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Abstract: The Burgers’ equation is an example of an equation that has
unstable Galerkin-Conservation finite element method for very small viscosity
coefficients, €, in this paper, a stabilized finite element methods for solving 2-
D coupled Burgers’ problem is studied, the Galerkin-conservation partial
artificial diffusion (G.-C.P.A.D.) and Galerkin-Conservation straight artificial
diffusion (G.-C.S.A.D.) finite element methods are used to handle such
problem. The Crank-Nicholson method for the time variable is considered.
Two numerical examples have been carried out through implementation in
MATLAB program to illustrate the efficiency of the proposed methods.
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keywords: Galerkin -Conservation, G.-C.P.A.D., G.-C.S.A.D., 2-D coupled
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1 - Introduction
In recent years, Burgers’ equation have received a considerable amount of
attention due to the large number of physically important phenomena that can
be modeled using this equation. Some attention has been given to the
convection-dominated case. Several methods have been intensively studied to
remove such a drawback for this problem, we can summarize some of this
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methods. Atwell and King [7] used the G. and G. L.-S. approximation for 1-
D Burgers' equation with the linear feedback control law designed for the
non-stabilized problem. Volkwein [15] considered upwind techniques and
mixed finite elements for the steady-state Burgers' equation in 1-D to compute
solutions for small viscosity parameters. Pugh [14] used G. and the G.—C.
finite element methods for the 1-D Burgers' equation, he found that the
G.— C. method was more accurate and computed more quickly than the G.
method. Smith [8] applied G. and the G.—C. finite element methods for the 1-
D Burgers' equation, he concluded that G.—C. computationally more efficient
than G. finite element method. Krdmer [1] studied the finite element method
and the group finite element method to 1-D coupled Burgers' equation, he had
seen similar numerical results that Smith and Pugh showed, then he applied
the group proper orthogonal decomposition method for this equation.
Kashkool and Noon [3] we presented the G. and G.-C. finite element methods
for solving coupled Burgers’ problem in 2-D, the fully discrete formulation
was considered, the error estimate of these methods were O(h, k) and the
numerical results were compared with the exact solution, in [4] we used the
classical artificial diffusion for G. and G.-C. finite element methods for the
convection-dominated case, the error estimate of these methods were O(h, k)
and the numerical results were compared with the exact solution. Heitmann [9]
applied subgrid scale eddy viscosity for convection dominated for convection-
diffusion problem. The method consists of adding artificial viscosity term
a(PLZ Vuy, PLL Vv,,) of orthogonal projection acting only on the fine scales,

he give a comprehensive analysis of this method, in [10] he applied this

method in a finite difference method by using an appropriate interpretation of

the a(PLL Vuy,, V) = a(Vuy, Vv,) — a(Vi,, Vvy,) = aAu — alAu, where u
H

Is an average over itself and its five nearest discrete neighbors. Noon [11,12]
we presented G. P. A. D. finite element method and consider semi and fully-
discrete approximations, we proved stability and convergence for these
approximations which was O(h?") and O(h?" + k?5) respectively. The
numerical solution of these approximations were compared with the exact
solution . In this paper , we consider G.-C. P. A. D. and G.-C. S. A. D. finite
element methods , a fully-discrete approximation with a Crank-Nicholson
method for the time variable are present. The numerical solution of G.-C. P. A.
D. is compared with the exact solution and[11,12] and the numerical solution
of G.-C. S. A. D. is also compared with the exact solution. This paper is
organized as follows. In section 2, we present the time-dependent modeling
problem and a weak form of 2-D Burgers’ problem. The discrete problem,
fully-discrete approximation are presented in section 3. In section 4 the finite
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element approximation, test problems and numerical results are introduced.

The conclusions is shown in section 5.

