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Abstract 
Consider G(E,V) be a finite, undirected and simple connected graph. This 

paper includes study of some properties that illustrate the relations between three 
numbers in a graph which are chromatic, domination, and independence with 
special restrictions. Finally, we compute these parameters in a new graph namely 
K4 -isosceles triangular graph.
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1 Introduction 
For a vertex vϵV(G), the open  neighborhoodN(v)

is the set of all vertices adjacent to v, and the closed 
neighborhood of v is N[v]=N(v)∪{v}.

Degree of a vertex vof any graph G is defined 
as the number of edges incident onv. It is denoted 
by deg(v) or d(v) that means d(v)=N(v). A vertex 
of degree 0 is an isolated vertex. The minimum 
and maximum degrees of vertices in G denoted 
by δ(G) and  ∆(G), respectively. A null graph is 
defined as a graph without any edges. G-eis the 
graph obtained from a graph G by deleting the 
edge e of a graph G.A graph is called complete 
of order n ( Kn) if each vertex is of degree n-1. A 
subgraph H of a graph G is said to be induced (or 
full) if, for any pair of vertices x and y of H, xy 
is an edge of H if and only if xy is an edge of G. 
If H is an inducedsubgraph of G with S is a set of 
its vertices then H is said to be induced by S and 
denoted by G [S]. An independent set or stableset 
is a set of vertices in a graph G, where no two 
of which are adjacent. An independence number 
denoted by  β (G) of a graph Gis the cardinality of 
a maximum independent set of G.A set D ⊆V(G) 
is a dominating set in G if N (v)∩D≠∅; for every 
vertexv∈V(G)-D.The domination number of G, 
denoted by γ (G) , is the minimum cardinality 
over all dominating sets in G.

 Various types of domination of a graph G have 
been defined and studied by several authors and 
more than 75 models of domination are listed in 
the Appendix of Haynes [6]. 

A vertex-coloring of G is an assignment of 
colors to all its vertices such that all pairs of 

adjacent vertices are assigned different colors. The 
chromatic numberχ (G) is the smallest number of 
colors necessary for coloring G.

In [5] A.A.Omran and E.A. El-seidy found 
some relations between domination numbers 
and the independence number in some graphs. 
There are many restrictions to find the relations 
between chromatic and domination numbers 
with the largest degree in a graph and also the 
independence number with the degree of each 
vertex. The following theorems illustrate this 
relation with special restrictions.

Theorem 1.1, [1].
For any graph G,χ(G)≤∆(G)+1with equality if 

and only if either ∆(G)≠2 and G has a subgraph 
K(∆(G)+1) as a connected component or ∆(G)=2 and 
G has a cycle  C2k+1 as a connected component.

Theorem 1.2, [1].
For any graph G with |G|=n

 ≤γ(G)≤n-∆(G).   

Theorem 1.3, [3].
For any graph G,
β(G) ≥ ∑u∈V      

Theorem 1.4, [6].
 For a cycle graph of order  n; n ≥ 3
β (G) = γ (G) = 

2  Main results
In this section, the new relations between 
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chromatic, domination, and independence 
numbers with special restrictions are determined 
as follows.

Theorem 2.1. 
Let G be a connected graph of order n and 

contain an induced complete subgraph of order   
, then  γ (G) ≤ χ (G).
Proof.
By hypothesis Gcontains an induced complete 

subgraph of order , so we need   at least  colors 
to guarantee that every two adjacent vertices have 
different colors therefore, χ(G) ≥ . We know that 
every vertex in the induced complete subgraph 
dominates to all vertices in this subgraph, so we 
can dominate  (order of induced subgraph) by 
only one vertex. Every vertex vdoes which does 
not belong to the induced complete subgraph 
must be adjacent to at least one vertex since G is 
connected graph. Therefore, there are two cases:

Case 1. If v is adjacent to a vertex u in the 
induced complete subgraph then udominates to at 
least  +1 vertices, thus γ(G) ≤   .

