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ABSTRACT

In this paper, we discuss the numerical solution of fractional order partial integro-differential equations. The type
of fractional derivative used is a Caputo derivative. The method proposed in this paper known as transform optimal
perturbation iteration method. This method combines the optimal perturbation iteration method and the Laplace
transform in order to converge to the exact solution. The proposed method is highly efficient and provides the means
of controlling the approximate solutions convergence. Illustrative examples prove that the suggested approach is very
accurate when compared with the exact solution and the results of the existing methods.
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1. Introduction

The subject of fractional calculus has applications
in diverse and widespread fields of engineering and
science such as electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, biological population
models, optics, and signals processing. It has been
used to model physical and engineering processes
that are found to be best described by fractional
differential equations. The fractional derivative
models are used for accurate modelling of those
systems that require accurate modelling of damping.
In these fields, various analytical and numerical
methods including their applications to new problems
have been proposed in recent years. Similar to how
fractional exponents are an extension of exponents
with integer values, fractional calculus is a branch of
mathematics that emerges from the conventional
definitions of calculus integral and derivative
operators. Applications of fractional calculus

are becoming more widespread in all associated
scientific and engineering domains. Several books
and associated review papers reported on some of the
findings [1–17]. However, the use of this extremely
potent tool in numerous study domains is still in its
infancy. Currently, the dynamics of the complex real
world are now included in the fractional calculus,
and new ideas are starting to be used and assessed
using real data. Patents were granted in some cases,
which makes the fractional order quite hopeful.
The fractional order community still plays a big
part in encouraging applications, despite the fact
that fractional calculus was first utilized more than
three centuries ago and is employed in numerous
scientific and engineering fields. Caputo revised
the definition of the Riemann-Liouville fractional
derivative in his 1967 paper [18], by substituting the
fractional integral operator for the standard deriva-
tive’s order. In contrast to the initial requirements
required when using the Riemann-Liouville fractional
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Fig. 1. The exact solution of example 1 when β = 1.

derivative, which entail fractional order conditions,
the Laplace transform of this new derivative is thus
dependent on integer order initial conditions.

This paper primary goal is to ascertain the
numerical solution of the fallowing special class
of fractional order partial integro-differential
equation:

cDβk p(h, k) = Q(h, k)+
∫ k

0
A(k,w)F (p(h,w))dw (1.1)

With the initial condition

p(h,0) = B(h) (1.2)

Where Q(h, k) is known continues function, A(k,w) is
a kernel of the Eq. (1.1) and F (p(h, k)) is a non-linear
operator in p(h, k).

2. Preliminaries

Definition 2.1: The fractional order Riemann-
Liouville (R-L) concept of an order β > 0 can be
provided as:

Iβk p
(
k
)
=

1
0(β)

∫ k

0
(k− τ̃ )β−1 p (̃τ ) dτ̃ , k > 0, β ∈ R+

Definition 2.2: The Caputo fractional derivative
with an order β > 0 can be provided as:

cDβk p(k) =


1

0(m−β)

k∫
0

p(m) (̃τ )
(k−τ̃ )β+1−m dτ̃ , m− 1 < β < m

dm

dkm p(k), β = m
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Fig. 2. The approximate solution of example 1 when β = 1.

The Caputo fractional derivative Laplace transform is
provided by

L{cDβk p(k)} = sβL{p(k)} −
n−1∑
ν=0

sβ−ν−1 pi
(ν)(k), i ∈ N

3. Theory of optimal perturbation iteration
transform method (OPITM)

Consider the fractional order partial integro-
differential equation given in formula:

cDβk p(h, k) = Q(h, k)+
∫ k

0
A(k,w)F (p(h,w))dw,

(h, k) ∈ (x̃, ỹ)× (0, T̃ ), 0 < β ≤ 1 (3.1)

Such that

p
(
h,0

)
= B(h) (3.2)

Firstly, we applying the Laplace transform on both
sides of Eq. (3.1) and by using Definition 2.2, yields:

L{p
(
h, k

)
} =

1
s

p
(
h,0

)
+

(
1
sβ

)
L
{

Q(h, k)

+

∫ k

0
A(k,w)F (p(h,w))dw

}
(3.3)

Now, applying the inverse Laplace transform on both
sides of Eq. (3.3) with use the initial condition of
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Fig. 3. The approximate solution of example 1 when β = 0.5.

Eq. (3.1), we get:

p
(
h, k

)
= L−1

{
1
s

B
(
h
)}
+ L−1

{(
1
sβ

)
L
{

Q(h, k)

+

∫ k

0
A(k,w)F (p(h,w))dw

}}
(3.4)

Secondly, we apply the perturbation iteration method
in order to decompose the nonlinear term, as follows:

Step (1): The perturbation parameter can be artifi-
cially embedded into Eq. (3.4) as

p
(
h, k

)
= L−1

{
1
s

B
(
h
)}
+ L−1

{(
1
sβ

)
L
{

Q(h, k)

+ ε

∫ k

0
A(k,w)F (p(h,w))dw

}}
(3.5)

Or compactly

U = U
(

p,
∫

p, ε
)
= 0 (3.6)

Step (2): To lessen the number of calculations, one
can reconsider Eq. (3.6) as

U
(

p,
∫

p, ε
)
= ξ + g

(
h, k

)
= 0 (3.7)

Where g
(
h, k

)
is known function. In addition, we can

decompose Eq. (3.7) into two parts as ξ = N + L,
where L denotes linear term and N is the nonlinear
term that will be discretized.

