 

Support Vector Machines (SVM) and Artificial Neural 

Networks (ANN) classifiers based on three features (major axis, 

minor axis, and principal component analysis); and secondly, a 

novel method that suggests five texture features (mean, 

variance, kurtosis, skewness, and entropy). These classifiers 

were trained on datasets comprising GPR images with surrogate 

landmines collected in the lab. The experiments cover various 

depths and include surrogate mines as well as non-mines. The 

ANN classifier outperformed the SVM with an accuracy 

ranging from 85% to 90% for training data samples in three and 

five-feature analyses. When tested on unseen samples, the ANN 

consistently achieves 5% to 10% higher accuracy than the SVM 

classifier.  

Xiang et al. [17] addressed integrating GPR data with Building 

Information Modeling (BIM) to incorporate embedded rebars. 

This challenging task involved linking GPR data to BIM using 

Faster Convolutional Neural Network (R-CNN). GPR-scanned 

components are given labels, resulting in labeled photos that are 

then integrated with other photographs to create a 3D model. 

These labels were identified faster by R-CNN, and the 

projection relationship between the pictures and the model 

facilitated the 3D model's localization of the scanned elements. 

Evaluation of two concrete buildings demonstrates the method's 

accuracy in translating GPR data of rebars into corresponding 

BIM elements, preserving their correct distributions. 

Interpreting GPR data remains challenging due to variable 

ground conditions. Recent advancements in computer vision, 

particularly ANNs and CNNs, have been applied to extract 

information from GPR images, enhancing data interpretation.  

Amaral et al. [18] utilized computer vision and deep learning 

algorithms, including YOLO-V3, Viola–Jones, and AlexNet, to 

automate information extraction from GPR images. These 

automated detection algorithms transform GPR by quickly 

quantifying and locating buried targets, reducing the need for 

highly trained professionals to perform these tasks. Rasol et al. 

[19] reviewed using GPR as a non-destructive geophysical 

method for assessing road pavements. It emphasizes using ML 

and intelligent data analysis in early pavement inspection to 

optimize maintenance, reduce costs, and extend infrastructure 

lifespan. GPR's advantages, including cost-effectiveness and 

non-invasiveness, are highlighted. The review showcases 
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GPR's successful application in detecting various inner 

damages in road pavements, such as deboning, sinkholes, and 

moisture. Additionally, it explores the integration of GPR with 

complementary techniques for more comprehensive pavement 

inspection.  

A novel approach for interpreting seismic reflection horizons 

was presented using ANN, offering speed, precision, and 

reduced subjectivity compared to manual or control-point 

methods [20]. Long Short-Term Memory (LSTM) architecture 

is used for training, and convolutional models are used to create 

synthetic data. The technique is resilient against different noise 

and may be used for a wide range of field seismic datasets. 

Testing was done on synthetic, field seismic, and 2- and 3-

dimensional data. Its successful application to GPR data 

demonstrated its adaptability. The problem of distinguishing 

between reflected and diffracted wave fields in the processing 

of seismic and GPR data was examined in the work [21].  

In this work, GPR with 500MHz is employed first to permit the 

EMW to penetrate deep and to provide high-resolution 

gathering data; the data is presented as seismic images, texture 

with gray-level co-occurrence matrix (GLCM), and wavelet 

transform (WT) are used to extract 48 total features. After that, 

preprocessing techniques are utilized to improve GPR data 

analysis and interpretation, including refining data, imputing 

the missing values, normalizing all data, and splitting them into 

70% for the training and 30% for the testing phases. Finally, 

different in nature ML approaches, using models like Decision 

Trees (DT), Bagged Trees (BT), Naive Bayes (NB), Artificial 

Neural Networks (ANN), Quadratic Discriminant Analysis 

(QDA), Support Vector Machines (SVM), and K-Nearest 

Neighbors (KNN) are employed to classify the collected 

images. 

 

3. The Proposed Work 

Fig. 1 shows the framework of the proposed system that 

includes the preprocessing and seven methods of ML, while 

Fig. 2 focuses on the flowchart of training and testing models. 

Exploration for oil and gas benefits greatly from using seismic 

data as it sheds light on subsurface geological formations. 

