N_{α} -Continuous And Contra- N_{α} -Continuous Mappings

Nadia M. Ali Al- Tabatabai Baghdad/Al-Kirk/3, Directorate General of Education, Ministry of Education, Iraq

> Received Date: 2 / Nov / 2015 Accepted Date: 14 / Jan / 2016

الخلاصة

في هذا البحث قدمنا أنواع جديدة من التطبيقات المستمرة من النمط $N\alpha$ باستخدام المجموعات المفتوحة من النمط $N\alpha$ في الفضاءات التبولوجية مثل التطبيقات المستمرة من نمط N_a^* ، N_a^* ، N_a^* وكذلك درسنا بعض خصائص هذه الأنواع علاوة على ذلك درسنا بعض أصناف التطبيقات العكسية المستمرة التي تسمى التطبيقات العكسية المستمرة من نمط $N\alpha$ وبينا العلاقات بين هذه الأنواع.

الكلمات المفتاحية

 N_{α} الفتوحة - α ، المجموعة المفتوحة - N_{α} ، الفضاءات التوبولوجية

Abstract

In this paper, we introduce new types of N_{α} -continuous mappings by using N_{α} -open sets in topological spaces, such as N_{α} -($N_{\acute{a}}^*$, $N_{\acute{a}}^{**}$) continuous mappings , also we study some properties of these types. Moreover, we study some classes of contra-continuous mappings called contra N_{α} -continuous and show relationships between these types.

Keywords

 α -open set, N_{α} -open set, N_{α} -regular space.

1. Introduction

The concept of N_a-open set was first studied in 2015 by N. A. Dawood, N. M. Ali ,see [1] by using these sets we study some class of continuity mappings which are N_{α} - $(N_{\acute{a}}^*, N_{\acute{a}}^{**})$ continuous mappings and investigated some of their properties. The notion of contra-continuity was first investigated by Dontchev in 1996, [2]. Subsequently, Jafari and Noiri [3,4] exhibited contra-α-continuous, and contra-pre-continuous mapping. A good number of researchers have also initiated different types of contra continuous mappings, some of which are found in the papers [5-9]. Here, in this paper also, attempt has been made to employ the notion of N_a-open sets to study some variation of contra continuous mappings called contra-N_a-continuous mappings.

In this paper all spaces X and Y are topological spaces, also the closure (interior resp.) of a subset A of X is denoted by cl(A) (int(A) resp).

2. Some Basic Concepts

Here, we shall give some basic concepts which we need in our work.

2.1. Definition [10]

Let (X,τ) be a topological space, a subset A of X is called α -open if $A \subseteq \text{int cl int } (A)$. The complement is called α -closed.

From the above definition it is easy to check that, every open is α -open, [11].

2.2. Definition [12], [13]

Let (X,τ) be a topological space, a subset A of X is called :

- (1) regular-open if A = int cl(A)
- (2) θ -open if for each $x \in A$, there exists open set B such that $x \in B \subseteq cl B \subseteq A$.

2.3. Definition [14], [15], [16], [6]

A mapping $f: X \longrightarrow Y$ is called α -continuous (perfectly continuous, strongly θ - continuous, regular closed continuous), if every an open set A in Y, then $f^{-1}(A)$ is α -open (clopen, θ -open, regular closed resp.) in X.

2.4. Definition [1]

Let (X,τ) be a topological space, a subset A of X is called " N_{α} -open" set if there exists a non-empty α -open set B such that cl B \subseteq A.

The family of all N_{α} -open sets is denoted by $N_{\alpha}O(X)$, and its complement is called N_{α} -closed and denoted by $N_{\alpha}C(X)$.

2.5. Remark [1]

In every topological space the set X is N_{α} -open set.

