

Iraqi National Journal of Earth Science

منهجية جديدة لتخمين مناطق التعربية والترسيب في خزان سد دهوك بالاعتماد على التحليل الجيومتري لما قبل التخزين والمسح الباثومتري

الملخص	معلومات الارشفة
تضمنت هذه الدراسة تخمين الترسبات المتراكمة في خزان سد دهوك منذ البدء	تاريخ الاستلام: 17- مارس -2024
بتشغيله حتى الآن، والتي بدورها تؤثر على حجم الخزين المائي للخزان مع الزمن، وبالتالي اقتراح الحلول المناسبة للتخلص منها بهدف إطالة العمر	تاريخ المراجعة: 13- مايو -2024
الاستثماري للسد. من أجل هذا تم تخمين الترسبات المتراكمة و المنقولة في	تاريخ القبول: 07- يونيو -2024
مقاطع مختارة من خزان السد حيث تم اجراء المسح الباثومتري بواسطة جهاز الـ(ADCP) مسم هذه المقاطع من خلال مقادنة قاع الخنان المأخوز من	تاريخ النشر الالكتروني: 01- ابريل -2025
المورج الجرومية) ورسم من المنابع من عرف الغزان الدال م المأخوذ من المورج	الكلمات المفتاحية:
المسلح الجيومتري قبل الساء السد مع قاع الحرال الحالي و الماحود من المسلح الباثومتري، وتحديد سمك الترسبات والتعرية المكاني لها في الخزان والتعرية	سد دهوك (ADCP)
الحاصلة في صفافة، وبنين أن الترسيب يترايد بسخل طردي مع جريان المية	خزان السد
من أعلى الحران وبالجاه جسم السد حيث بندا الترسبات في أعلى الحران بسمك	المسح الباثومتري
(III) وتستمر بالريادة تدريجيا بسكل طعيف لحلها تتبع درونها عند جسم السد	التحليل الجيومتري
حيث بصل لسمك (m19) ، أما التعرية من ضعاف الحران بكون مناينة لكن بشكل عام فإنها تتناسب عكسيا مع الترسيب فتكون اكثر عند اعلى الخزان	المراسلة:
وتتناقص بالقرب من جسم السد، و بلغ حجم الترسبات المتراكمة في الخزان عند	الاسم: نوفل حسن علي
المناسيب (600.46 m) و (599.76 m) هو (33117032 m ³) اما حجم	Email: nawfil.hassan@tu.edu.iq
التعرية من ضفاف الخزان عند نفس المناسيب هو (32488153 m ³).	

DOI: <u>10.33899/earth.2024.147905.1250</u>, ©Authors, 2025, College of Science, University of Mosul. This is an open access article under the CC BY 4.0 license (<u>http://creativecommons.org/licenses/by/4.0</u>).

A New Methodology for Estimating the Areas of Erosion and Sedimentation in the Duhok Dam Reservoir Using Pre-Storage for Geometric Analysis and Bathymetric Survey

Nawfal H. Ali^{1*}, Sabbar Abdullah Saleh², Amera Ismail Hussain³ ^{1,2,3} Department of Applied Geology, College of Science, University of Tikrit, Tikrit, Iraq.

Article information	ABSTRACT
Received: 17- Mar -2024	This study included estimating the accumulated sediments in the Duhok Dam reservoir since its inception until now. These sediments, in turn,
Revised: 13- May -2024	affect the volume of water storage in the reservoir over time. The study aims to propose appropriate solutions to address these sediments with
Accepted: 07- June -2024	the goal of extending the operational lifespan of the dam. To achieve
Available online: 01- Apr – 2025	this, the accumulated and transported sediments were estimated in selected sections of the dam reservoir. The bathymetric survey was
Keywords:	conducted using the (ADCP) device, and these sections were drawn by
Duhok Dam	comparing the bottom of the reservoir taken from the geometric survey
(ADCP)	before the dam construction with the current reservoir bottom taken
Dam Reservoir	from the bathymetric survey. This aimed to determine the thickness of
Bathymetric Survey	the sediments and their spatial distribution in the reservoir, And the
Geometric Survey	erosion occurring on its banks, The findings indicate that sediment
Correspondence : Name: Nawfal H. Ali <u>Email: nawfil.hassan@tu.edu.iq</u>	increases proportionally with water flow from the upper part of the reservoir towards the dam body. Sediment thickness starts at (3 m) at the upper part of the reservoir and gradually increases, reaching its peak at the dam body with a thickness of (19 m). Erosion from the reservoir banks varies but generally inversely correlates with sediment deposition. It is higher at the upper part of the reservoir and decreases near the dam body. The volume of accumulated sediment in the reservoir reached at the levels (599.76 m), (600.46 m), it is (3,117,032 m ³). As for the volume of erosion from the reservoir's banks at the same levels, it is (2,488,153 m ³).

DOI: <u>10.33899/earth.2024.147905.1250</u>, @Authors, 2025, College of Science, University of Mosul. This is an open access article under the CC BY 4.0 license (<u>http://creativecommons.org/licenses/by/4.0/</u>).