2. Time- Dependent Modeling Problem
Consider the nonlinear time-dependent for the two dimensional coupled

Burgers’ problem[13].
u —eAutuu, + vu, = f,

vy —€Av + uv, +vv, = g,
with boundary conditions
u(x,y,t) =0, v(x,yt) =0, on 00 x (0,T],

and initial conditions
u(x,y,0) =u’(xy), v(x,y0) =v°(xy),
where € > 0 is a viscosity constant, £ < R? with boundary 09, u =

u(x,y,t), v=v(x,yt), fand g € L3(12).
The conservation form of Burger's equation was given by Fletcher[2]. Here

the (u u,) and (v v,) terms are replaced by % (u?), and %(vz)y respectively.
Burgers' equation is then written as
ut—eAu+%(u2)x+vuy =f, (2.1.8)
v, —eAv + uvx+%(v2)y =g. (2.1.b)
The weak formulation of (2.1) is: find u,v € V = Hj(Q) such that:
(us,0) + a(u, @) + Bu,u,9) + B(v,u, ) = (f,9), (2.2.3)

(ve, 0) + a(v, @) + B(w,v,9) + B(v,v,9) = (g,9),
Vo eHIQ), (2.2b)

(ulx,y,0),9) = W), (lxy,0),¢)= °¢),

where a(u, @) = (e Vu, Vo) and a(v, @) = (¢ Vv, Vo), B(u,u, @) =
G @yp), Bv,u,0) = (vuy, 9), Bw,v,0) = (wvy.9), B(v,v,9)

= G9),.9),

3. The discrete problem
Given finite dimensional spaces V, c H}(Q) then the approximate

solution uy, vy, to u, v respectively is the solution of the following problem:
(Une @) + alup, @p) + BQup, up, @) + By, up, @r) = (f, @p),
(Vne,»on) tap, @) + Bupvpen) +BWpvnen) = (9,0n),

Vo, €V, .
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3.1-Mathematical Formulation of an Artificial Viscosity Term

It is well known that when € < h, where h is mesh size, the convection
term dominates over diffusion and the standard Galerkin finite element method
produce an oscillating solution which is not close to exact solution. In the
following we analyze an approach stabilizing the approximation through the
introduction of an artificial viscosity terms which acts only on the fine scales
of the finite element mesh. We add and subtract a(Vu, Ve)and a(Vv, V) to
(2.2.a) and (2.2.b) respectively where a = a (h) is a positive constant, this
gives,

(up,@)+(e + a)(Vu, Vo) — a(Vu, Vo) + B(u,u, ¢) + Blv,u,p) = (f,p),
( ve , @+ (+a)(Vv,Ve)—a(Vv,V)+ B(u,v,p)+ Bw,v,@) =
(9,9), Y ¢ € Hy(Q).

This suggests a mixed methods formulation wherein we define g, = Vu
and g, = Vv € (L?(£))? [9]. We obtain the system, find ((u,v), (q4,92)) €
(Ho, (L*(2))?) satisfying ,

(ug,@) + (e + &)(Vu, Vo) — a(q1,Vo) + Bluu,9) + Bou,p) = (f, 9),
(ve.0) + (e + @) (Vv Vo) — a(q2,Ve) + Buv.p) + Bwv,p) = (g,9),
(g —Vu,D) =0, (g —Vv,) =0, Vo € H}Q),L e (L*(Q)2.

In the discretized problem, let h and H represent two mesh widths (with
h < H). Let Ly c (L*(©))? and V,, ¢ H}(Q) be finite element spaces. The
problem then is to find ((uy, vy).(q14, 925)) € (V3,, Ly) satisfying

(Une » @) +(€+a) ( Vup, Vo, ) —a(qin, Vo) + B(up, up, @p) +
B(vp, up, r) = (f, ¢n) , (3.1.9)
(Vn,e ) @r) + (e + ) (Vvp, Vor) — a(qan, Vor) + B(up, up, @p) +
B(p, up, ¢n) = (9, 9n) . (3.1.b)
(1 — Vup, ly) = 0,(qzu — Vo, ly) = 0,Ypp € Vi, ly € Ly. (3.1.0)
We note that,
o If Ly ={0}, Ly is small, then q,4,9,5 = 0, and we have a straight
artificial diffusion formulation (G.-C.S.A.D.),