2.6. Remarks [1]

- (1) The concepts of open and N_{α} -open sets are independent.
- (2) The concepts of α -open and N_{α} -open sets are independent.
- (3) The concepts of closed and N_{α} -open sets are independent.
 - (4) Every clopen set is N_{α} -open set.
 - (5) Every θ -open set is N_{α} -open set.
 - (6) Every closed α -open set is N_{α} -open set.

2.7.Theorem [1]

Let (X_1, τ_1) , (X_2, τ_2) be topological spaces. Then A_1 and A_2 are N_{α} -open $(N_{\alpha}$ -closed) sets in X_1 and X_2 resp. if and only if $A_1 \times A_2$ is N_{α} -open $(N_{\alpha}$ -closed) set in $X_1 \times X_2$.

2.8. Proposition [1]

Let (X,τ) be a topological space. Then

- (1) The finite union of N_{α} -open sets is N_{α} -open set.
- (2) The finite intersection of N_{α} -open sets is N_{α} -open set.
- (3) The finite union of N_{α} -closed sets is N_{α} -closed set.
- (4) The finite intersection of N_{α} -closed sets is N_{α} -closed set.

2.9. Definition [1]

Let (X,τ) be a topological space $A\subseteq X$. The N_{α} -closure of A is defined as the intersection of all N_{α} -closed sets in X containing A, and is denoted by N_{α} cl(A).

2.10. Lemma [1]

If (X,τ) is a topological space , where $A\subseteq B\subseteq X$, then

- (1) $N_a \operatorname{cl}(A) \subseteq N_a \operatorname{cl}(B)$.
- (2) If A is N_{α} -closed set, then $A = N_{\alpha} \operatorname{cl}(A)$.
- (3) $x \in N_{\alpha} \operatorname{cl}(A)$ if and only if $U_x \cap A \neq \emptyset$ for any N_{α} -open set U containing x.

2.11. Proposition [1]

Let (Y,τ_Y) be a subspace of a topological (X,τ) such that $A\subseteq Y\subseteq X$. Then

- (1) If $A \in N_{\alpha}O(X)$, then $A \in N_{\alpha}O(Y)$.
- (2) If $A \in N_{\alpha}(Y)$ then $A \in N_{\alpha}(X)$,where Y is clopen set in X .

2.12. Definition [11]

Let (X,τ) be a topological space .Then X is called α^{**} -regular space if for every $x \in X$,and

every $\alpha\text{-closed}$ set F such that $x \notin F$ there exist two open sets A and B such that $x \in A$, $F \subset B$ and $A \cap B = \emptyset$

2.13. Definition [1]

Let (X,τ) be a topological space. Then X is called N_4^{**} -regular space if for every

 $x \in X$,and every $N\alpha$ - closed set F such $x \notin F$ there exist two open sets A and B such that $x \in A$, $F \subset B$ and $A \cap B = \emptyset$

2.14. Proposition [11], [1]

Let (X,τ) be a topological space . Then :

- (1) X is α^{**} -regular space iff every an α -open set A contains x, there exists an open set B contains x such that $x \in B \subseteq cl B \subseteq A$.
- (2) X is $N_{\acute{a}}^{**}$ -regular space if and only if every N_{α} -open set A contains x, there exists an open set B contains x such that $x \in B \subseteq cl B \subseteq A$.

2.15. Proposition [1]

Let (X,τ) be α^{**} -regular space. Then

- (i) Any an α -open set ($_{\alpha}$ -closed) is N_{α} -open set (N_{α} -closed).
- (ii) Any an open set(closed) is N_{α} -open set (N_{α} -closed).

2.16. Proposition [1]

Let $(X,\!\tau)$ be $N_{\acute{a}}^{**}\,$ -regular space .Then

- (i) Any N_{α} -open (N_{α} -closed) set is an open(closed) set.
- (ii) Any N_{α} -open (N_{α} -closed) set is an α -open ($_{\alpha}$ -closed) set.

