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الخلاصة
الثاني  للفترة من كانون  يعانون الاسهال  الى (6) سنوات ممن  بأعمار من شهر واحد  من مجموع (294) عينة جمعت من مرضى أطفال 
تفاعل تسلسل  التقليدية وبتقنية  المختبرية  بالطرق  فيها  المشكوك  العينات  – العراق. شخصت  السماوة  -2012 شباط (2013) في مدينة 
(16S) اظهرت النتائج (12) عزلة موجبة لبكتريا Aeromonas hydrophila وقد شخصت مجموعة من عوامل   RNA PCR البلمرة
الضراوة للبكتريا واظهرت جميع العزلات قدرتها على انتاج الهيمولايسين والبروتيز واللايبيز والفوسفولايبيز وامتلاكها المحفظة وقدرتها على 
الحركة. كما اظهرت هذه العزلات مقاومتها لبعض المضادات الحيوية مثل الاموكسيلين وامبيسيلين وسيفالوسبورين وسيفوتاكسيم بينما كل 

العزلات كانت حساسة لكل من حامض الناليديليسك والتتراسايكلين وجنتامايسين.

الكلمات المفتاحية
Aanomores hpordyhali تشخيص بعض عوامل الضراوة وتاثير بعض المضادات الحياتية.
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Fig. (2): Plots of first (9) orthonormal annular vector ZP.s’, (T ⃑ ), with (ϵ=0.2)
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where:

 

Fig. (1): Plots of first (9) orthonormal annular vector ZPs’, (S ⃑ ) , with (ϵ=0.2)
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Table (8): The normalization constants for orthogonal vector annular ZP.

Table (9): Orthonormal vector annular ZP (T ⃑ ) in Cartesian coordinates
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Table (6): Orthonormal vector annular ZP (S ⃑ ) as a function of circular ZP Z(x,y)

Table (7): Orthonormal vector annular ZP (S ⃑ ) as a function of gradient of circular ZP ∇Z(x,y)



Thill A. Kadhum and Sundus Y. Hasan

76

Vol. 4, No. 7 and 8 P. (67-80)E, 2016

AL-Bahir Quarterly Adjudicated Journal for Natural and Engineering Research and Studies

Table (5): Orthonormal Vector Annular ZP (S ⃑ ) in Cartesian coordinates
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Table (4): orthonormal Gradients of Annular ZPs ∇A(x,y;ϵ) in Cartesian coordinate
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Table (2): Zernike Annular Polynomials A(x,y;ϵ) in Cartesian coordinates

Table (3): Annular ZPs A(x,y;ϵ) as function of circular ZPs, Z(x,y)
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Table (1): Orthonormal Zernike Annular Polynomials 
A(ρ,θ;ϵ) in polar coordinates
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(n≠m) the (S ⃗ ) is a linear combination of circular 
ZP gradient (∇Z(n,m), ∇Z(n-2), and ∇Z(n-4)). 

From table (5) of (S ⃗ ), equations (6, 7, and 8) 
were concluded, which were used to conclude 
equations (12, 13, and 14) that illustrate the rela-
tion between the vector polynomials and the sca-
lar circular ZP. 

Because the (S ⃗ ) polynomials are representing 
the divergence of a scalar functions (ϕ), it can be 
known from books of electromagnetism that the 
curl of these polynomials is equal to zero, so this 
makes these polynomials are not complete, and 
another work must be done to get the other poly-
nomials with zero divergence and non-zero curl. 

4. Conclusions
By looking to the vector fields (S ⃗ ) and (T ⃑), we 

can conclude that:
As (S ⃗ ) have zero curl everywhere, then (S ⃗ ) is 

known as irrotational vector fields.
Since (S )⃗ functions are 2-D vectors defined in 

a plane, the curl can be expressed mathematically 
as line integral along a closed path in the plane 
[15]:

As (T ⃑ ) have zero divergence everywhere, then 
(T ⃑ ) is known as solenoidal vector fields.

As (T ⃑ ) are also 2-D vectors defined in a plane, 
the divergence here can be expressed mathemati-
cally as a line integral over a closed path [17]:

∮T ⃑ ∙n ̂ dl = 0                                                                                                          
where (n ̂) is the unit normal vector pointing 

out of the closed path.
There is a region for two types of vector fields 

have both divergence and curls zero everywhere, 
this is known as Laplacian vector field.