Case 2.  If v is adjacent to a vertex which does 
not belong to the induced complete subgraph then 
wis dominated by v, thus γ (G) ≤  .Therefore, in 
both cases,     γ (G) ≤    ≤ χ (G).

Proposition 2.2.
Let G be a connected graph of order n and 

contain an induced complete subgraph of order  
and G-K  is a non-null graph, then β(G) ≤ χ (G).

Proof.
In the same manner in Theorem 2.1, we obtain  

χ (G) ≥  .G-K  is a non-null graph, so there is 
at least one edge in G-K . Thus, the maximum 
number of independent vertices in  G-K    is  -1 
, then β(G) ≤ . 

Therefore, β(G) ≤ χ (G). 

Corollary 2.3.
 Let G be a connected graph of order n and 

contains an induced complete subgraph of order 
and G-K   is non-null graph, then 
γ(G) ≤ β (G) ≤ χ (G).

Proposition 2.4.
In a cycle graph of order  n; n ≥3
χ(G) = β(G) = γ(G),  if and only if either  n=4 

or n=7.

Proof.
Let χ(G) = β(G) = γ(G),by Theorem 1.4β (G)= 

γ(G)= , for any cycle graph of order n.Therefore, 
there are two cases that depend on n as follows.

Case 1: If n is odd, then χ(G)=3 by [5], so =3 
implies  n=7.

Case 2: If n is even, then χ(G)=2 by [5], so  
implies  n=4.

Thus, we get the result.
Conversely, the assertion is clear.

Theorem 2.5. 
If  G is a graph, then   χ(G)=|M| where 
M={Mi; Mi is an independent set with largest 

cardinal in [G-j=1
i-1∪Mj]}.

Proof.
Suppose that|M|=k, it is clear that M_i,i=1,2,…, 
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kmakea partition of the set of verticesV since 
V=∪M_i  and M_i∩M_j=∅ ∀ i≠j. So, this graph 
is k-colorable by assigning one color to each 
class  M_i,i=1,2,…,k, thus χ(G)≤|M|. The graph 
G cannot be (k-1)-colorable, since in this case we 
obtain two sets from the set M having the same 
color and this is impossible. Therefore, χ(G)=k.

Remark 2.6.
 Let G be any graph of order n, then 
i) If  χ (G) = 1, then G is null graph. Thus,β(G) 

= n = γ (G)

ii) If  G is connected and  χ (G) = 2, then G 
is a bipartite graph with two sets of vertices V1 
andV2 , |V1|=m and |V2| = n. Then, γ (G) ≥ 2 and 
β(G)=max{m,n}.

iii) If  χ(G) = n, then G is complete graph. Thus, 
β(G) = 1 = γ(G).

Proposition 2.7.
 If   G is a graph and H is an induced subgraph 

of  G , then
i) χ (G) ≥ χ (H)[5].
ii) β (G) ≥ β (H).
iii) There is no relation between γ(G) and γ(H).
Proof.
ii) Since every edge in H is a member in E (the 

set of edges in G), so the independent vertices 
in H are less than or equal to those in G.Thus, 
β(G)≥β(H).

iii) There is no relation between γ(G) and  γ(H). 
To illustrate this we take the following example.

Example 2.8.
Let G be a graph shown in Fig .(2.1)
 
 
 
 
        
Now, it is obvious that  γ(G)=2
Let H1 be an induced subgraph of 

vertices{v3,v4,v5,v6}, then  4=γ(H1 ) > γ(G) .
Let  H2 be an induced subgraph of 

vertices{v1,v2}, then  1= γ(H1 ) < γ(G).
Let H3  be an induced subgraph of 

vertices{v1,v2,v3,v4,v5}, then 2= γ(H1 )= γ(G).