2.17. Definition [17]

Let (X,τ) be a topological space. Then X is called Ultra-T2 space if for each pair of distinct points x and y, there exist clopen sets A and B containing x and y resp. such that $A \cap B = \emptyset$

2.18. Definition [18]

Let (X,τ) be a topological space. Then X is called locally indiscrete if every open set of X is closed.

3. Some Types of N_{α} -Continuity

In this section, the concept of N_{α} -open set will be used to define some new types of N_{α} -continuity such as; N_{α} -continuous, $N_{\acute{a}}^*$ -continuous and $N_{\acute{a}}^{**}$ -continuous. Moreover we shall study the relationships with other some types of continuity mappings.

3.1. Definition

Let (X_1, τ_1) , (X_2, τ_2) be topological spaces, such that $f: X_1 \longrightarrow X_2$ any mapping. Then f is N_{α} -continuous if for each an open set A in X_2 , then $f^{-1}(A)$ is N_{α} -open set in X_1 .

3.2. Remark

There is no relation between the continuous and N_{α} -continuous mappings ,we shall explain this in Example (3.3).

3.3. Example

Let (X,τ_1) be a topological space, where $X = \{1,2,3,4\}, \tau_1 = \{X,\{2\},\{1,4\},\{1,2,4\},\phi\}, \tau_2 = \{X,\{1\},\{1,2,3\},\phi\}$ and $f:(X,\tau_1) \longrightarrow (X,\tau_2)$ is a mapping such that f(1) = f(2) = f(4) = 1, f(3) = 3.

Thus f is continuous which is not N_{α} -continuous ,since A=,{1} is an open set ,but $f^{-1}(A) = \{1,2,4\}$ which is not is N_{α} -open set

3.4. Remark

There is no relation between the α -continuous and N_{α} -continuous mapping. See previous example (3.3) where f is α -continuous which is not N_{α} -continuous.

Now the following Example explains the N_{α} -continuous mapping neither continuous nor α -continuous mapping in general.

3.5. Example

Let $(X,\tau_1),(X,\tau_2)$ be topological spaces ,where $X = \{1,2,3,4\}, \tau_1 = \{,\phi\{3\},\{1,4\},\{1,3,4\},X\}, \tau_2 = \{\phi,\{1\},X\}.$ Define $f:(X,\tau_1) \longrightarrow (X,\tau_2)$ such that f(1) = f(2) = f(4) = 1, f(3) = 3.

See the following Diagram



We have previously shown that there is no relationship among the concepts of continuous, α -continuous and N_{α} -continuous. But if we impose some conditions, then we obtain the following Diagram.

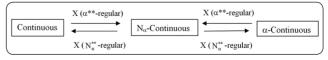


Diagram (2)

The following remark explains the relation of the concept of N_{α} -continuous with other

**

types of continuity mapping such as: perfectly continuous, θ -continuous, and regular closed continuous.

3.6. Proposition

The perfectly continuous $(\theta$ -continuous-regular closed continuous resp.) is N_{α} -continuous.

Proof; Follows by Remarks (2.6), Definition (2.1).

3.7. Remark

In proposition (3.6), we observe that its converse need not be true in general. See the following examples:

3.8. Examples

(1) Let (X,τ_1) , (X,τ_2) be topological spaces, where $X = \{1,2,3,4\}$, $\tau_1 = \{X,\{3\},\{1,4\}$,

 $\{1,3,4\},\phi\}$, $\tau_2=\{X,\{1\},\phi\}$, and $f: X \longrightarrow X$ such that f(1)=f(2)=f(4)=1, f(3)=3. Thus f is N_{α} -continuous but it is neither perfectly continuous nor θ -continuous ,since $A=\{1\}$ is an open set but $f^{-1}(A)=\{1,2,4\}$ is neither clopen set nor θ -open set.