∇2 ϕj= 0
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                  (20)

where (ϕ) is a scalar and (P ⃗ ) is a vector. The 
divergence of (v )⃑ is then:

       
(21)

and the curl of )v )⃑ is:

 (22)

The (S ⃗  ) polynomials presented in the previ-
ous sections, were defined as gradients of scalar 
functions, so have no curl component and (P ⃗ = 0). 
We complete the basis by adding a second set that 
has zero divergence, therefore zero (φ), but non 
zero (P ⃗ ), such that: (T ⃑ =∇×P ⃑ ), this set has to be 
mutually orthogonal as well.

As illustrated by C. Zhao and J. Burge [14], 
Like the (S ⃗ ) polynomials, (T ⃑ ) polynomials are 
vectors defined in (x-y) plane only. A convenient 
choice of (P ⃗) is vectors along (z) axis only, i.e. 
(Px=Py=0). We can use a scalar (ψ) instead to rep-
resent (P ⃗ ):

P ⃗ = ψk ̂                 (23)
where (ψ ) is a function of (x) and (y): (ψ  = ψ 

(x, y)). It follows that:
 (24)

The inner product of two (T )⃗ polynomial must 
be:

 

for (i=j and 0) for (i≠j)                              (25)

A basis of functions {ψi} will be chosen to gen-
erate the (T ⃑  ) polynomials that be the same ba-
sis as that used to generate the (S ⃗ ) polynomials, 
{φi}. So, by letting (ψi=φi), we get Tables (9) and 
(10) are represent (T ⃑) polynomials in Cartesian 
coordinates and in terms of circular Zernike poly-
nomials respectively. Also the plots of first (9) (T)⃑ 
polynomials are shown in fig. (2).

It can be seen that(T ⃑ 
j (x,y( and S ⃗j (x,y)) have 

same magnitude and are orthogonal to each other 

at any point in a unit annular pupil, therefore (T ⃑
j. 

S ⃗ j=0). But the sets (S ⃗ ) and (T ⃗ ) are not fully in-
dependent. For all (j) with (m=n). It can be shown 
that (T ⃑ 

j) has (0) curl and is therefore not linearly 
independent of (S ⃗ ) polynomials. For example, 
when (j=9 or 10), (m=n=3):

 
and

                                                                                                                     
3. Discussion:
By looking at the forms of annular ZPs, It can 

be seen that these polynomials have the same 
properties of that of circular ZP, they have axial 
symmetry (because they can be written in one 
form of triangular function (sin or cos), and cir-
cular symmetry (because they were separable in 
r and θ). When these polynomials were written 
in terms of circular ZPs, it can be concluded that 
they are a linear combination of at most three cir-
cular ZP, and when (n=m), Annular ZPs A(n,m) 
equal to the circular ZP, Z(n,m), multiplied by a 
constant depends on obscuration ratio (ϵ), while 
when (n-m=2), annular ZP is a linear combina-
tion of two circular ZP (Z(n,m) and Z(n-2,m), and  
when (n-m=4), A(n,m) is a linear combination of 
(Z(n,m) , Z(n-2), and Z(n-4,m)).

From table (6), which represent the (S )⃗ as a 
function of (Z), the annular vector ZP is a linear 
combination of at most seven circular ZPs, unlike 
that of circular vector which contain at most four 
circular ZP, as in ref. 13.

As like as when the annular ZP with (ϵ=0) gives 
the circular ZP, the vector annular ZP are returned 
to circular vector polynomials when (ϵ=0), and 
the annular vector ZP, as shown in table (7), can 
be represented as linear combination of at most 
four circular ZP gradients, while the circular vec-
tor ZP is a linear combination of at most three cir-
cular ZP gradients, as in ref. 13. And again when 
(n=m) orthonormal annular vector ZPs equal to 
the circular ZP gradient multiplied by a constant 
depends on obscuration ratio (ϵ), while when 
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where (C) represent the normalization constant 
for the orthogonal vector annular ZP, Table (8), 
and k=(ϵ2(n-3) + ϵ2(n-3)-2 + ⋯ +1) except for (n<3), 
(k=1). 
iii) For (n≠m), (n-m=4)        

S j⃗ = Cj (k1∇Zj– k2 ∇Zj(n-2,m) – k3  ∇Zj (n-4,m) (8) 
k1=(2ϵ4-ϵ2+2)

where (j-j’) is even when (m≠0).
In general, the vector polynomial (S ⃗) is equal to:
Sj=i ̂Sjx+j ̂Sjy            (9)
 Fig. (1) shows the plots of first (9) vector annu-

lar polynomials. The arrows represent the amount 
and direction of the displacement of a particular 
point.