المقدمة

الخزانات ضرورية لاقتصاد العالم نظرًا لدورها في إنتاج الكهرباء ومكافحة الفيضانات وتوفير المياه والسياحة، وهذا كله يعتمد على سعة التخزين، ومع ذلك تعد السدود فعالة كمصائد للرواسب، وتقل السعة عندما تتراكم الترسبات داخل الخزانات(2004, 2014, 2014) ، وقد تتحكم البيئة وشكل الأرض في هذه الأحداث والنشاطات، بما في ذلك إنشاء السدود الاحترازية على الأنهار باعتبارها مصدراً للمياه بشكل مستمر، وتعتبر هذه السدود ذات فائدة أساسية للمجتمع، وقد تعتبر مصدراً سلبياً أو خطراً إذا تم إهمال سلامة هذه السدود حتى لو كانت صغيرة الحجم، وفي ضوء ذلك تمكن العامل البشري من التخطيط للدراسات الجيولوجية والهندسية لمحاولة فهم وتفسير ثبات وصمود هذه السدود قبل أو أنثاء أو بعد إنشائها (Hamdon *et al.*, 2024)، تتطلب دراسة الرسوبيات المتراكمة في السدود دراسة شاملة للحوض او المستجمع المائي للسد (Hassan, 2012)، تتطلب دراسة الرسوبيات المتراكمة في السدود دراسة شاملة للحوض او المستجمع مهم لإدارة الموارد المائية، (Hassan, 2023)، عنه مانشاط الهيدرولوجي لمستجمع المياه الذي له تأثير على الجريان السلحي أمر ابتداء من عملية الحر والتعرية ومروراً بمراحل حملها ونقالها فوق المنحدرات وخلال مجاري الأوران السلحي أمر وفي شائو المائية، (EI-Sersawy, 2005)، حيث تبدأ عملية الانجراف رحلتها إلى بحيرات السدود في شأن المياد لما لما من أهمية كبيرة على حجوم التخزين المفيدة لبحيرات السدود في شأن المياه لما لها من أهمية كبيرة على حجوم التخزين المفيدة لبحيرات السدود (2010 معائية والأنهار، وانتهاء إلى في شأن المياه لما لها من أهمية كبيرة على حجوم التخزين المفيدة لبحيرات السدود (2010 معائية والأنهار، على تزداد الترسبات في بحيرات السدود باستمرار بسبب تزايد الكثافة البشرية وما ينتج عنها من تغيرات وي المائية قضية مهمة للمعنيين الترسبات في بحيرات السدود باستمرار بسبب تزايد الكثافة البشرية وما ينتج عنها من تغيرات في المائي ونسترام معاري الأراضي الأراضي الفيرية وما ينتج عنها من تغيرات المنود (2010 معاري الأراضي الأرمر ,Radoane). تؤدي هذه الرسوبيات المتجمعة في بحيرات السدود مع الزمن إلى تناقص حجم الخزين المفيد تدريجياً حتى خروج السد من الاستثمار (Scheu, et al., 2015)، حيث تقدر كمية الرسوبيات المتراكمة في بحيرات السدود في العالم لفترة زمنية مقدارها 35 سنة بحدود 57 مليار متر مكعب سنوياً، أي 0.8% من إجمالي السعة التخزينية سنوياً(2015 (USSD,)، من اجل ذلك تم عمل دراسة لتخمين الترسبات المتراكمة في بحيرة سد دهوك وبطريقة جديدة تختلف عن الدراسات السابقة لتخمين الترسبات المتراكمة في بحيرات السدود، حيث درس (Heeto et al., 2017) تخمين الترسبات المتراكمة في بحيرة سد دهوك عن طريق مقارنة الفرق في حجم الماء في البحيرة عند المنسوب الاقصى مع حجم الماء اثناء يوم القياس، ودرس (Al-Talib et al., 2021) تأثير التآكل وانزلاق صخور تكوين جيركس على سد دهوك حيث تم تحديد الخصائص الجيوتقنية للكتلة الصخرية بإستخدام برنامج ال (Rocklab)، كذلك قام كل من (Ezz-Aldeen et) al., 2018) تقييم الترسبات في خزان سد دوكان عن طريق عمل نموذج محاكاة (SWAT) قائم على المبادى الغيزيائية، وقام (Hamad, 2019) بدراسة التنبؤ عن توزيع الرسوبيات في سد 16 تشرين في سوريا بالطرق التجريبية حيث تناقص وتزايد المساحة للبيانات الاولية ومقارنتها مع المعلومات التي تم الحصول عليها من خلال الهيدروغرافيا في للسنوات التي تلت الاستثمار، كذلك تم دراسة نفس السد من قبل (Ezz-Aldeen et al., 2018) تأثير تراكم الرسوبيات على انخفاض المخزون الحي في بحيرة سد 11 تشرين عن طريق المسح الطوبوغرافي لبحيرة السد لمعرفة التغيرات الحاصلة في اعماق البحيرة، و قام كل من (Endalew and Mulu, 2022) بدراسة تقدير الترسبات باستخدام المسح الباثومتري في سد شمبوريت، منطقة شرق جوجام في إقليم أمهرا، إثيوبيا، حيث قدرت الرسوبيات عن طريق الفرق في الخزين قبل وبعد انشاء السد عن طريق برنامج ال (GIS). بالاضافة الى المنهجية الجديدة المتبعة في دراستنا لتقييم توزيع وحجم الترسبات المتراكمة في سد دهوك والتي سيتم ذكرها بالتفصيل لاحقا فإن جميع هذه الدراسات لم يتم فيها تقييم التعرية الحاصلة في ضفاف البحيرة مع العلم ان الترسبات الموجود في كل بحيرة هنالك نسبة كبيرة منها تكون من مناطق الضفاف وبالتالي تقييم حجم التعرية من الضفاف يعتبر ضروري لأنه يؤثر على استقرارية السد.

اهداف الدراسة

تهدف الدراسة الي

- 1. تخمين حجم الترسبات المتراكمة في بحيرة السد ضمن منسوب الماء في يوم القياس منذ انشاء السد الي الان.
- تخمين حجم التعرية الحاصلة في ضفاف بحيرة السد ضمن منسوب الماء في يوم القياس منذ الانشاء الى الان.
- معرفة توزيع المكاني الترسبات المتراكمة في بحيرة السد مع التعرية الحاصلة في ضفاف البحيرة ورسم خريطة توضح هذا التوزيع لهما.

موقع منطقة الدراسة

تقع منطقة الدراسة في شمال العراق على بعد 2كم شمال مدينة دهوك بين احداثيات التشريق (308000 و331000) واحداثيات التشميل (4098000 و4098000)، وبمساحة تقدر ب135 كم²، تم بناء السد في عام 1988، لأغراض الري و الزراعة في المدينة، بالاضافة الى انه يُستخدم اليوم كمصدر لتوفير المياه والسياحة، تبلغ سعة السد التخزينية 52 مليون م³، وهو سد ترابي إملائي يبلغ ارتفاعه 60.5م عن مستوى سطح الارض وطول قمة السد 613م وعرضها 9م بمنسوب 19.73م فوق مستوى سطح البحر في حين تبلغ عرض قاعدة السد 2000م، ويعتبر من السدود الترابية المهمة في العراق.