(2) Let (X,τ_1) , (X,τ_2) be topological spaces, where, $X_1 = \{1,2,3,4,5\}$, $X_2 = \{1,2,3,4\}$ $\tau_1 = \{X_1,\{1\},\{2,3\},\{1,2,3\},\phi\}, \tau_2 = \{X_2,\{2\},\phi\}.$

Define $f: X_1 \longrightarrow X_2$ such that f(1) = f(2) = f(4) = f(5) = 2 and f(3) = 4. Thus f is N_{α} -continuous which is not regular closed-continuous mapping ,since $A = \{2\}$ is an open set but $f^{-1}(A) = \{1,2,4,5\}$ which is not regular-closed set.

Now we have the following Diagram:

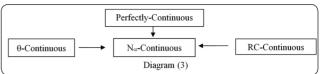


Diagram (3)

Now, we shall define other types of N_{α} -continuity mappings such as:

3.9. Definition

Let (X_1, τ_1) , (X_2, τ_2) be topological spaces, and $f: X_1 \longrightarrow X_2$ be a mapping, then f is called (1) $N_{\acute{a}}^*$ -continuous if $f^{-1}(A)$ is N_{α} -open set in X_1 for every N_{α} -open set A in X_2 .

(2) $N_{\acute{a}}^{**}$ -continuous if $f^{-1}(A)$ is open set in X_1 ,for every N_{α} -open set in X_2

The concepts of $N_{\acute{a}}^*$ -continuous and $N_{\acute{a}}^{**}$ -continuous are independent . We have the following diagram.

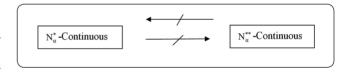


Diagram (4)

3.10. Proposition

Let (X_1, τ_1) , (X_2, τ_2) be topological spaces, and F be a subset of X_1 . Let $f: X_1 \longrightarrow X_2$ be a mapping, then:

- (1) If the mapping $f: X_1 \longrightarrow X_2$ is $N_{\alpha}(N_{\dot{a}}^*$ -continuous resp.), then $f/F: F \longrightarrow X_2$ is also, $N_{\alpha}(N_{\dot{a}}^*$ -continuous resp.), where F is N_{α} -open set in X_1
- (2) If the mapping $f: X_1 \longrightarrow X_2$ is $N_{\acute{a}}^{**}$ continuous, then $f/F: F \longrightarrow X_2$ is also,

 $N_{\acute{a}}^{**}$ - continuous, where F is an open set in X_1 . Proof: We shall prove only when the mapping f is N_{α} -continuous, and the other cases by the same way .Suppose B_2 is an open set in X_2 , since f is N_{α} -

continuous, then, f $^{-1}$ (B $_2$) is N $_\alpha$ -open in X $_1$, also we have f^{-1} (B $_2$) \cap F is N $_\alpha$ -open set in X $_1$ (see(2.8(2)) , so it is N $_\alpha$ -open set in F(see proposition $_{(2.11)(1)}$). But, $(f/F(B_2))^{-1} = f^{-1}$ (B $_2$) \cap F ,thus the proof is complete.

3.11. Proposition

Let $(X_1, \tau_1)(X_2, \tau_2)$ be two topological spaces, and $f:(X_1, \tau_1) \longrightarrow (X_2, \tau_2)$ be a mapping ,where A_1 and A_2 be subsets in X_1 , such that $X_1 = A_1 \cup A_2$, then:

(1) f is N_{α} ($N_{\dot{a}}^*$ -continuous), such that) f $\Big|_{A_1}$, f $\Big|_{A_2}$ are N_{α} ($N_{\dot{a}}^*$ -continuous) mappings ,where A_1 and A_2 are disjoint clopen subsets in X_1 . (2) f is $N_{\dot{a}}^{**}$ -continuous such that) f $\Big|_{A_1}$, f $\Big|_{A_2}$ are $N_{\dot{a}}^{**}$ -continuous mappings ,where A_1 and A_2 are disjoint open subsets in X_1 .