Step (3): In order to construct the iteration scheme,
we use the idea of classical perturbation theory. When
the approximation solutions may be taken in the
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Fig. 4. The approximate solution of example 1 when β = 0.75.

perturbation expansion as [21]:

pn+1 = pn + ε(pc)n (3.8)

We must find the correction term (pc)n, n ∈ N. Sub-
stituting Eq. (3.8) into Eq. (3.7), we get a simpler
perturbation. So, by expanding the crucial part N in
a Taylor series, it given by the following algorithm:

N
(

p,
∫

p,0
)
+ Np

(
p,
∫

p,0
)

(pc)nε

+ N∫
p

(
p,
∫

p,0
)(∫

(pc)n

)
ε + Nε

(
p,
∫

p,0
)
ε

+ L+ g(h, k) = 0 (3.9)

Now, we can call the Eq. (3.9) is OPITM, because
we will add some parameters to optimize the results.
Finding the correction term (pc)0 will be done using

the Eq. (3.9) and with the aid of the initial function
p0, in order to establish the iteration steps.

Step (4): To improve the method results accuracy
and efficiency, we express by the following formula:

pn+1 = pn + an(pc)n (3.10)

Where a0, a1, a2, . . . are the convergence control pa-
rameters, which changes to ensure convergence of the
method.

So, we get more of the approximation solutions as:

p1 = p1(h, k; a0) = p0 + a0(pc)0

p2 = p2(h, k; a0, a1) = p1 + a1(pc)1

· · ·

pm = pm(h, k; a0, a1, . . . , am−1) = pm−1

+ am−1(pc)m−1 (3.11)
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Fig. 5. The exact solution of example 2 when β = 1.

For the convergence of the method, we refer the
reader to see [20].

Step (5): Substituting mth-order OPITM solution
pm into Eq. (3.7), by doing so the general issue be-
comes the subsequent residual:

Re
(
h, k; a0, a1, . . . , am−1

)
= ξ

(
pm(h, k; a0, a1, . . . , am−1)

)
+ g(h, k) (3.12)

If Re(h, k; a0, a1, . . . , am−1) = 0. Then, the approxima-
tion solution pm (h, k; a0, a1, . . . , am−1) is the exact
solution. Though nonlinear differential equations
don’t typically have this situation, the functional can
be minimized as follows:

J (a0, a1, . . . , am−1)

=

∫ T̃

0

∫ ỹ

x̃
(Re(h, k; a0, a1, . . . , am−1))2dhdk (3.13)

where x̃, ỹ and T̃ are extracted from the prob-
lem’s domain. So, we can obtain the optimal values
a0, a1, a2, . . . from the following equations

∂J
∂a0
=
∂J
∂a1
= · · · =

∂J
∂am−1

= 0 (3.14)

Also, can be obtain the optimal values a0, a1, a2, . . .

from

Re
(
h0, k0; ai

)
= Re

(
h1, k1; ai

)
= · · · = Re

(
hm−1, km−1; ai

)
= 0, i = 0,1, . . . ,m− 1

(3.15)

where (hi, ki) ∈ (x̃, ỹ)× (0, T̃ ).
This technique is known as the collocation

method. For comprehensive details on collocation
me thud and ideal unknown parameter values,



IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;6:139–149 145

Fig. 6. The approximate solution of example 2 when β = 1.

one can referee to Agrawal etal and Deniz and
Bildik [22–24].

4. Illustrative examples

Example 4.1: Consider the PIDE of the form

cDβk p(h, k) = −h+ (h− h2)
(

1
2

k2
−

1
3

k3
)

+

∫ k

0
(kw− w)p(h,w)dw (4.1)

such that

p(h,0) = h (4.2)

The exact solution of problem (4.1)–(4.2) is given by:

p(h, k) = h(1− k) (4.3)

Taking the Laplace transform on both sides of Eq. (4.1),
we have:

L{p(h, k)} =
1
s

p
(
h,0

)
+

(
1
sβ

)
L
{
−h+ (h− h2)

(
1
2

k2
−

1
3

k3
)

+

∫ k

0
(kw− w)p(h,w)dw

}
(4.4)
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Fig. 7. The approximate solution of example 2 when β = 0.5.