Proposition 2.9. 
 Let G be any graph, then
i) γ(G-e) ≥ γ(G).
ii) β(G-e) ≥ β(G).
iii) χ(G-e) ≤ χ(G).
Proof.
i)Suppose G has a dominating set with the 

smallest cardinality D that mean that
 γ(G)=|D|. If we delete any edge e from G, then 

we obtain a new graph  G-e, so there are three 
cases as follows.

a) γ(G-e) < γ(G),which is impossible.
b) γ(G-e) = γ(G)this case may occur where 

deleting an edge do not influence the dominating 
set to all vertices. For example when e join two 
vertices which do not belong to the dominating 
set. 

c) γ(G-e) > γ(G), again this case may occur, for 
example,let e=uv where v is a pendant vertex in 
G, such that  u is dominates the vertex v in a graph 

Fig .(2.1)
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G. In G-e, the vertex v becomes isolated, so we 
need to add it to the set D such that D becomes the 
dominating set. Thus, we get the result.

i,iii) In the same manner, G-e has a new isolated 
vertex, soβ(G-e) ≥ β(G) and χ(G-e) ≤ χ(G).

Proposition 2.10. 
If G of order nhas k isolated vertices, then 
i) β(G),γ(G)  ≥ k + 1.
ii) χ (G) ≤ n-k.

Proof.
i) Since there arek isolated vertices then all 

these vertices belong to our dominating sets and to 
our independent sets. Let M be a set of k isolated 
vertices and assuming that  G[V-M] is a complete 
induced subgraph of G, therefore

β(G[V-M]),γ(G[V-M] )=1, then  β(G),γ(G)=k+1. 
Otherwise,

β(G[V-M]),γ(G[V-M] )>1, then  β(G),γ(G)>k+1. 
Thus, we get the result.

ii) In the same manner in (i) suppose that 
G[V-M] is a complete induced subgraph of G, 
then χ(G) = n-k, we need n-k different colors, 
since we can color all isolated vertices by one 
color fromn-k different colors. Thus, we get the 
result.    

3 K4-isosceles triangular graph.
In this section, we will define a new graph 

named K4-isosceles triangular graph is a result of 
augmenting n2 of a complete graph of order 4(K4), 
such that every two adjacent K4 have one side 
in common, and the whole graph is an isosceles 
triangle with (2i-1) of K4 graphs per row, where 
i=1,2,..,n. We denoted this graph byTK

n     
4
.

To represent the vertices of the graphTK
n  

4

 in 

matrix form, let ri denote the ith row measured from 
top to down, where i = 1,2,…, n+1. The first row 
r1 which contains two vertices, the second row 
r2which contains four vertices, and so on…, so in 
general the ith  row contains 2i vertices, except for 
the last row (rn+1) which contains 2n vertices. Let 
cj denote the jth column which is numbered from 
the middle (the middle column has the greatest 
height of columns and contains two columns), 
where

 j = 0±,±1,±2, … ,±(i–1), i = 1,2, .., n. Evidently, 
the middle columns c0±contain

n+1 vertices, and hence each of the two columns 
c1 and c-1 which lies to the right of c0+ and to the 
left of c0-, respectively, contains n vertices. In 
general the jth column contains n – |j|+1 vertices. 
We denote the vertex of ith rowand jthcolumn by 
vi,j , i = 1,2,…n and j = 0±,±1,±2,… ,±(i – 1). The 
number of vertices in this graph is n(n+3).Fig. 3.1 
showsTK

5    
4
.

   

Fig 3.1: TK4
5.

Theorem 3.1. 
Let G be an isosceles triangular graph   TK

n     
4
, then

i) χ (TK
n     

4
 ) = 4.
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Proof.
i) Since G has an induced complete subgraph 

of order 4, then we need at least four colors (say 
1,2,3,4), so   Since each induced subgraph 
(K4) has a shared two vertices (colored 1,2) with 
the adjacent induced subgraph (K4), then we can 
color the other vertices by the remained colors 
(3,4) so if we colored the vertices in one induced 
subgraph (K4)  by colors (1,2,3,4) clockwise, then 
we must color the adjacent induced subgraph (K4) 
counter clockwise.  In the same manner, we color 
the remained vertices in whole graph. In this way 
of coloring we guarantee there are no adjacent 
vertices having the same color. Thus, χ(TK

n     
4
 )=4.