نوفل حسن على طحطوح واخرون

الشكل 1. يبين خريطة موقعية وجيولوجية لسد دهوك شمال العراق

جيولوجية منطقة الدراسة

تتميز منطقة الدراسة بانها ذات غطاء جيولوجي سميك يتكون من تتابعات من الحجر الجيري وطبقات جبسيه على نطاق واسع (Jassim and Goff, 2006)، والتكوينات المنكشفة في منطقة الدراسة هي صخور

تكوين بخمة ويظهر في منطقة الدراسة بشكل طبقات من حجر جيري متدلمت او متبلور يحتوي على عقد الصوان متناوبة مع المارل والحجر الجيري المارلي ويظهر في منطقة الدراسة في لب الطية كما موضخ في الخريطة الجيولوجية (الشكل 1).

تكوين شيرانش الذي يتميز الجزء العلوي منه في منطقة الدراسة بمارل ذو لون رصاصي فاتح، اما الجزء السفلي فيظهر بشكل طبقات رقيقة التطبق من مارل جيري، يظهر التكوين في الضفة الشرقية من خزان سد دهوك في الجزء الشمالي منه كما موضح في الخريطة الجيولوجية (الشكل 1).

تكوين كولوش الذي يظهر بصورة واسعة عند جناحي طية بيخير في المناطق المنخفضة وفي الضفة الغربية من خزان سد دهوك في الجزء الشمالي منه كما موضح في الخريطة الجيولوجية (الشكل 1)، ويكون عبارة عن تعاقبات من الترسبات الفتاتية غير الصلبة رقيقة من السجيل والحجر السلتي والطيني والرملي مع حجر الصوان.

تكوين خورمالة الذي يتكون من دولومايت وحجر جيري معاد التبلور، يظهر التكوين في منطقة الدراسة بشكل عدسات متغايرة في سمكها بين (2- 6) متر من منطقة الى اخرى.

تكوين جيركس يمثل هذا التكوين اجزاء كبيرة من منطقة الدراسة ويشكل الجزء الاكبر من خزان سد دهوك كما موضح في الخريطة الجيولوجية (الشكل 1)، يتألف التكوين من صخور فتاتية ناعمة من الحجر الرملي التي تمتاز بلونها الاحمر، الحجر الغريني والحجر الطيني ويحوي على طبقات من الجبس في الأجزاء العلوية منه.

تكوين افانا يظهر بشكل طبقات من الحجر الجيري المارلي مع قليل من التلاسنات المارلية، ويظهر التكوين على كتف السد الايمن من منطقة الدراسة كما موضح في الخريطة الجيولوجية (الشكل 1).

تكوين بيلاسبي يتكون من حجر كلسي جيد التطبق مع حزم من المارل بلون اخضر باهت او طباشيري وتعتبر صخوره المصدر الاساسي للطبقة الخارجية الاكسائية لجسم سد دهوك الترابي .

المواد والطرق العمل

تضمنت هذه المرحلة اجراء جولات استطلاعية للتعرف على المعالم الجيولوجية المحيطة بموقع السد وجولتان ميدانية تم فيها اجراء المسح الباثومتري لخزان السد وقياس اعماق المياه بواسطه جهاز الاكوستك دوبلير (ADCP) لوحة رقم (1) حيث في الجولة الاولى تم اخذ ستة محطات خمسة منهم بشكل عرضي على الخزان في الضفة اليمني واليسري منها و موازية لجسم السد و واحدة بشكل طولي على خزان السد من (Up Stream) الى (Down Stream)، وتم اخذ احداثيات مواقع بداية ونهاية كل محطة بجهاز ال (GPS) نوع (GARMIN 64) كما موضح في لوحة رقم (2)، وفي الجولة الثانية تم اخذ سبعة محطات ستة منهم بشكل عرضي على الخزان في الضفة اليمني واليسري منها و موازية لجسم السد و واحدة بشكل طولى على خزان السد من (Up Stream) الى (Down Stream)، وتم اخذ احداثيات مواقع بداية ونهاية كل محطة بجهاز ال (Differential GPS) كما موضح في لوحة رقم (3) ، ثم تم اشتقاق (Shapefile) المنسوب (620m) والذي يمثل قمة السد من نموذج الارتفاع الرقمي (DEM) الخاص بالمنطقة وكذلك اشتقاق (Shapefile) المنسوب (Shapefile) والذي يمثل منسوب سطح الماء لخزان السد في يوم القياس من الجولة الاولى، وكذلك اشتقاق (Shapefile) المنسوب (m) 599.76 m) والذي يمثل منسوب سطح الماء للخزان في يوم القياس من الجولة الثانية ،وبعدها تم رسم خريطة توزيع المحطات في برنامج اله (ArcGIS) كما موضحة في الأشكال رقم (2،3).

لوحة رقم 1. تبين جهاز قياس اعماق المياه (ADCP) مع اجهزة قياس الموقع الجغرافي

شكل رقم 2. يوضح خريطة السد وامتداد الخزان مثبت عليها مواقع محطآت قياس اعماق المياه مع منسوب الماء في يوم القياس في الجولة الاولى

4084700 of ADCP2 321000

شكل رقم 3. يوضح خريطة السد وامتداد الخزان مثبت عليها مواقع محطات قياس اعماق المياه مع منسوب الماء في يوم القياس في الجولة الثانية

النتائج والمناقشة

تمت معالجة القراءات المستخرجة من جهاز ال (ADCP) بواسطة برنامج (WinRiver II) حيث تم رسم مقاطع المحطات كما في الشكل (4) في الجولة الاولى والشكل (5) للمرحلة الثانية.