2.3. The relation between the vector annular 
ZP and the scalar circular ZP

       The space of vector distribution over the 
unit annular circular can be written as a linear 
combination of a set of (S )⃗ polynomials:

V =∑jαj Sj             (10)
and it can be written as a gradient of scalar 

function:
V =⃗∇Φ                  (11) 
but  S j⃗=∇ϕj

so, from equations (6,7, and 8), we get:
i) For all (j) with (n=m),

    (12)

ii) For all (j) with (n≠m), and (n-m=2)

(13)

iii) For (n≠m), (n-m=4)        
ϕj=Cj(k1 Zj– k2 Zj(n-2,m)–k3 Zj (n-4,m) )              (14)

where ( j-j’) is even when (m≠0). 

That means, the scalar polynomials (ϕ) can be 
found form the vector polynomials (S )⃗, for ex-
ample:

leads to:

                                                                    (15)

Then the scalar function can be written as a lin-
ear combination of standard circular ZP.

                           
 (16)

where (γj) is:
i) For (j) with (n=m), 

                             (17)          
              

ii) For all (j) with (n≠m) and (n-m=2),  

  (18)  

iii) For (j) with (n≠m) and (n-m=4),  
γj=Cjαj(n,m)                                                     (19)

2.4. Derivation of a complementary set of 
vector polynomials

Polynomials (S2⃗ ) and (S3⃗ ) are represent (x) 
and (y) translation respectively, and (S4⃗ ) repre-
sents scaling. But no (S ⃗  ) polynomial represents 
rotation. The reason is that the rotation vector has 
non-zero curl, while all (S ⃗ ) polynomials have 
zero curl. So, we need a complementary set of 
vector polynomials which have zero divergence 
and non-zero curl. This new set combined with 
the zero-curl set (S ⃗ ) to make a complete set such 
that it can represent any continuously differentia-
ble vector polynomials defined over a unit annular 
pupil [14]. 

Any vector field can be written as [17]:
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[16], which can be illustrated by the following 
equation:  

                

                                                                                                                                                                                                                                                                  
    (1)

Where (A1) and (A2) are two non-orthogonal 
functions, while (A2’) is orthogonal with (A1).

And to normalize these polynomials, the nor-
malization rule must be submitted:

      (2)

The above two equations were programmed in 
MATLAB, and the results were illustrated in Table 
(1), which show the first twenty one orthonormal 
annular ZP in polar coordinates, for annular pupil 
with obscuration ratio(ϵ). These polynomials can 
be reduced to circular ZPs by putting (ϵ =0). 

Table (2), shows the annular ZPs in Cartesian 
coordinates, the conversion is made also using a 
MATLAB code using these equations:

x=r cos (θ),       y=r sin (θ),      r2=x2+y2,           
θ=tan-1(y ⁄ (x)                             (3)

Then the relationships between the annular 
ZP and the circular ZP were shown in Table (3), 
Where (Zi) here represents circular ZPs. We can 
see from this table that annular ZP is a linear com-
bination of at most three circular ZP, where when 
(n=m) it is proportional to one circular ZP, when 
(n-m=2), it is proportional to two circular ZP, 
while when (n-m=4), it is a linear combination of 
three circular ZP.

2.2. The Gradients of annular Zernike polynomials
To find the gradients of annular ZPs, a MAT-

LAB code was written for this purpose. So, either 
the results in Table (2), which were written in Car-

tesian coordinates, are used to compute gradients 
with the equation:

 (4)

Or the results of Table (1) were used, which 
were written in polar coordinates, 

     (5)

Where (a ρ̂ and a ̂θ) represent the unit vectors 
in polar coordinates. Here a transformation of the 
coordinates to the Cartesian coordinates must be 
done to get the components of  (∇A) in (i ̂  and j ̂).