proof : we shall prove only the state of N_{α} continuous. Suppose B is an open set in X_2 , thus, $f^{-1}(B) = (f \mid_{A1})^{-1}(B) \cup (f \mid_{A2})^{-1}(B)$, but $f \mid_{A1}$, $f \mid_{A2}$ are N_{α} -continuous this implies, $(f \mid_{A1})^{-1}(B)$, $(f \mid_{A2})^{-1}(B)$ are N_{α} -open subsets in A_1 , A_2 resp., since A_1 and A_2 are clopen sets in X_1 then by (proposition (2.11(2)we get, $(f \mid_{A1})^{-1}(B)$, $(f \mid_{A2})^{-1}(B)$ are N_{α} -open sets in X_1 , also $(f \mid_{A2})^{-1}(B)$ \cup $(f \mid_{A2})^{-1}(B)$ is N_{α} -open set in X_1 this, implies $f^{-1}(B)$ is N_{α} -open set in X_1

3.12. Proposition

Let (X_1, τ_1) , (X_2, τ_2) be topological spaces, let $f: X_1 \longrightarrow X_2$, and $f_A: f^{-1}(A) \longrightarrow A$ which defined by , $f_A(x) = f(x)$ be mappings . We have the fowlloing:

- (1) If f is N_{α} -continuous ,then f_A is also, N_{α} -continuous ,where A is an open set in X,
 - (2) If f is $N_{\acute{a}}^*$ ($N_{\acute{a}}^{**}$ -continuous), then f_A is also, -continuous.

 $N_{\acute{a}}^*$ ($N_{\acute{a}}^{**}$ continuous),where A is clopen set in X_2 . Proof: We choose(1) (2) ,and the other case is similarly. Suppose B is open set in A, since A is open in X_2 , then B is open in X_2 , since f is N_{α} -continuous thus $f^{-1}(B)$ is N_{α} -open set in X_1 , since $f^{-1}(B) \subseteq f^{-1}(A) \subseteq X_1$, then by (proposition(2.11(1)), we get $f^{-1}(B)$ is N_{α} -open set in $f^{-1}(A)$.

The proof of (2) by using proposition (2.11(2)).

3.13. Proposition

Let $(X_1, \tau_1)(X_2, \tau_2)$ and (X_3, τ_3) be topological spaces and $f:(X_1, \tau_1) \longrightarrow (X_2, \tau_2)$ be a mapping then:

(i) If $f: X_1 \longrightarrow X_2$ is N_{α} -continuous and $X_2 \subseteq X_3$, then $f: X_1 \longrightarrow X_3$ is also N_{α} -continuous.

(ii) If f: $X_1 \longrightarrow X_2$ is $N_{\acute{a}}^*$ ($N_{\acute{a}}^{**}$ -continuous), and $X_2 \subseteq$, X_3 , then $f: X_1 \longrightarrow X_3$ is also $N_{\acute{a}}^*$ ($N_{\acute{a}}^{**}$ -continuous).

Proof: we shall prove only one case, choose(2). Let A be N_{α} -open set in X_3 , thus A is N_{α} -open set in X_2 , see (proposition(2.11)(1)),thus, $f^{-1}(A)$ is N_{α} -open (open) set in X_1 resp. ,(since $f: X_1 \longrightarrow X_2$ is N_{α}^* (N_{α}^{**} - continuous)).

3.14. Theorem

If $f: X \longrightarrow Y$ is a mapping and $g: X \longrightarrow X \times Y$ is the graph mapping of f defined by g(x) = (x, f(x)) for every $x \in X$. Then

- (1) If g is N_{α} -continuous, then f is N_{α} -continuous.
 - (2) If g is $N_{\acute{a}}^*$ -continuous, then f is $N_{\acute{a}}^*$ -continuous.

(3) If g is $N_{\acute{a}}^{**}$ -continuous, then f is $N_{\acute{a}}^{**}$ -continuous.