الشكل 4. مقاطع المسارات في الجولة الاولى عند المنسوب (600.46m)

الشكل 5. مقاطع المسارات في الجولة الثانية عند المنسوب (599.76m)

بعد اجراء المسح الباثومتري ومعالجة النتائج في برنامج ال (WinRiver II) ورسم مقاطع واشكال المسارات تم استدعاء صورة شكل المسار الى برنامج ال (Arc GIS) لإسنادها مكانيا لأن كل مسار له احداثيات بداية ونهاية فصار بالإمكان اسناد الصورة وتحويلها من صيغة (jpg) الى صيغة (Image) والغرض من هذه العملية هو لاستدعاء صور المسارات في مكانها الصحيح الى خريطة السد التي تم اسنادها كذلك ليكون شكل المسار طبق الاصل عن شكل المسار الحقيقي اثناء القياس. تم اسناد صور شكل المسارات في برنامج (Arc GIS) واستدعيت مع خريطة السد و (Shapefile) لقمة السد و (Shapefile) بديد فوق صور شكل القمة السد و (Shapefile) بديد فوق صور شكل المسارات المسندة يمثل شكل المسار الحقيقي كما في الشكلين (6 و7)، وتم رسم خريطة السد للمناسيب في المرحلتين الاولى والثانية مع جميع المسارات وذلك لمقارنة مواقع المسارات وتغسيرها لاحقا كما في الشكل رقم (8).

شكل رقم 6. يوضح خريطة السد وامتداد الخزان مثبت عليها مواقع محطات قياس اعماق المياه مع منسوب الماء لحظة القياس مع مساراتها في الجولة الاولى

شكل رقم 7. يوضح خريطة السد وامتداد الخزان مثبت عليها مواقع محطات قياس اعماق المياه مع منسوب الماء لحظة القياس مع مساراتها في الجولة الثانية

الشكل رقم 8. يوضح خريطة السد وامتداد الخزان مثبت عليها مواقع محطات قياس اعماق المياه مع مساراتها في الجولة الاولى والثانية

بعد ذلك تم قياس المسافة من نقطة الانطلاق مع الارتفاع لسطح الارض على طول (Shapefile) للمسارات وعمل جدول في برنامج الاكسل (Excel 2010) لكل من الارتفاعات لسطح الارض قبل إنشاء السد مع المسافة من نقطة الانطلاق، والارتفاعات الحالية لسطح الارض لخزان السد مع المسافة من نقطة الانطلاق حيث تم استخراج الارتفاعات لسطح الارض قبل إنشاء السد مع المسافة من نقطة الانطلاق، والارتفاعات الحالية لسطح الارض لخزان السد مع المسافة من نقطة الانطلاق حيث تم استخراج الارتفاعات لسطح الارض قبل إنشاء السد مع المسافة من نقطة الانطلاق، والارتفاعات الحالية لسطح الارض لخزان السد مع المسافة من نقطة الانطلاق حيث تم استخراج الارتفاعات لسطح الارض قبل انشاء السد من الخريطة الطوبوغرافية القديمة بعد إسنادها مكانيا هي الاخرى اما الارتفاعات الحالية لسطح الارض في الخزان فقد تم استخراجها من طرح قيمة عمق الماء المستخرج بواسطة جهاز الاكوستك دوبلير (ADCP) من قيمة منسوب الماء المأخوذ في يوم المسح الباثومتري وهي (m 60.46 m) في الجولة الاولى والمنسوب (ADCP) في الجولة الثانية بعدها تم رام في الجولة الثانية بعدها تم رام الماء المائية بعدها تم رام المستخرج بواسطة جهاز الاولى والمنسوب (ADCP) من قيمة منسوب الماء المأخوذ في يوم المسح الباثومتري وهي (m 60.46 m) في الجولة الاولى والمنسوب (مالمات بعدها تم رام العلاقة بينهم وكما موضحة في الشكل رقم (9) في الجولة الاولى والشكل (10) في الجولة الثانية بعدها تم رسم العلاقة بينهم وكما موضحة في الشكل رقم (9) في الجولة الاولى والشكل (10) في الجولة الثانية

الجدول رقم 1: يبين قراءات ارتفاعات سطح الارض المأخوذة من الخريطة الطوبوغرافية لسد دهوك قبل الانشاء مع قراءات عمق الماء المأخوذة من المسح الباثومتري بواسطة جهاز الـ (ADCP) مع المسافة للمسارات وجميعها بوحدات (المتر) في الجولة الاولى