Table (4) represents the gradients of the first 
twenty one annular polynomials. These functions 
are not easy to work with, because they are not 
orthogonal to each other over an annular aperture. 
So to convert them to an orthonormal functions, 
equations (1) and (2) must be worked but for the 
annular gradient polynomials (vector polynomi-
als). 

The process now became sort of complicated, 
and the computer became slow in finding the func-
tions. So this process can be done in another way 
by applying (GSOM) for gradients of Zernike cir-
cular aperture that can be computed from circu-
lar ZP [13], but over the annular aperture, i.e. the 
limits of integration will be the limits of annular.

The results of Table (5), show the orthonormal 
vector annular polynomials. Table (6), represents 
the orthonormal vector annular ZPs as function 
of circular ZPs, Z(x,y), while Table (7) represents 
them in terms of gradient of circular Zernike poly-
nomials ∇Z(x,y).

It can be concluded from Table (7) that:
i) For all (j) with (n=m),

        (6)

ii) And for all (j) with (n≠m), and (n-m=2)
 
(7)
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1. Introduction
Many researchers were having an interest in 

annular pupils for their use in optical systems and 
several of them were studied them with Zernike 
polynomials [1-11].

The vector Zernike polynomials or Zernike 
gradients are also important to study. Derivatives 
of Zernike polynomials can be useful whenever 
the gradient of a wavefront is required. Wave-
front gradients occur in  some geometrical optics 
problems as  well  as  direct  measurements  in  
an  electronic  Hartmann  Test. These vector func-
tions have immediate application for fitting data 
from a Shack-Hartmann wavefront sensor or for 
fitting mapping distortion for optical testing.

These polynomials are studied for circular ap-
erture in (1976) by Robert J. Noll, who gave the 
rules for computing the derivatives of Zernike 
polynomials as a linear combination of the poly-
nomials themselves. [12].

In (2007), Zhao and Burge provide a set of 
complete basis for representing vector fields that 
can be defined as a gradient of some scalar func-
tions across circular pupil. These polynomials can 
be transformed to the scalar circular ZPs [13]. 
Then in the next year, in (2008), they gave an ad-
ditional set of vector functions consisting only of 
rotational terms with zero divergence [14]. These 
two sets together provide a complete basis that 
can represent all vector distributions in a circular 
domain. In (2009), they justified, with examples, 
why the set of vector polynomials is the appropri-
ate choice for describing mapping distortions, and 
they showed the excellent fitting results with the 
polynomials [15].

In this work, the first (21) annular ZPs were 
found using the first (21) circular ZP and trans-
form them to an orthonormal polynomials us-
ing Gram Schmidt orthogonalization method 
(GSOM) (Which transform non orthogonal poly-
nomials to orthogonal ones) and the normality 

law (which transform non normal polynomials 
to normal ones). Then a set of vector polynomi-
als are presented, which are orthonormal in a unit 
annular aperture with obscuration ratio equal to 
(ϵ). These polynomials are perfect for fitting slope 
data, and the fitted slope map can be easily con-
verted to the wavefront map expressed in terms of 
Zernike polynomials. 

But since these polynomials are gradients of 
linear combinations of ZPs, they have zero curl, 
which means they make an incomplete set of vec-
tor polynomials, such that an arbitrary continu-
ously differentiable vector function defined over a 
unit annular pupil cannot be represented by linear 
combinations of these polynomials. So, addition-
al vector polynomials were derived and added to 
make a complete set of vector polynomials. 

In the next section, a procedure for deriving 
the orthonormal annular ZP using (GSOM) and 
the circular Zernike polynomials were produced. 
Then the gradients of the annular ZP are calculat-
ed, and by using, for the second time, the (GSOM) 
the orthonormal vector annular ZPs were found. 
Then the relation of them with both the circular 
ZPs and circular gradient ZPs have been found, 
and several equations representing these relations 
were concluded. And in the end of this section, 
a complementary set of vector polynomials were 
derived to have a complete set of vector polyno-
mials. Finally, a discussion were made for the re-
sults in section (3).

2. Results
2.1. Annular circular Zernike polynomials
There are different numbering schemes for cir-

cular ZPs, and in this work, Noll’s notation has 
been adopted which is the same as what consid-
ered by C. Zhao and J. Burge [13].

Circular ZPs are not suitable for annular pu-
pils. So, these polynomials must be converted to 
annular ZPs, and this could be done with (GSOM) 