Proof ;We shall choose (2) and the proof of other statements by the same way. Let B be N_{α} -open set in Y, since X is N_{α} -open set in every topological space by (Remark (2.5)) then by (Theorem (2.7)) X×B is N_{α} -open set in X×Y, thus $g^{-1}(X\times B)$ is N_{α} -open set in X. But $g^{-1}(X\times B)=f^{-1}(B)$. Thus f is N_{α}^* -continuous.

3.15. Proposition

Let (X_1, τ_1) , (X_2, τ_2) and (X_3, τ_3) be topological spaces and $f: X_1 \longrightarrow X_2$, $g: X_2 \longrightarrow X_3$ be mappings, then;

- (1) If f is $N_{\acute{a}}^*$ -continuous, g is N_{α} -continuous, then $g \circ f$ is N_{α} -continuous.
- (2) If f is $N_{\acute a}^*$ -continuous, g is $N_{\acute a}^*$ -continuous, then gof is $N_{\acute a}^*$ -continuous.
- (3) If f is $N_{\acute{a}}^{**}$ -continuous and g is $N_{\acute{a}}^{*}$ -continuous, then gof is $N_{\acute{a}}^{**}$ -continuous.
- (4) If f is $N_{\acute{a}}^{**}$ -continuous and g is N_{α} -continuous, then gof is continuous.
- (5) If f is N_{α} -continuous and g is $N_{\dot{a}}^{**}$ -continuous, then $g \circ f$ is $N_{\dot{a}}^{*}$ -continuous.
- (6) If f is N_{α} -continuous and g is continuous, then $g \circ f$ is N_{α} -continuous.

Proof; Obvious.

4. Contra N_{α} -Continuity

In this section, the concept of N_{α} -open set will be used to define new class of N_{α} -continuity called contra- N_{α} -continuous mapping. Some theorems will be proved.

4.1. Definition

Let $f: X_1 \longrightarrow X_2$ be a mapping, then f is called contra- N_{α} -continuous if for every an open set A in X_2 , then $f^{-1}(A)$ is N_{α} -closed set in X_1 .

4.2. Theorem

Let $f: X_1 \longrightarrow X_2$ be a mapping , The statements are equivalent:

- (a) f is contra-N_a-continuous.
- (b) $f^{-1}(A)$ is N_{α} -open set in X_1 , for every closed set A in X_2 .

Proof: Obvious.

4.3. Theorem

Let $(X_1, \tau_1), (X_2, \tau_2)$ be topological spaces, and f : $X_1 \longrightarrow X_2$ be contra- N_{α} -continuous, then:

(i) $f \mid_{A_1}$, $f \mid_{A_2}$ are also, contra- N_{α} -continuous, such that $X_1 = A_1 \cup A_2$, where A_1 , A_2 are disjoint clopen sets in X_1

 $_{(ii)}$ f $\mid_{A:A} \longrightarrow X_2$ is also, contra- N_{α} -continuous, such that A is $-N_{\alpha}$ -open set in X_1

(iii) $f_A : f^{-1}(A) \longrightarrow A$ is also, contra- N_{α} continuous, where A is closed set in X_2 .

Proof: We shall choose (iii). Let B be closed set in A, since , A is closed in X_2 thus B is closed in X_2 , since, $f: X_1 \longrightarrow X_2$ is contra- N_α -continuous then $f^{-1}(B)$ is N_α -open set X_1 , since $f^{-1}(B) \subseteq f^{-1}(A) \subseteq X_1$ thus, by(proposition(2.11(1)), we get $f^{-1}(B)$ is N_α -open set in $f^{-1}(A)$.

The proof of others it follows by using proposition (2.11).

4.4. Theorem

Let $f: X_1 \longrightarrow X_2$, $g: X_2 \longrightarrow X_3$ be mappings. Then:

- (1) If f is contra- N_{α} -continuous and g is continuous, then $g \circ f$ is contra- N_{α} -continuous.
- (2) If f is $N_{\acute{a}}^*$ -continuous and g is contra- N_{α} -continuous, then gof is contra-Ncontinuous.