	ضي الثالث	المقطع العره			بضي الثاني	المقطع العر		المقطع العرضي الاول			
العمق	الارتفاع بعد	الأرتفاع قبل	المسافة	العمق	الارتفاع بعد	الأرتفاع قبل	المسافة	العمق	الارتفاع بعد	الارتفاع قبل	المسافة
0	600.46	600.46	0	0	600.46	600.46	0	0	600.46	600.46	0
3.18	597.28	600	132.14	9.85	590.61	600	25.49	2.6	597.86	600	28
9.33	591.13	595	215.98	10.77	589.69	595	42.53	6.94	593.52	595	70
21.17	579.29	585	401.24	10.64	589.82	595	116.67	6.97	593.49	594	80
21.96	578.5	580	424.83	12.72	587.74	590	135.35	6.97	593.49	593	92
21.97	578.49	575	440.03	14.04	586.42	585	148	7.37	593.09	592	99.31
22.77	577.69	574	648	15.57	584.89	584	194	8.17	592.29	591	162
22.77	577.69	575	671.09	15.52	584.94	583	218	9.4	591.06	590	172
20.92	579.54	580	777.66	15.54	584.92	582	233	10.77	589.69	588	268
21.17	579.29	585	835	14.77	585.69	581	250	10.77	589.69	587	305
20.6	579.86	590	851	15.5	584.96	585	297	12.37	588.09	585	381
18.45	582.01	595	868	15.49	584.97	587	313	11.5	588.96	590	465
1.72	600.46	600.46	1018	14.73	585.73	588	321	10.7	589.76	595	474
	الطولي	المقطع		15.55	584.91 589		329	8.72	8.72 591.74 600		
العمق	الارتفاع بعد	الارتفاع قبل	المسافة	15.46	585	590	334	6.88	600.46	600.46	490
0	600.46	600.46	0	15.53	584.93	595	342				
13	598.21	600	13	15.56	6.56 584.9 600 351			المقطع العرضي الرابع			
2.27	598.19	595	46	0.9	600.46	600.46	395	العمق	الارتفاع بعد	الارتفاع قبل	المسافة
56	598.17	594	56		نسي الخامس	المقطع العرض		0	600.46	600.46	0
2.47	597.99	593	67	العمق	الارتفاع بعد	الارتفاع قبل	المسافة	5.89	594.57	595	47.24
2.67	597.79	590	93	0	600.46	600.46	0	19.38	581.08	590	95.36
2.87	597.59	591	172	3.2	597.26	600	12	21.17	579.29	585	108.94
3.65	596.81	590	208	6.9	593.56	595	32	22.77	577.69	575	158.75
4.06	596.4	589	225	11.5	588.96	590	64	22.77	577.69	574	207.94
4.8	595.66	588	263	16.2	584.26	585	104	22.77	577.69	573	220.23
4.97	595.49	587	279	20.74	579.72	580	128	22.77	577.69	572	255.45
5.9	594.56	586	293	21.9	578.56	575	143	23.57	576.89	571	286.12
12.37	588.09	585	585	23.5	576.96	570	164	23.57	576.89	571	330.5
13.17	587.29	583	627	23.5	576.96	565	216	23.57	576.89	572	359.78
14.77	585.69	583	734	21.9	578.56	560	282	23.57	576.89	573	398.27
16.37	584.09	583	812	21.1	579.36	575	309	23.57	576.89	574	420.71
16.39	584.07	582	841	21.15	579.31	580	337	20.26	580.2	575	450
17.17	583.29	581	869	18.7	581.76	585	368	18.88	581.58	580	456.91
21.17	579.29	575	1150	15.5	584.96	590	403	13.97	586.49	585	463.31
22.2	578.26	570	2098	6.37	594.09	595	535	12.09	588.37	590	473.25
22.77	577.69	565	2166	2.4	598.06	600	582	3.37	597.09	600	560.68
9.18	600.46	600.46	2227	2.2	600.46	600.46	589	1.71	600.46	600.46	658.51

الجدول رقم 2: يبين قراءات ارتفاعات سطح الارض المأخوذة من الخريطة الطوبوغرافية لسد دهوك قبل الانشاء مع قراءات عمق الماء المأخوذة من المسح الباثومتري بواسطة جهاز الـ (ADCP) مع المسافة للمسارات وجميعها بوحدات (المتر) في الجولة الثانية

	ضي الثالث	المقطع العر			بضي الثاني	المقطع العر		المقطع العرضي الاول			
العمق	الارتفاع بعد	الارتفاع قبل	المسافة	العمق	الارتفاع بعد	الارتفاع قبل	المسافة	العمق	الارتفاع بعد	الارتفاع قبل	المسافة
0	599.76	599.76	0	0	599.76	599.76	0	0	599.76	599.76	0
2.3	597.46	600	14	1.25	598.51	600	20	2.68	597.08	605	6
5.35	594.41	595	46	13	586.76	595	149	6.31	593.45	600	15
8.6	591.16	590	140	17.6	582.16	590	161	10	589.76	595	30
12.16	587.6	585	265	19.82	579.94	585	173	11.97	587.79	590	44
14.99	584.77	580	282	21.05	578.71	580	185	13.9	585.86	585	72
22	577.76	575	381	20.4	579.36	580	205	14.7	585.06	581	272
22.51	577.25	574	395	21.95	577.81	575	405	14.7	585.06	585	324
22.61	577.15	573	451	20.42	579.34	580	282	14./	585.06	58/	240
22.65	577.16	572	4/5 515	20.4	5/9.30	585	752	14.7	585.06	588	250
22.0	577.07	572	515	11.39	509.37	590	152	14.7	585.00	589	269
22.09	577.11	574	572	11.20	588 30	<u> </u>	782	14.7	585.00	593	300
22.03	577.03	575	613	5.8	599.76	599.76	829	10.56	589.2	595	426
22.75	576.04	580	626	5.6	577.70		02)	1 25	500.76	500.76	420
22.82	370.94	580	020		سي الكامس	ומשבש ובתב		1.55	399.70	399.70	475
22.69	577.07	585	639	العمق	المسافة الارتفاع قبل الارتفاع بعد العمق				المقطع العر		
22.47	577.29	590	647	0	599.76	599.76	0	العمق	الارتفاع بعد	الارتفاع قبل	المسافة
22	577.76	595	657	4.2	595.56	600	14	0	599.76	599.76	0
1.75	598.01	600	739	9	590.76	595	70	1.75	598.01	600	41
1.47	599.76	599.76	750	12.4	587.36	590	113	4.85	594.91	595	151
	المقطع العرضي السادس			15.23	584.53	585	146	15.28	584.48	590	468
العمق	الارتفاع بعد	الارتفاع قبل	المسافة	18	581.76	580	182	15.03	584.73	585	553
0	599.76	599.76	0	20.26	579.5	570	204	12	587.76	585	710
7.66	592.1	595	85	22.8	576.96	565	224	23.26	576.5	570	927
14.08	585.68	590	175	23.6	576.16	560	239	22.8	576.96	573	989
15.67	584.09	585	193	23.62	576.14	559	256	22.8	576.96	574	1009
16.42	583.34	580	223	23.63	576.13	558	280	22.8	576.96	575	1022
1/.1	582.66	575	232	22.8	576.96	557	330	17.09	5/7.76	580	1084
18	581./6	574	243	22.8	576.96	573	442	17.28	582.48	585	1133
10.0	580.90	575	254	22.8	576.90	575	439	10.0	588.50	595	1147
23.6	576.16	550	208	22.0	576.96	585	407	6.6	503.16	600	1172
23.0	576.5	560	347	22.0	577.83	590	501	0.0	599.10	599.76	1101
22.8	576.96	565	392	5.4	594.36	600	651	0.5	الطولى	المقطع	11/1
23.6	576.16	570	436	0.85	599.76	599.76	690	0	599.76	599.76	0
23.64	576.12	575	459	0.00	077110	077110	070	8	591.76	592	19
21.09	578.67	580	485	-				8.6	591.16	591	35
13.62	586.14	595	566	-				8.9	590.86	590	68
7.8	591.96	600	760	-				10.2	589.56	589	91
1.99	599.76	599.76	812	-				11.6	588.16	588	150
								12.3	587.46	587	170
								13.11	586.65	585	200
								18.8	580.96	575	581
								19.11	580.65	574	867
								22.66	577.1	574	966
								23.6	576.16	570	1623
								23.6	576.16	565	1684
								22	577.76	560	1754
								10.8	599.76	599.76	1799