Seismic data is yielded for a real oil and gas field [22] to 

pinpoint possible hydrocarbon reserves and maximize well 

drilling locations. With specialized equipment, waves are sent 

into the Earth's subsurface, and their reflections are recorded for 

examination to collect this data. Seismic data is frequently 

separated into subgroups according to location, depth, or other 

criteria to make analysis easier. This work will employ a range 

of machine-learning techniques to distinguish between the 

various kinds of soil in a real hydrocarbon oil and gas field to 

enhance our comprehension of the geological aspects of this 

area [23]-[26]. The "seis_fan" subset refers to seismic data 

collected for two types of fan-shaped sediment deposits, as 

shown in Figs. 3-a and 3-b, while the "seis_road" subset refers 

to data collected for three types along a road or highway that 

runs through the field as depicted in Figs. 4-a, 4-b, and 4-c. As 

depicted in Figs, the "seis_emerson" subset refers to data 

collected for three types from a specific well or borehole in the 

field: 5-a, 5-b, 5-c, 5-d, and 5-e. A large number of seismic 

samples, each lasting 0.001 seconds and covering a distance of 

250 meters, are collected to create the dataset [22]. 10,010 

instances make up this set, with 48 characteristics per instance 

and one column devoted to targets or classes. With a training-

to-testing ratio of 70% to 30%, 7,007 occurrences of 48 features 

for training data and 3,003 instances for testing are produced. 

For assessment, a 10-fold cross-validation strategy is applied. 

 

4. Data Preprocessing and Feature Extraction 

Our dataset frequently faces missing data, which calls for an 

imputation approach to estimate and fill these gaps. One 

popular method in this area is imputation using the KNN 

algorithm. The KNN imputation technique replaces missing 

values in the dataset with estimated values that come from their 

closest neighbors as the following steps [27], [28]: 

Identify Missing Values: Let 𝑋 = [𝑥𝑖𝑗] be the data matrix with 

𝑚 samples and 𝑛 features. Identify the indices of missing values 

in 𝑋. 

Calculate Distances: For each instance 𝑥𝑖 with a missing value 

𝑥𝑖𝑗 , calculate the Euclidean distance to all other instances 𝑥𝑝, 

using the not missing features 𝑄 only as in equation (3): 

𝑑(𝑥𝑖 , 𝑥𝑝) = ∑ (𝑥𝑖𝑞 − 𝑥𝑖𝑝)2
𝑞∈𝑄                  (3)  

Find Nearest Neighbors: Select the 𝑘 instances with the 

smallest distances to 𝑥𝑖. 

Impute Missing Values: For each missing value 𝑥𝑖𝑗 , impute 

using the weighted mean of the 𝑘 nearest neighbors as in 

equation (4): 

𝑥𝑖𝑗 =
∑

𝑥𝑝𝑗

𝑑(𝑥𝑖,𝑥𝑝) 

∑
1

𝑑(𝑥𝑖,𝑥𝑝) 

                      (4) 

The input data is also normalized using min-max to scale the 

features to a range [0, 1], as shown in equation (5):  

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−min (𝑥𝑗)

max(𝑥𝑗)−min (𝑥𝑗)
         (5) 

This guarantees that each feature receives the same attention, 

increases convergence, and strengthens the models' stability 

and interpretability. 

Gray-Level Co-Occurrence Matrix (GLCM) [29] and Wavelet 

Transform (WT) [30] are two powerful techniques for feature 

extraction in image processing. GLCM captures texture 

information by considering the spatial relationship between 

pixel pairs, while WT decomposes an image into different 

frequency components, capturing frequency information. 

GLCM features include contrast, correlation, energy, 

homogeneity, and more [29], while WT features include mean, 

standard deviation, and entropy of the approximation and detail 

coefficients [30]. 
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Figure 1. The framework of the proposed ML methods 

 

       Figure 2. The flowchart of the offline and online models 

Feature Extraction and Selection (GLCM, WT) 

Preprocessing (Imputation, Minimization) 

Training Data (70%) Testing Data (30%) 

•DT

• Prediction 
Model 1

• Evaluation 
Model 1 

•QDA

• Prediction 
Model 2

• Evaluation 
Model 2

•NB

• Prediction 
Model 3

• Evaluation 
Model 3 

•SVM

• Prediction 
Model 4

• Evaluation 
Model 4

•KNN

• Prediction 
Model 5

• Evaluation 
Model 5 

•BT

• Prediction 
Model 6

• Evaluation 
Model 6

•ANN

• Prediction 
Model 7

• Evaluation 
Model 7 

Data processed 
 

Setup the GPR device to collect the seismic data 

End 

Start Start 

Using GPR transmitted wave to collect the received data 

Extract 48 features from the real received GPR data  

Preprocessing of the data that handles 
missing values and normalizing all matrices 

Accuracy is good 

Apply (DT, QDA, SVM, NB, BT, and ANN) ML models 

No 

Save the models parameters 

End 

Extract the features for the unseen data  

Preprocessing data 
enhancement 

Use the (DT, QDA, SVM, NB, BT, and ANN) models  

True 

Class?

Classify the data type. 