Proof: Obvious.

4.5. Corollary

Let $f: A \longrightarrow \Pi X_{\lambda}$ be a contra N_{α} -continuous, where ΠX_{λ} is the family of topological

spaces $\{X_{\lambda}:_{\lambda} \in I\}$, then $f_{\lambda}: A \longrightarrow X_{\lambda}$ is also contra- N_{α} -continuous for each $\lambda \in I$.

Proof: Let $f_{\lambda} = \rho_{\lambda} \circ f$, where ρ_{λ} is a projection mapping, also it is continuous for all $_{\lambda} \in I$, thus by (Th.(4.4)(1)) f_{λ} is contra $-N_{\alpha}$ -continuous, for each $_{\lambda} \in I$.

4.6. Theorem

Let $f: X \longrightarrow Y$ be a mapping and $g: X \longrightarrow X \times Y$ be the graph of f defined by g(x) = (x, f(x)), for every, $x \in X$. If g is contra- N_{α} -continuous, then f is contra- N_{α} -continuous.

Proof: It is similar to the proof of the Theorem (3.14) and hence omitted.

4.7. Theorem

Let $f: X \longrightarrow Y$, $g: X \longrightarrow Y$ be contra- N_{α} continuous mappings, where Y is Ultra- T_2 space.

Let $A = \{(a, b): a, b \in X \text{ such that } f(a) = g(b)\}$, then

A is N_{α} -closed set.

Proof: We shall prove \mathring{A} is N_{α} -open set, let $(a,b) \notin A$, thus $(a,b) \in \mathring{A}$, this means that $f(a) \neq g(b)$ in Y, since Y is Ultra- T_2 - spaces ,thus there exist clopen sets G_1 , G_2 such that $f(a) \in G_1$ and $g(b) \in G_2$ and $G_1 \cap G_{2=\emptyset}$, since f, g are contra - N_{α} -continuous mappings, then $f^{-1}(G_1)$, $g^{-1}(G_2)$ are N_{α} -clopen sets ,hence by (Th.2.7) $f^{-1}(G_1) \times g^{-1}(G_2)$ is N_{α} -clopen set in $X \times X$, also $(a,b) \in f^{-1}(G_1) \times g^{-1}(G_2) \subseteq X \times X / A$, it follows A is N_{α} -closed set in $X \times X$.

Now, we shall give some applications about contra N_{α} -continuous mappings.

4.8. Theorem

Let $f: X_1 \longrightarrow X_2$ be a bijective contra- N_{α} -continuous mapping, where, X is locally indiscrete, $N_{\acute{a}}^{**}$ -regular space. Then the inverse image of T_2 -space under f is also T_2 -space.

Proof: Let $x_1 \neq x_2$ in X_1 , since f is injective, then $f(x_1) \neq (x_2)$ in X_2 , thus there exist G_1 , G_2 open sets contain $f(x_1)$, $f(x_2)$ in X_2 resp., and $G_1 \cap G_2 = \emptyset$, thus $f^{-1}(G_1)$, $f^{-1}(G_2)$ are N_α -closed sets in X_1 (since f is contra- N_α - continuous), since X_1 is $N_{\acute{a}}^{**}$ -regular space, then $f^{-1}(G_1)$, $f^{-1}(G_2)$ are closed sets (see proposition (2.16)), since X_1 is locally indiscrete, then $f^{-1}(G_1)$, $f^{-1}(G_2)$ are open sets and contain x_1 , x_2 resp., also, $f^{-1}(G_1) \cap f^{-1}(G_2) = \phi = f^{-1}(G_1 \cap G_2)$ thus X_1 is T_2 -space.

4.9. Theorem

Let $f: X \longrightarrow Y$ be an open bijective, contra N_{α} continuous ,where X is $N_{\acute{a}}^{**}$ - regular locally indiscrete space . If X is regular space , then Y is, also, regular-space .