نوفل حسن علي طحطوح واخرون

الشكل رقم 9. يوضح تقدير الترسبات المتراكمة والتعرية من ضفاف الخزان للمسارات في الجولة الاولى عند المنسوب (600.46m)

الشكل رقم 10. يوضح تقدير الترسبات المتراكمة والتعرية في ضفاف الخزان للمسارات في الجولة الثانية (599.76m)

حيث تمثل الاشكال اعلام المسارات في المرحلتين الاولى والثانية و الخط ذو اللون الازرق يمثل ارتفاع سطح الارض داخل الخزان قبل انشاء السد والخط ذو اللون الاحمر ارتفاع سطح الارض داخل الخزان بعد انشاء السد وتشير التفسيرات الى ان الخط الاحمر عندما يكون تحت الخط الازرق فإن هذا يدل على حدوث تعرية (Erosion) اما عندما يكون الخط الاحمر فوق الخط الازرق فإن ذلك يشير الى حدوث ترسيب (Deposition) سواء تكون منقولة من خارج الحوض او بسبب عمليات التعرية والحت للمياه لأكتاف الخزان ونزولها الى القاع بواسطة الجاذبية (Gravity)، ومن خلال الاشكال يتبين ان الترسيب يتزايد بشكل طردي مع جريان المياه من اعلى الخزان وباتجاه جسم السد حيث تبدأ الترسبات في اعلى الخزان وحسب مواقع المسارات الموضحة في الخريطة رقم (9) وكما يلى:-

- في المسار الأول من الجولة الأولى يصل سمك الترسبات الى (3م).
- في المسار الاول من الجولة الثانية مع المسار الثاني من الجولة الاولى حيث يصل سمك الترسبات الى (4م).
 - في المسار الثاني من الجولة الثانية يصل سمك الترسبات الى (3م).
 - فى المسار الثالث من الجولة الاولى يصل سمك الترسبات الى (4م).
 - في المسار الثالث من الجولة الثانية يصل سمك الترسبات الى (5م).
 - في المسار الرابع من الجولة الثانية يصل سمك الترسبات الى (6م).
 - في المسار الرابع من الجولة الأولى يصل سمك الترسبات (7م).
- اما في المسار الخامس من الجولة الثانية فإننا نقترب من جسم السد لهذا فإن سمك الترسبات يزداد بشكل كبير ليصل الى (18م).
- واخيرا في المسار السادس من الجولة الثانية والمسار الخامس من الجولة الاولى فإن سمك الترسبات يصل الى (19م).

بعدها تم اخذ نقاط على المقاطع (الشكل 9 و10)، مع الارتفاع قبل وبعد انشاء السد وبواقع (7) نقطة لكل مقطع مع المسافة، وتم استدعاء مسارات هذه المقاطع على الخريطة الطوبوغرافية للسد قبل الانشاء ثم اخذت مواقع هذه النقاط عليها وبالتالي أصبح لدينا قاعدة بيانات تتكون من احداثيات الموقع لهذه النقاط مع الارتفاع قبل وبعد انشاء السد، الجدول رقم (3)، حيث ادخلت هذه البيانات في برنامج الـ (GIS) وتم رسم خريطة توزيع مكاني للترسبات المتراكمة مع التعرية من ضفاف البحيرة للسد كما في الشكل (11)،

الجدول رقم 3: يبين قراءات ارتفاعات سطح الارض قبل وبعد انشاء السد المأخوذة من المقاطع مع مواقع النقاط المأخوذة من الخريطة الطوبوغرافية لسد دهوك قبل الانشاء وجميعها بوحدات (المتر) في الجولتين الاولى والثانية

