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Using definition of the rational approximation
and the fact that any two norms of the space of

polynomials are equivalents we complete the proof &

3. Some Essential Difference
Between Polynomial and Rational
Approximation on the Complex plane
We introduce some essential difference between

polynomial approximation and rational approximation.

3.1. Convergence
In rational approximation we have if f is
analytic on a compact set E not separate the
complex plane {C/E connected} then f is the L
limit on E of a sequence of rational functions.
Unlike its polynomial version the hypothesis CE

be connected is not needed .
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3.2. Existence of best approximation

For an arbitrary compact set the existence of best
polynomial approximation is a simple compactness
argument. Unlike its rational version needs that the

compact set contains no isolated points.

3.3. Uniqueness of best approximation

If fis areal valued continuous function defined
on the interval [a,b]. Then Chebyshev showed that
the best uniform approximation R to f out of JI_ |

is unique if R is of real coefficients.

3.4. Degree of best approximation
If f is continuous on E and analytic on the
E interior. Let E_ (f)=infpEH
of best polynomial approximation to. And e_
(D=inf,_,  If-RI,
approximation of. Since e_(f)<E_(f) so e_(f) tend
to zero faster than E_ (f).

_If-pl be the degree

is the degree of rational
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2.5. Lemma [2]

0 1+zt°
decreasing function assuming infinitely many

where a(t) is a real non-

values on [0,y]. Such functions are called Stieltjes
series . And if P is the (n,n) Pade approximation
to f then

1 Lda(t)
=P = (_%)fo o

where zZ € C— (—00,—$] and P_is a real

polynomial Of degree n with roots in [0,y] .

2.6. Theorem
da(t)

Suppose @ =§%;

0<y<1 gisnon-decreasing

has many infinitely values on [0,y]. If P is (n-1,n)

Pade approximation to f defined on the circle C"l.
Then
If@ = R@llyey = 70z I @) = P@ly,, (2.11)

Proof:
Let P be a real polynomial as defined in
Lemma (2.9). Therefore
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Therefore Corollary 2.2 implies (2.11) k)

2.7. Theorem

Let fEAp~and suppose that :—: is the proper
(n, m) pade approximation to f. Let y<p<p and
let 2n % ~ be a best rational approximation to f on
{z:|z|§p}. If 2 has no poles in Dp then for |z|<y,
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except for poles of total multiplicity v, none of
which occurs at z=0 . Then as m—oo, the sequence
of pade approximants [m/r](z) converge to f(z) in
L10 (U) on every compact subset E of U/{poles of f}.

Proof:

since [m,v](z) is pade approximants to fso R
=S, ) (2= O(z™") .

If R is a monic polynomial of degree < v, then
RS isa polynomial of degree <m + v, with
R _Rf-RS_ =0 (z™")
This implies RS_ is the Taylor polynomial of
the function R__ Rf.

Then using f ) - S, =

zn+1f(t)
f|t|—r—tn+1(t 5 dt,|z| <r

to get
R Rfis analytic on [t| <T.
Since R is monic then its zeros are the poles of
f and this implies r=R .
III{mv Rf - RSmV"l(p(K)/(poles f)

=R, Rf-RS_[dz)"

p
Zm+v+1 Rmv Rf(t)| o

1
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2.2. Corollary

Let f be analytic in Ip(Us) and it has a proper
(n,m) pade approximation. Let R be a best (n,m)
rational approximation to f on I Then [f(z)-

R@), = If (2)-P(2)P(2)-R(@)h

p(U)

P(Cy)

Proof:

Suppose If(2)-R(2)l, ., <If(2)-P(2)l,

Asacorollary of the well known theorem (Let E
be origin bounded by the Jordan curve I, fEIp (E),
and P_€JI . If the error curve (f-P )(I') is a perfect
circle of center at the origin and winding number
>n+1.ThenP_is the best Ip (E) approximation to
f with degree >n + 1)

we get :