Proof: Let $y \notin F$ where F is closed in Y since f is bijective, then there exists x such that f(x)=y, and $x=f^{-1}(y)\notin f^{-1}(F)$ also, $f^{-1}(F)$ is N_{α} -open, so it is an open(see proposition 2.16 since X is locally indiscrete space, then $f^{-1}(F)$ is closed, since X is regular space, then there exist W_1 , W_2 open disjoint sets such that $x \in W_1$ and $f^{-1}(F) \subseteq W_2$, and $W_1 \cap W_2 = \phi$, thus $y=f(x) \in f(W_1)$, f $f^{-1}(F) = F \subseteq f(W_2)$, where $f(W_1)$, $f(W_2)$ are open sets (since f is an open mapping), also $f(W_1) \cap f(W_2) = f(W_1 \cap W_2) = f(\emptyset) = \emptyset$. Thus Y is regular space.

References

- [1] N. A. Dawood, N. M .Ali "Nα-Open Sets and Nα-Regularity in Topological Spaces", International J.of Advanced Scientific and Technical Research, 5 (3), pp.87-96, (2015).
- [2] J. Dontchev, "Contra-Continuous Functions and Strongly S-Closed Spaces", Internet. J. Math.Sci., 19(2), pp.303-310, (1996).
- [3] S. Jafari and T.Noiri, "Contra-α-Continuous Mappings Between Topological Spaces", Iranian .Int. J. Sci., 2,pp. 153-167, (2001).
- [4] S.Jafari and T.Noiri, "On Contra-Precontinuous Mappings", Bull. Malaysian Math. Soc., 25, pp.115-128, (2002).
- [5] M. Caldas and S.Jafari, "Some Properties of Contra-β-Continuous Functions", Mem .Fac. Sci. Koch. Univ., 22, pp.19-28, (2001).
- [6] J.Dontchev ",survey on preopen sets ", Japan ,August , pp.1-8, (1998).
- [7] E.Ekici, "On Contra-πg-Continuous Functions", Chaos, Solutions and Fractals, 35, pp.71-81, (2008).
- [8] A .A. Nasef, "Some Properties of Contra-γ-Continuous Functions", Chaos, Solution and Fractals, 24, pp.471-477, (2005).
- [9] M.S.Noorani, "Some Properties of Contra-b-Continuous and Almost Contra-b-Continuous", European 2(2), pp. 213-220,(2009).
- [10] O. Njastad,"On Some Classes of Nearly Open Sets", Pacific J. Math., 15(3), pp.961-970, (1965).

- [11] N.M. Ali "On Some Types of Weakly Open Sets", M.Sc. Thesis University of Baghdad, (2004).
- [12] M. Stone, "Applications of Theory of Boolean Rings to the General Topology", Trans .Amer. Math. Soc., 41, pp. 375-481, (1937).
- [13] N. V. Valrico ,"H-Closed Topological Spaces", Amer .Math .Soc .Trans. 78 (2) pp.103-118, (1968).
- [14] A.S. Mash hour, I.A. Hasanein, S.N. El-Deep, "d-Continuous and α-Open Mappings,", Acta –Math. Hung, 41, pp.213-218, (1983).
- [15] T. Noiri ,"Strong Form of Continuity in Topological Spaces", Rend.Circ.Math. Palermo, pp.107-113,(1986).
- [16] T. Noiri, "On Almost Strongly θ-Continuous Functions", Indian J. Pure Appl..Math., pp.1-8, (1984).
- [17] R. Stump, "The Algebra of Bounded Continuous Functions into aNonarchimedean Field", Pacific J. Math., 50, pp.169-185, (1974).
- [18] J.Dontchev," Survey On Preopen Sets", The Proceedings of the Yatsushiro Topological conference,pp.1-18,(1998).
- [19] Willard S., "General Topology", Addison Wesley,