بعد – ا		الارتفاع	الارتفاع	V	v	NO	141 14	بعد –	الارتفاع	الارتفاع	V	V	NO
المساقة	قبل	قبل	بعد	ĭ	A NO	المساقة	قبل	قبل	بعد	r	А	NO	
867	5.79	574.86	580.65	4083964	321969.6	4-D-U-S2	0	0	599.76	599.76	4084467	322189.5	1-1-S2
1623	6	570.16	576.16	4083213	322028.5	5-D-U-S2	30	-5.54	595.3	589.76	4084468	322159.8	2-1-S2
1754	17.59	560.17	577.76	4083089	322069.5	6-D-U-S2	72	0	585.86	585.86	4084472	322121.3	3-1-S2
1799	0	599.76	599.76	4083048	322086.4	7-D-U-S2	272	3.79	581.27	585.06	4084529	321927.6	4-1-S2
0	0	600.46	600.46	4084700	321685.5	1-1-S1	324	0	585.06	585.06	4084542	321874.5	5-1-S2
28	-2.42	600.28	597.86	4084701	321715.9	2-1-S1	426	-6.22	595.42	589.2	4084570	321778.6	6-1-S2
92	0	593.49	593.49	4084729	321769.5	3-1-S1	475	0	599.76	599.76	4084584	321733.8	7-1-S2
162	1.13	591.16	592.29	4084737	321840.1	4-1-S1	0	0	599.76	599.76	4084002	322467.4	1-2-S2
381	2.71	585.38	588.09	4084767	322059.2	5-1-S1	149	-8.39	595.15	586.76	4084049	322310.9	2-2-S2
465	-1.5	590.46	588.96	4084760	322139.6	6-1-S1	185	0	578.71	578.71	4084062	322276.9	3-2-S2
490	0	600.46	600.46	4084758	322163.8	7-1-S1	405	2.4	575.41	577.81	4084143	322072.5	4-2-S2
0	0	600.46	600.46	4084504	322172.1	1-2-S1	585	0	579.34	579.34	4084199	321902.8	5-2-S2
42.53	-5.73	595.42	589.69	4084519	322131.8	2-2-S1	600	-6.24	585.6	579.36	4084200	321887.6	6-2-S2
148	0	586.42	586.42	4084534	322031.7	3-2-S1	829	0	599.76	599.76	4084237	321679.9	7-2-S2
250	4.44	581.25	585.69	4084534	321930	4-2-S1	0	0	599.76	599.76	4083965	321570.1	1-3-S2
297	0	584.96	584.96	4084532	321883	5-2-S1	46	0	594.41	594.41	4083957	321615.7	2-3-S2
351	-15.1	600	584.9	4084528	321830.8	6-2-S1	282	4.57	580.2	584.77	4083911	321847.6	3-3-S2
395	0	600.46	600.46	4084524	321786.5	7-2-S1	395	2.86	574.39	577.25	4083896	321958.7	4-3-S2
0	0	600.46	600.46	4083972	321488.5	1-3-S1	613	1.42	575.61	577.03	4083875	322174.7	5-3-S2
132.14	-2.31	600.13	597.82	4083933	321617.9	2-3-S1	657	-17.89	595.65	577.76	4083866	322218	6-3-S2
401	0	579.29	579.29	4083964	321881	3-3-S1	750	0	599.76	599.76	4083847	322309	7-3-S2
648	3.05	574.64	577.69	4084029	322118.8	4-3-S1	0	0	599.76	599.76	4083493	323066.3	1-4-S2
777.6	0	579.54	579.54	4084042	322246.2	5-3-S1	151	0	594.91	594.91	4083504	322915.5	2-4-S2
868	-13.85	595.86	582.01	4084051	322337.4	6-3-S1	468	-5.98	590.46	584.48	4083571	322611.6	3-4-S2
1018	0	600.46	600.46	4084005	322477.1	7-3-S1	553	0	584.73	584.73	4083581	322527.2	4-4-S2
0	0	600.46	600.46	4083395	322493	1-4-S1	927	5.6	570.9	576.5	4083654	322160.8	5-4-S2
95.36	-9.28	590.36	581.08	4083421	322400.5	2-4-S1	1022	0	576.96	576.96	4083663	322066.9	6-4-S2
158.75	0	577.69	577.69	4083439	322340.2	3-4-S1	1191	0	599.76	599.76	4083703	321904.8	7-4-S2
286.12	5.61	571.28	576.89	4083476	322218.4	4-4-S1	0	0	599.76	599.76	4083378	321852.9	1-5-S2
463.31	0	586.49	586.49	4083531	322050.9	5-4-S1	70	-4.94	595.7	590.76	4083365	321922.3	2-5-S2
560.68	-2.91	600	597.09	4083566	321960.4	6-4-S1	182	0	581.76	581.76	4083328	322028.5	3-5-S2
658.51	0	600.46	600.46	4083592	321866	7-4-S1	330	19.63	557.33	576.96	4083300	322170.7	4-5-S2
0	0	600.46	600.46	4083289	321892.2	1-5-S1	467	0	576.96	576.96	4083302.81`	322307.6	5-5-S2
12	-2.86	600.12	597.26	4083280	321903.3	2-5-S1	501	-12.67	590.5	577.83	4083302	322341	6-5-S2
128	0	579.72	579.72	4083247	322015.6	3-5-S1	690	0	599.76	599.76	4083296	322524.3	7-5-S2
282	18.28	560.28	578.56	4083196	322155.3	4-5-S1	0	0	599.76	599.76	4083090	322441.6	1-6-S2
337	0	579.31	579.31	4083178	322208	5-5-S1	175	-4.49	590.17	585.68	4083196	322301	2-6-S2
403	-5.44	590.4	584.96	4083153	322270	6-5-S1	193	0	584.09	584.09	4083205	322286.1	3-6-S2
589	0	600.46	600.46	4083095	322444.2	7-5-S1	321	16.86	559.3	576.16	4083244	322165.4	4-6-S2
0	0	600.46	600.46	4085280	321988.9	1-D-U-S1	459	0	576.12	576.12	4083259	322028.5	5-6-S2
93	6.86	590.93	597.79	4085186	321990.5	2-D-U-S1	566	-9.42	595.56	586.14	4083268	321921.7	6-6-S2
812	0.28	583.81	584.09	4084480	321967.8	3-D-U-S1	812	0	599.76	599.76	4083302	321678.3	7-6-S2
1700	6.5	572	578.5	4083587	321980.7	4-D-U-S1	0	0	599.76	599.76	4084824	321890.3	1-D-U-S2
2166	12.48	565.21	577.69	4083137	322006.6	5-D-U-S1	200	0	586.65	586.65	4084625	321897.2	2-D-U-S2
2227	0	600.46	600.46	4083076	322002.2	6-D-U-S1	581	5.38	575.58	580.96	4084264	321940.5	3-D-U-S2

تم ادخال هذه البيانات في برنامج (Surfer 13) لغرض استخراج قيمة حجم الترسبات المتراكمة مع حجم التعرية الحاصلة في ضفاف الخزان وكانت النتائج ان حجم الترسبات المتراكمة في الخزان عند المناسيب في ايام القياس (600.46m) و (599.76m) وضمن النطاق هو (3117032 m³) اما حجم التعرية من ضفاف الخزان عند نفس المناسيب هو (2488153 m³)، ويلاحظ ان حجم الترسبات اكثر من حجم التعرية ويرجع ذلك الى ان بعض الترسبات تأتي من خارج الخزان لكن النسبة الاكبر منها تكون من الضفاف او من داخل الخزان نفسه وكما يظهر في الشكل (11).