ii) We choose the vertices from the bottom two 
rows rn+1and rn, since rn+1 has the greatest number 
of vertices which is 2n. The maximum number 
of vertices which can be chosen in this row such 
that no vertex is adjacent to other one, is n and 
these vertices are dominating to all vertices in 
row rn. Thus, in this case we cannot choose any 
vertex from row rn. Again, the maximum number 
of vertices can be chosen from the row rn-1 which 
contains 2n-2vertices is n-1vertices. We can choose 
these vertices as follows, at first we choose the terminal 
vertices in this row vn-1,-(n-3)  and vn-1,(n-3) and starting 
with vertex vn-1,-(n-3) , choose the vertices in the 
same row such that between any successive two 
vertices there is only one left vertex. Accordingly, 
we have seen  that these vertices cannot dominate 
vertex vn-2,(n-2) , therefore choose this vertex to add 
to an independent set. In the same manner to the 

second chosen, we can choose n-3 from the row 
rn-3 which contains 2n-6 vertices and one vertex 
from the row rn-4 , and so on…, ( as an example, 
see Fig. 3.2).

There are two cases that depend on n as follows.
a) If n is odd then

 
  
  
       
 
  

Fig 3.2 :Independence for TK
n     

4
.

b) If n is even, then the last value of summation 
applies in row r_1, so we choose only one vertex 
and cannot add a vertex in row above. Thus,

iii) To explain the idea of this proof, we take the 
three bottom rows. We can dominate these rows 
by choosinga number of vertices in row rn. We 
apply the same idea for the following three rows. 
In any row, the maximum number of vertices can 
be dominated by one vertex which is three,by 
choosing this vertex in the middle of each three 
successive vertices. The row rn  contains 2n, so 
we need at least vertices to dominate this row.  
To dominate all the vertices of rows rn+1,rn and  rn-1 
by  vertices, we choose these vertices from the 
row rn. In this chosen, we must choose the two 
vertices: v(n),-(n-2) and v(n),(n-2), to assure dominating 
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the two vertices vn+1,-(n-1) and vn,(n-1) (as an example, 
see Fig. (3.3) ; the set of big bold vertices is the 
dominating set for this slide of the graph with 
minimum cardinality).

  

Fig (3.3):Dominating the three bottom rows of TK
6    

4
.

The second slide which contains three rows rn-2, 
rn-3, and rn-4 is different from the first slide, since in 
the first slide there are two rows having the same 
length, but from the second slide to above the 
length of any row is less than from the previous 
row by two vertices.

In the same manner in slide one, we choose 
the verticesfrom row rn-3such that we choose 
the vertices v(n-3),-(n-5)and v(n-3),(n-5)to be added to 
the dominating set. We choose the other vertices 
between them such that there are at most two 
vertices between any two successive vertices in 
the dominating set. These vertices do not dominate 
to the vertices v(n-2),-(n-3)andv(n-2),(n-3), so we must 
add them to the dominating set. Therefore, in this 
slide we need  vertices to dominate it. By 
continuingin same manner with other slides until 
reaching to the last slide (top slide). Thus, there 
are three cases that depend on the number of rows 
in last slide as follows.

a) If it contains three rows, then we choose the 
vertices v3,-1, v3,1, and v1,0

+ to dominate the last 
slide. Thus, 

b) If it contains two rows, then we choose the 
vertices s2,0-  and s2,0+ , to dominate the last slide. 
Thus, 

 

c) If it contains one row, then we choose the 
vertexv_(1,0^- ) to dominate the last slide. Thus,

3.2. Remark
 In Tn

K4
 graph  

i) γ (Tn
K4

 ) < χ (Tn
K4

)if and only if  n ≤ 2.
ii) χ (Tn

K4
) < γ (Tn

K4
) < β (Tn

K4
); ∀n > 2.
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