(Une » @) +(€+a) ( Vup, Vo, ) +B(upup, @p) + B(vp, up, @r) =
(f, on)
( Vhe » @n) +(e+a)(Vvy, Vor) + B(up, up, @) + B(op, up, @p) =
(9, 9n)

e If Ly guided by numerical analysis so to obtain a beneficial balance, the
key will be to select Ly, guided by precise and general error analysis, in such
a way as to achieve a beneficial balance, we set g,y = P, Vu, and gy =

P, Vvy [9], where P, is the orthogonal projection of L? onto L, and
PLL = (I — P,,) is orthogonal projection of L? on LLH , Where,
H
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PLJ_ = {v € L?>(Q), (v,s) =0, Vs € PLH},
H

with these definitions we get the following lemma which represent a partial
artificial diffusion formulation (G.-C.P.A.D.) .

Lemma 3.1.1.[11] If g;4 = P, Vu, and qoy = P, Vv, then the system
(3.1) is equivalent to:

(une@n) + alup, @p) +a (PL;, Vup, PLLHV<Ph) + B(up, up, @p) +

B(vh: Up, (,0) = (f! Qoh) (328.)
(VnePn) + a(vp, @p) + @ <PLi1 Vo, PLZWPh) + B(up, Vp, @) +

B(Wn, Vh, 0n) = (g, @), Yor€Vy  (3.2.b)

3.2 The Fully-Discrete Approximation
We consider a fully discrete formulation of (3.2), in particular, we will
turn our attention to the Crank-Nicholson method. We use the subscriptn + >

to represent the average of a quantity over the two discrete times for example

fn_l_% — fn+1+fn
—

1 n+i 1
“up ™ —upon)+AQ, 2 en)=(f""2,04).(3.3.9)

1 n+i 1

(i = vien)+A(Y, 2 en)=(9""2.¢s), (3.3.b)

where,

A (up » on ) =alupep)+ “(PL;V”h' PLZVQDh) + B(up, up, @p) +
B(vhl uh’ fp);

A (v, on ) =alvpep) +a (PLZVU’“ PL;V<Ph> + B(up, Vp, @) +
B(vy, v, @).

Lemma 3.2.1.[12] The method described by (3.3) is stable over finite time.
Specifically, forany N > 0,

1
[l | < [l ll+ % 20z 172,
o | < llvRll+ & X3=5 [lg™*=].

For the error analysis we first need to establish the existence of the
equilibrium projection pu, , pv, € V,, of u and v respectively which is
given by,

A(u — pup, @p) = alu —pup, @p) +a  ( PLZV (u — pup), PLZWPh) +

B(u,uw, ) — B(pup, pun, 1) + B(u, u, @y) — B(puy, pup, ¢5) = 0, (3.4.9)
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A —pvp,0p) =alv —pvp,@p) +a  ( PLZV (v — pvp), PLLHVQOh) +

B(u, v, ¢p) — B(pun, pvp, ¢r) + B(v, v, ¢,) — B(pvy, pvp, ¢r) =0 ,
Y @, € V. (3.4.b)

Lemma 3.2.2.[11] Let u, v € H}(Q), the equilibrium projection pu,, pv,, of
u, v respectively, given by (3.4) exist uniquely.

Lemma 3.2.3.[11] Let u,v € H3(Q), let puy, pv, €V}, be the equilibrium
projection given by (3.4) the assumptions of the finite element space there
exists a constant C; and C, independent of €, a, h and H such that

v = pup || o2y < G (AP + 7+ €72 + R,
|v — pon| e C,(hR*" +h" +eh™ 2+ ™).