الشكل رقم 11. يوضح توزيع الترسبات المتراكمة والتعرية من ضفاف الخزان لسد دهوك

والشكل اعلاه يبين التوزيع المكاني للترسبات المتراكمة والتعرية الحاصلة في ضفاف خزان سد دهوك، حيث تظهر مناطق الترسبات في مجرى الخزان وتزداد عند جسم السد، اما التعرية من الضفاف فتظهر عند أطراف الخزان، بينما المناطق ذو اللون الاصفر فهي تعتبر مناطق انتقالية بين التعرية والترسيب او المناطق التي لم تتأثر كثيرا نسبة إلى المناطق المجاورة لها.

الاستنتاجات والتوصيات

من خلال الدراسة تبين ان توزيع الرسوبيات يزداد وبشكل تدريجي مع اتجاه جريان المياه من مقدمة السد وباتجاه أسفل السد لتصل ذروتها عند جسم السد حيث تصل الى ثلاثة اضعاف حجمها عند البداية.

كذلك يلاحظ ان التعرية من ضفاف الخزان يزداد في البداية ليقل عند جسم السد أي انها تتناسب عكسيا مع توزيع الترسيات.

حجم الترسبات المتراكمة داخل الخزان يكون أكبر من حجم التعرية الحاصلة في ضفافه، والسبب يعود الى ان بعض الترسبات تأتي من خارج الخزان اما النسبة الأكبر منها يأتي من الضفاف او من داخل الخزان نفسه.

هذه الاحجام من الترسبات تعتبر خطيرة على استقرارية وكفاءة السد لانها تؤدي الى تقليل حجم الخزين في السد، لذلك توصي الدراسة على التخلص من هذه الترسبات عند تجاوزها الحجم الميت إما عن طريق تفريغ الخزان بالكامل في السنوات الجافة ثم إزالة الترسبات بالآليات المناسبة، أو عن طريق إعطاء إطلاقات مائية (Flushing) وتصريف المياه المحملة بالترسبات عن طريق المخارج السفلية في السد (Outlets).

المصادر

- Al-Talib, S., Al-Jawadi, A. and Al-Sanjari., A., 2021. Impact of Gercus Formation Erosion and Rock Sliding on Duhok Dam Reservoir – Northern Iraq. Iraqi Journal of Science, 2021, Vol. 62, No. 5, pp: 1562-1569. DOI: <u>https://doi.org/10.24996/ijs.2021.62.5.19</u>
- Cullough, M.G., 2001. Transportation of Sediments from Rivers into Lakes Process and Numerical Modeling, 25 pages.
- El-Sersawy, H., 2005. Deposition Mapping in Aswan High Dam Reservoir Using Geographic Information System (GIS), Ninth International, Water Technology Conference, IWTC9, Sharam El-Sheikh, Egypt, pp. 239-247.
- Endalew, L. and Mulu, A., 2022. Estimation of Reservoir Sedimentation Using Bathymetry Survey at Shumburit Earth Dam, East Gojjam Zone Amhara Region, Ethiopia. Heliyon, 8(12). <u>https://doi.org/10.1016/j.heliyon.2022.e11819</u>.
- Ezz-Aldeen, M., Hassan, R., Ali, A., Al-Ansari, N. and Knutsson, S., 2018. Watershed Sediment and its Effect on Storage Capacity: Case Study of Dokan Dam Reservoir. Water, 10(7), 858. <u>https://doi.org/10.3390/w10070858</u>.
- Hamad, M., 2019. Prediction of Sediment Distribution in the 16th of October Dam Using Empirical Methods. Tishreen University Journal for Research and Scientific Studies -Series of Engineering Sciences, Vol. 41, Issue 4, 21 P. (In Arabic).
- Hamdon, A.N., Zand, R.K., Qubaa, A.R. and Ali, S.H., 2024. Geomorphological Analysis of Duhok Dam Site Using Remote Sensing Data. Iraqi National Journal of Earth Science, 24(1), pp. 1–15. <u>https://doi.org/10.33899/earth.2023.139763.1073</u>.
- Hassan, A., 2012. Development of Water Projects and Advanced Technologies, Tishreen University, Department of Water Engineering. MSc. Thesis (Unpublished). (In Arabic).
- Heeto, A., Ali, S. and Yousif, A., 2017. Creating a bathymetric contour map using acoustic Doppler current profiler (ADCP): Duhok Dam reservoir as a case study. Polytechnic Journal, 7(4), 225–240. DOI: <u>https://doi.org/10.25156/ptj.2017.7.4.93</u>.
- Jassim, S.Z., and Goff, J.C. Eds., 2006. Geology of Iraq. DOLIN, sro, distributed by Geological Society of London.

- Mohammed S.R. and Omer, M., 2023. A Comparison Between SCS-CN and Rational Methods to Runoff Estimation for Duhok Dam Watershed, Northern Iraq. Iraqi National Journal of Earth Science (INJES), 23(2), pp. 61–71. https://doi.org/10.33899/earth.2023.138819.1053.
- Radoane, N. Maria, R., 2012. Dams, Sediment Sources and Reservoir Silting in Romania, 12 P. Doi: 10.1016/j.geomorph.2004.04.010.
- Scheu, R.K., Fong, A.D., Monsmith, G.D., Fringer, B.O., 2015. Sediment Transport Dynamics Near a River Inflow in a Large Alpine Lake, ASLO, Association for the science of Limnol. 17 P. https://doi.org/10.1002/lno.10089.
- Snyder, N.P., Rubin, D.M., Alpers, C.N., Childs, J.R., Curtis, J.A., Flint, L.E., and Wright, S.A., 2004. Estimating Accumulation Rates and Physical Properties of Sediment Behind a Dam: Englebright Lake, Yuba River, Northern California. Water Resources Research, 40(11). <u>https://doi.org/10.1029/2004WR003279</u>.
- USSD Committee on Hydraulics of Dams, Subcommittee On Reservoir Sedimentation .Modeling Sediment Movement In Reservoirs, USSD ,June 2015, 19 P.