Applying inverse Laplace transform on both sides of
Eq. (4.4) with used the initial condition of Eq. (4.1), as:

p(h, k) = L−1
{

1
s

h
}

+ L−1
{(

1
sβ

)
L
{
−h+ (h− h2)

(
1
2

k2
−

1
3

k3
)

+

∫ k

0
(kw− w)p(h,w)dw

}}
(4.5)

Now, applying the OPIM and setting ε = 1, yield:

pn
(
h, k

)
+ (pc)n(h, k)

= h+ L−1
{(

1
sβ

)
L
{
−h(h− h2)

(
1
2

k2
−

1
3

k3
)

+

∫ k

0
(kw− w)pn(h,w)dw

}}
(4.6)

From the Eq. (4.6), we can be determine the correction
term (pc)n. So, the approximation solutions are given as
(with the initial function p0(h, k) = 0),

p1(h, k) = p0(h, k)+ a0(pc)0(h, k)

p2(h, k) = p1(h, k)+ a1(pc)1(h, k)

. . . (4.7)

Following Table 1 represent the values of the con-
trol parameters a1 and a2 of problem (4.1)–(4.2)
at β = 1,0.5 and 0.75. While Table 2 represents
a comparison between the mean absolute errors
MAE that results from the proposed method OPITM
and the Laplace Adomian decomposition method
LADM [28], which shows that the OPITM is accu-
rate and at the same time dose not require many
calculations.
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Fig. 8. The approximate solution of example 2 when β = 0.75.

Table 1. The control parameter of problem
(4.1)–(4.2).

β a1 a2

1 0.995 0.995
0.5 33.797 1.034
0.75 1.045 8.666

Table 2. Comparison between MAE of the proposed
method and method [28] of problem (4.1)–(4.2).

k MAE of OPITM MAE of LADM [28]

0.01 1.243× 10−5 5.742× 10−8

0.05 1.851× 10−5 6.729× 10−6

0.09 4.755× 10−5 3.671× 10−5

Figs. 1 and 2 represent the exact and the approxi-
mate solutions of problem (4.1)–(4.2) at β = 1. Figs. 3
and 4 the approximate solutions of problem (4.1)–
(4.2) at β = 0.5 and β = 0.75 respectively.

Example 4.2: Consider the PIDE of the form

cDβk p(h, k) = 2h2k−
1
3

h3k3
+

1
4

h2k4

+

∫ k

0
(k− w)p(h,w)dw (4.8)

Such that

p(h,0) = 0 (4.9)

The exact solution of problem (4.8)–(4.9) is given by:

p(h, k) = h2k2 (4.10)
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Table 3. The control parameter of
problem (4.8)–(4.9).

β a1 a2

1 0.991 1.009
0.5 1.026 1.004
0.75 1.013 1.002

Table 4. Comparison between MAE of the proposed
method and method [28] of problem (4.8)–(4.9).

k MAE of OPITM MAE of LADM [28]

0.01 2.252× 10−10 2.268× 10−10

0.05 1.377× 10−7 1.359× 10−7

0.09 1.4× 10−6 1.366× 10−6

Taking the Laplace transform on both sides of Eq. (4.8),
we get:

L{p(h, k)} =
1
s

p(h,0)+
(

1
sβ

)
L
{

2h2k−
1
3

h3k3

+
1
4

h2k4
+

∫ k

0
(k− w)p(h,w)dw

}
(4.11)

Applying inverse Laplace transform on both sides of
Eq. (4.11) with used the initial condition of Eq. (4.8),
as:

p(h, k) = L−1
{(

1
sβ

)
L
{

2h2k−
1
3

h3k3

+
1
4

h2k4
+

∫ k

0
(k− w)p(h,w)dw

}}
(4.12)

Now, applying the OPIM and setting ε = 1, yield:

pn
(
h, k

)
+ (pc)n(h, k) = L−1

{(
1
sβ

)
L
{

2h2k−
1
3

h3k3

+
1
4

h2k4
+

∫ k

0
(k− w)p(h,w)dw

}}
(4.13)

From the Eq. (4.13), we can be determine the correction
term (pc)n. So, the approximation solutions are given as
(with the initial function p0(h, k) = 0),

p1(h, k) = p0(h, k)+ a0(pc)0(h, k)

p2(h, k) = p1(h, k)+ a1(pc)1(h, k)

· · · (4.14)

Figs. 5 and 6 represent the exact and the approxi-
mate solutions of problem (4.8)–(4.9) at β = 1. Figs. 7
and 8 the approximate solutions of problem (4.8)–
(4.9) at β = 0.5 and β = 0.75 respectively.

5. Conclusions

In this paper, we created a successful hybrid strat-
egy that to build the approximate solution of the
fractional order partial integro-differential equations
FPIDEs by combined the least squares method, the
Laplace transformation and optimal perturbation iter-
ation method. In the proposed method, we overcome
the problem that appeared when the Caputo deriva-
tive is considered by using the Laplace transform. We
can be written the approximation solutions of the
FPIDEs have infinite series with unknown converge
parameters must be determined. We explained the
method OPITM through two examples of the FPIDEs.
It is noteworthy that the suggested approach has the
potential to decrease the amount of time spent on
computing labor in comparison to traditional meth-
ods and quickly converges to the precise answers of
the provided equations at a reduced iteration value.
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