Lemma 3.2.4.[12] Let u™*%,v™*t € H}(Q) , let pul*?, pvjitt € V,, € H} be
the equilibrium projection given by (3.4). Under the assumptions of lemma
(3.2.3) there exists a constant C; and C, independent of €, a, h and H such
that

max [|[utt —pul*t|| < €, {h*" + h" + en""2 + hT71},

0snsN

max [|[v" — pvptt|| < C{h?" + A" + €h™"2 + AT,

0snsN

Theorem 3.2.1.[12] Let u™*1,v™* u**1 and v]'*1be the solutions of (2.2)
and (3.3) respectively , then there exists constants C; ,C, independent of
independent of €, «, h and H such that,

5
max [[u" —upt| < ¢ {hzr + h" 4+ eh™ 2+ h 1l kz + \/E},

0snsN

max ||v™ - vt <G, {th + R+ eh™ 2+ hT 4 ks + \/E}.

0sn=sN

4. The Finite Element Approximation
To approximate the artificial viscosity terms in the equation (3.3), note
that, from the definition of P .,

Ly
Vop = P, Vo, + PL;VQOh ,
PLLHV<Ph = Vo, — P, Vo,
then,
a(PLtI Vuy, ,PLtIVq)h) = a(PL#{Vuh, Vo) — a(PL; Vup , P, Vo),
from the definition of L; the second term on the right hand side equal to
zero, this implies,
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a(P L Vuy, PV, = a(P L Vu, Vo),
Ly Ly Ly
similarly, a(P L Vv, P1 Vo) = a(P L Vv, Vo).
Ly Lp Lp

The main point comes in finding an appropriate interpretation of the
(X(PLJ_ Vu,, Vo) and a(PLJ_ Vv, Vey,) terms, since ,
H H
Vuh == PLHVuh + P 1 Vuh,

Ly
Vvh = PLHVUh + PLJ_ Vvh,
H

we rewrite,
a (PLL Vup, V(ph) = a(Vup, Vo) — a(Py,Vuy, Voy),
H

a (PLJ_ Vv, Vgah) = a(Vv,, Vo) — a(PLHVvh, Vor).
H

As noted in section three , L is chosen such that PLJ_ IS a projection onto fine
H

scales and P, is a projection onto the large scales, we can think of the large
scale as representing average values, this implies[10],

a(Vuy, Vop) — a(P,Vuy, Vo) = a(Vuy, Vor) — a(Vi, , Vey),

a (Vv ,Veor) — a(Py, Vv, ,Vop) = a(Vv,, Vo) — a(Vo, Vo),

where 4, and 7, are an average over itself and its five nearest discrete
neighbors.

The approximate solution is written as an expansion of the linear basis
functions . In particular, we assume that,

(ur™)? = ZL1(d] () 9i(x, ),
(wit)? = 2 (d]H2() @56, y).
where each d;(t), d:(t) are nodal unknowns and @;(x,y) is the jt linear
basis function defined on (2. Substitute the approximate solution in equation
(3.4), we have,
2MD"™1 + kB, D™ + KED"! =
2MD™ — kB,D™ — kED™ + k(F"*1 —F™), (4.1.)
2MD™? + kB, D™ + KED™! =
2MD™ — kB,D™ — kED™ + k(G™* —G™), (4.1.b)

where,
M = (m;)= [ ,@;pidx dy,
B, = (blijk)

1, 09j v 0¢j
=/, [(e +a)Vo;Veo,; + Edfa_x](pi + dka—yj<pk<pi] dx dy,
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E=(e;)=—af Vo,V dxdy, F =(f)) = [, f :dx dy,
B, = (bzijk)

dpj 1y 09j
= fQ [(E + a)Vo,Vo; + dka_xJQUkQUi + Edfa_ngai] dx dy,
~ dq - al
G=(gi)=fﬂg<pidxdy,D= and D = i
dy dy

for i,j,k=12,...,N.

e The system (4.1) represents (G.-C.P.A.D.) finite element method.
e The system (4.1) without the third term on the left and right hand sides
represents (G.-C.S.A.D.) finite element method.