If(z) - R@)y ¢, = 1(2) - P(2) + P(2) - R@)\,
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2.3. Lemma [3]
If s/t be the (n,n) pade approximation of e* then
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1.Introductin and Preliminaries

We take a formal power series

fz)=),_~a_z° (1.1)

We shall construct rational function of a certain
type whose Taylor coefficients match those of f. Let

o= {R(2) = % S €My, Q €N, T#0} (1.2)

Then for a fixed pair (m,n), we can find an
R(z)eﬂm,n, such that (f-R)(z)=0(Z"), where 1
approaches « . (1.3)

O(Z') denotes a power series with lowest order
term z'.what is a realistic value for 1? Because
there are m+1 free parameters in the choice for the
number p, and n+1 in choice for the denominator
Q, then there are m+n+1 parameters in the ration
S/T (one parameter is lost in the division process.
Then we have 1 > m+n+1 or, equivalently, to
match the first m+n+1 terms of (1.1). and this is
not possible (try m=0,n=1, and f(z)=z). We instead
above with the following linearized version of
(1.3). Take (m,n), p_ € JI and Q__ (#0)€JI so that

(Q,f- P, )@=0@""). (1.4)

If fis (m+tn) - times differentiable at z=0,
then(1.4) is equal to (Q_  f-p_)(0)=0, k=o,1,...
,m+n .That (1.4) represents a homogeneous
system of m+n+1 equations in m-+n+2 unknowns
and Q_). Hence this
system has a non trivial solution, necessarily with
Q,_ 7o. We shall give

Definition (1.5):
(PA) of type (m,n) to f'is the rational

Smn(2)

Z @) =225 a6

where S €JI and #0 T _ € JI satisfy (1.4).
Notice that for n=0, the PA reduces to a Taylor

section of (1.1).
m
12| (@) = 2o ap 2

(the coefficients of p

[1] The pade approximant

. (1.7)

R,f-8) (2=0z""), R, f-S)z) =0
(Zm+n+1)‘ (1.8)

(R,S,-R,S)=0(z""). (1.9)

Notation: Let JI  denote the collection of
polynomials of degree < n, R is (n,m) rational
function i. e R=S/T where S€JI and € JI_.Iffis
analytic in some neighborhood U of zero then the
(n,m) pade approximation to f is an (n,m) rational
function R=S/T that satisfies

S(2)-T(z)f(z)=z"™"" g(z) (1.10)

where g(z) is analytic in U, and T(z) is not
identically zero. We will call R proper if T(0)#0,
that is, if g is analytic in some neighborhood
of zero the proper (n,m) pade approximation is
unique

Let Il g)-(y 1P d2)7 ,0 < p < oo
o) {f.IIﬂIIP(E) |Iﬂ|p<oo}

And we say that an (n,m) rational function R is
if

where |

a best (n,m) rational approximation to f in Lo,

R satisty 1

If =Rl = [ 1f(2) = S/TIP dz)?,0 < p < oo, where C D E

LetU={z € C:|z| <8},C,={z€ (:]2|=8},86>0

The PAis unique. In fact: (R f- S )(z)=O(z™""")
and (R, f - S)) (z) = O (z™"), where S,S €JI_
and T ,T € JI . Multiplying the equation in (1.8)
by R, and the second by R ,Then we have (R, S, -
R, S, )= O (z"™"). But the left hand side of (1.9)
is a polynomial of degree < m + n. Hence R, S,
-R, S=00rS /T =S/T,.

2. The Main Results

In this section we shall introduce our main
results. First we want to mention that monic
polynomial is polynomial of leading coefficient
equal to 1.

2.1. Theorem

Let f be analytic in the disk K:|z|[<R . (0<R<o)
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Abstract

In this paper we shall introduce a class of interpolating rational functions called
pade approximants. These rationales provide a natural extension of the Taylor
sections.
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