No 

  Yes 

Evaluate the performance metrics 

O
ff

lin
e 

Tr
a

in
in

g
 

O
n

lin
e 

Te
st

in
g



Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025                                                ISSN 2520-0917 

 

325 

 

 
Figure 3. a: seis_fan01 & b: seis_fan02 seismic data 

 

 

 
Figures 4. a: seis_road 03, b:  seis_road 04 & c: seis_road 05 

seismic data  
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Figures 5. a, b, c, d, and e seis_ Emerson a to seis_ emerson e 

seismic data 

 

5. Results and Discussion 

The MATLAB software environment version 2021b is now 

being used to create all of the models for the GPR system and 

several machine learning techniques. Figs. 6 to 12 show training 

and testing confusion matrices for the seven models, with 

performance metrics like training accuracy, training duration, 

and testing accuracy explained in Table 1. 

 

 
 

 
Figure 6. The confusion matrix for the DT classifier during 

the training and testing phases. 

 

 

Figure 7. The confusion matrix for the QDA classifier during 

the training and testing phases. 
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Figure 8. The confusion matrix for the NB classifier during 

the training and testing phases. 

 

 

 

Figure 9. The confusion matrix for the SVM classifier during 

the training and testing phases. 

 

 

Figure 10. The confusion matrix for the KNN classifier 

during the training and testing phases. 
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Figure 11. The confusion matrix for the Bagged Tree 

classifier during the training and testing phases. 

 

 

Figure 12. The confusion matrix for the ANN classifier 

during the training and testing phases. 

 

Table.1 All dataset specification and classification model 

accuracies and times 

Training Data Observations= 7007, 

Predictors: 48 features, Response: 49 

Response Classes: 10, Validation: 10-CV 

Testing Data Observations= 3003 

Model 

Type 

Accuracy % 

(Train) 

Accuracy % 

(Test) 

Training 

Time (s) 

KNN 98.916 98.169 14.05123 

BT 97.317 97.269 163.939 

QDA 93.435 93.173 3.941 

ANN 92.641 91.694 216.666 

DT 86.943 86.147 9.876 

SVM 81.851 80.277 76.321 

NB 80.386 79.849 408.607 

 

Firstly, the confusion matrices indicate that the ML methods 

can predict both true positives and negatives well across all the 

observations (7007 for training and 3003 for testing), enhancing 

their predictive power. Secondly, the models capture the 

complexity and non-linearity of the relationships within the 

data well. Additionally, the 10-fold cross-validation strategy 

employed further ensures that the models are robust and less 

prone to overfitting, as they are tested on diverse subsets of the 

data. Finally, using 48 carefully selected features allows for 

effective representation of the underlying patterns within the 

data, leading to improved classification performance.  

Figs. 13 and 14 depict the training and testing accuracies for all 

model classifiers and times. 
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Figure 13. Training and testing accuracies for all classifiers 

 

Figure 14. Training times for all classifiers 

 

The accompanying table and figures provide the following 

thorough comparison: BT shows remarkable accuracy of 

97.32% and 97.27%, respectively. KNN performs well, with 

98.92% accuracy on the training set and 98.17% on the test set. 

The models' training times differ noticeably from one another. 

The two that take the longest, ANN and NB, are 216.67 and 

408.61 seconds, respectively. On the other hand, time-efficient 

methods are DT and QDA. The best model for a classification 

task depends on the application's needs, data, and 

computational resources. For efficiency, choose QDA or DT. 

For high accuracy and abundant resources, consider KNN or 

BT.  

 

6. Conclusion 

Integrating GPR data as geophysical sources with efficient 

classification methods will provide a more comprehensive 

understanding of subsurface conditions, facilitating more 

informed decision-making in resource management. This work 

aims to enhance subsurface characterization of GPR data 

processing for real hydrocarbon oil and gas fields using 

advanced machine learning approaches: DT, BT, ANN, KNN, 

QDA, SVM, and NB, and to classify subsurface materials 

effectively. Our results indicate that all models demonstrated 

commendable performance, with the KNN achieving the 

highest accuracy of 98.169%. This remarkable accuracy not 

only underscores the potential of machine learning in GPR data 

analysis but also emphasizes the effectiveness of our 

preprocessing techniques, which included feature extraction 

through Gray-Level Co-Occurrence Matrix (GLCM) and 

Wavelet transforms, as well as robust data normalization and 

missing value imputation. 

In future work, exploring ensemble methods may lead to even 

greater accuracy and robustness by combining the strengths of 

multiple algorithms. Additionally, integrating deep learning 

approaches could enhance our ability to model complex 

subsurface structures and patterns. It is also recommended that 

data augmentation techniques be implemented to support model 

performance in scenarios with limited training data. 
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