4.1 Numerical Results

In this subsection, we consider two test problems to illustrate G.-C.P.A.D.
and G.-C.S.A.D. finite element method for 2-D coupled Burger problem as
follow:

Problem 1: In this problem we illustrate G.-C.P.A.D. in system (4.1). The
exact solutions of Burgers’ equation(2.1) can be generated by using the Hopf—

Cole transformation which are [6]:

3 1 3 1
u(x,y,t) = T (4 xt+4y— 0 v(xyt) ==+ (—ax+ay—0)]*

imrATRYTE 4
4l1+e 32¢€ 4l1+e 32¢€

where f = g = 0. The domain 2 where the problem is to be solved is the
unit square domain 2 = [0,1] x [0,1], we are discretized it using a uniform

triangular mesh with mesh width parameter h = ﬁwhere N = 18. In this
problem we take € = — and _= respectively at t = 0.5 and k =.01 where € <

120 240

h. In Figure (4.1.a) and (4.2.a) the problem run without P.A.D. (i.e. « = 0), we
see that the standard G.-C. finite element method produce an oscillating
solution which is not close to the exact solution especially when e decreasing
with respect to h. In Figure (4.1.b)and (4.2.b) the problem run with G.-
C.P.A.D., where a =.25xh, the numerical solution became more convergent to
the exact solution. In comparing with Case2[8,9], we see that the standard G.-
C. finite element method produce slightly oscillated solution with respect to
the exact solution than Case2 (Figure 5.2.2-a, 5.2.3-a, 2-a and 3-a ) [11,12]
respectively, also the G-C.P.A.D. finite element method is slightly more
convergence to the exact solution than Case 2 (Figure 5.2.2-b, 5.2.3-b, 2-b and
3-b) [11,12] respectively.
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Problem 2: In this problem we illustrate G.-C.S.A.D. in system (4.1) with
the cancellation of the third term on the left and right hand sides . The exact

solutions of Burgers’ equation(2.1) are [5] :
—5em?t

u( X ¢ ) _ _A4mee cos(2mx)sin(my)
'Y 2+e~5€m?tsin(2mx)sin(my)
2
2m ee " >€T tsin(2mx)cos(my)
v(x,y,t)=—

2+e—5€m?tgin(2mx)sin(my) |

where f = g =10, =[0,1] x [0,1] and N = 18 . In this problem we take
€ = —and _ respectively at t = 1 and k =.01 where e < h. In Figure (4.3.a)

100

and (4.4.a) the problem run without S.A.D. (i.e. « = 0), we see that the
standard G.-C. finite element method produce an oscillating solution which is
not close to the exact solution. In Figure (4.3.b)and (4.4.b) the problem run
with G.-C.S.A.D., where a = 2. As we see the numerical solution became
more convergent to the exact solution.

Figure 4. 1. a-Numerical solution of G.-C. method without P.A.D. of u and v
. b-Numerical solution of G.-C.P.A.D. method of u and v, c-Exact solution of
uandv,ate=-2 andt = .5.

120

Figure 4. 2. a-Numerical solution of G.-C. method without P.A.D. of u and v
. b-Numerical solution of G.-C.P.A.D. method of u and v, c-Exact solution of
uwand v, at ezﬁ and t = .5.
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Figure 4. 3. a-Numerical solution of G.-C. method without S.A.D. of u and v
. b-Numerical solution of G.-C.S.A.D. method of u and v, c-Exact solution

— 1 _
of u and v, at €= andt = 1.

Figure 4. 4. a-Numerical solution of G.-C. method without S.A.D. of u and v
. b-Numerical solution of G.-C.S.A.D. method of u and v, c-Exact solution
of u and v, at Ezwlo andt = 1.

5 — Conclusions
In this work, we considered the G.-C.P.A.D. and G.-C.S.A.D. finite element
methods for 2-D coupled Burger problem in the fully discrete case using
Cranck-Nicholson method for the time variable. For this studying, we can
conclude the following:
1-The G.-C.P.A.D. and G.-C.S.A.D. finite element methods removed all
oscillations occur when we use the standard G.-C. finite element method in
the convection-dominated case, more over the numerical solutions obtained
from these methods are consistent with the exact solutions.
2-We have concluded that the G.-C. without P.A.D. and G.-C.P.A.D. finite
element method are more likely to capture the actual evolution of the
solution than the G. without P.A.D. and G.P.A.D. finite element methods
[11,12].
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