
      Journal of Iraqi Al-Khwarizmi (JIKh)   Volume 9:  Issue:1 Year: 2025   pages: 85-98   
 

 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Department of Mathematics, Collage of Basic Education, University of Babylon, Hillah, Iraq  

sukaina.albairmani@uobabylon.edu.iq 

 

 
 

Comparative Analysis of Spectral and Pseudospectral Methods for 

Turbulent Flow Simulations 
 

Authors Names ABSTRACT 

Sukaina Abdullah  

AL-Bairmani 
 

Publication date:   26 /5 /2025 

Keywords: Spectral Method, 
Pseudospectral Method, 
Turbulence simulations. 

 

Spectral and pseudospectral methods for simulating turbulent flows are 

perfectly studied in this paper. We consider each method's energy spectra, 

resolution characteristics, and numerical artifacts. The results reveal that 

although both procedures render a good representation of the dynamics of the 

inertial subrange, a better resolution at higher wavenumbers and a more gradual 

spectral roll-off are performed via the pseudospectral approach. Based on the 

quantitative results, doubles resolution capabilities for a specific computer grid 

can be made by pseudospectral approach particularly in compression with the 

standard spectrum performance. These investigations offer useful guidances for 

selecting a numerical approach in turbulence simulations, specifically where 

fine-scale resolution is critical. 

 

 
1. Introduction 

 
In computational fluid dynamics, energy transport over many scales should be precisely characterized, 

in order to catch the fundamental physics of turbulence [1, 2]. Therefore, turbulent flows are one of the 

most complicated circumstance to accurately simulate. The numerical methods utilized in these 

simulations are extremely affected the reliability of turbulent statistics and resolution of flow structures. 

Spectral and pseudospectral methods been shown to have attractive convergence qualities and high 

precision, thus become more public out of various methodologies on hands [3, 4]. In spectral methods 

with most basic form, all operations are directly achieved in spectrum space, in which exhibit flow 

quantities using global basis functions, mostly Fourier series for periodic domains [5]. For smooth 

solutions, this technique supply exponential convergence; yet, it may requires enormous computations, 

when treating with nonlinear components, [6]. On the other hand, in pseudospectral approaches the 

nonlinear terms are evaluated via hybrid strategy in physical space. While, it calculates spatial 

derivatives in spectral space [7, 8]. The high-order precision with computational benefits are activated 

by this approach. 

 

With the rapid development in the computational fluid dynamics field, the critical variances among these 

techniques have been researched. Pseudospectral approaches were first developed in the late 1960s [8]. 

In addition, an analysis of their convergence and numerical stability features was taken in order to get 

an inclusive theoretical comparison for them [5]. Later, comparison has been expanded via providing 

comprehensive mathematical structures for each technique [5]. Rogallo and Moin [9], investigated the 

homogeneous turbulence in terms of turbulence simulations, giving the first comparative studies. Their 

results have shown the role of aliasing control in pseudospectral mechanics. Yeung [10], work dove into 

how isotropic turbulence behaves under direct numerical simulation (DNS) and made a strong case that 

having good spectral resolution matters a lot when trying to pick up even the finest details. A later study 
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by Yao and Hussaini [11], focused on compressible turbulence, hinted that pseudospectral methods with 

the right kind of dealiasing can better hold onto energy conservation properties at high wavenumbers; 

it's an interesting twist that shows the choice of method might really change the game at smaller scales. 

 

In fact, there are still some main gaps in our understanding of how these procedures function in 

turbulence simulations, in spite of this significant body of works: 

 

 Comparing quantitative spectral resolution: regardless of the well-established theoretical 

distinctions, there are surprisingly few inclusive quantitative comparisons of energy spectra over 

the whole wavenumber range between the means, especially when it comes to their inertial 

subrange fidelity to Kolmogorov scaling. 

 Determining the thresholds for resolution: beyond that the manuscripts does not explicitly 

declare the resolution levels at which each method begins to miss accuracy, it is critical for 

practitioners to choose the suitable ways for certain implementations. 

 Numerical artifacts analysis: The variances in numerical artifacts result from each manner have 

not been sufficiently characterized by prior studies, specially at high wavenumbers where the 

spectral cliff take place. 

 

With a focus on their energy spectrum characteristics, valuable resolution thresholds, and statistical 

features of scalar fields, this effort addresses these gaps by providing a systematic comparison of basic 

spectral and full pseudospectral strategies, utilized, to the identical test cases. The certain target of our 

seeking is to spot real-world variations that can impact the selection of methodology for turbulence 

researchers. 

 

 2 Methodology 

 

 2.1 Mathematical Foundations of Spectral and Pseudospectral Methods 

 

 2.1.1 Spectral Methods 

 

Spectral methods use truncated series of basis functions to express variables in order to estimate the 

solution to the partial differential equations [4]. Fourier series are commonly used for periodic domains 

as: 

 

𝑢(𝑥, 𝑡) = ∑ 𝑢 ̂(𝐾, 𝑡)𝑒𝑖𝐾.𝑥

𝐾

.               (1) 

 

Where the Fourier coefficients at wavenumber vector 𝐾 are represented as 𝑢 ̂ (𝐾, 𝑡). 
 

All operations, involving nonlinear terms and spatial derivatives, are executed out directly in spectrum 

space in pure spectral methods [5]. For instance, a spatial derivative turns into 

 
𝜕𝑢

𝜕𝑥𝑗
= ∑(𝑖𝑘𝑗)𝑢 ̂(𝐾, 𝑡)𝑒𝑖𝐾.𝑥

𝐾

.                   (2) 

 

Convolution sums in spectral space are used to evaluate nonlinear terms, as those in the Navier-Stokes 

equations [3]: 
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𝑢�̂�(𝐾) = ∑ �̂�

𝑝+𝑞=𝐾

(𝑝)�̂�(𝑞).                        (3) 

 

With an operation count scaling as 𝑂(𝑁2) for each wavenumber component, 𝑁 is the number of modes. 

This method is an accurate but computationally high-priced [11]. 

 

 2.1.2 Pseudospectral Methods 

 

Pseudospectral approaches estimate nonlinear terms in physical space with preserving the spectral 

representation of variables and counting linear terms (like derivatives) in spectral space [7, 8]. The steps 

that the algorithm pursues it: 

 

 

 Applying the inverse Fast Fourier Transform (FFT) to convert spectral coefficients to physical 

space. 

 Determine nonlinear products in the real world 

 Using forward FFT to convert the findings back to spectral space. 

 

For a nonlinear term 𝑢𝑣, the mathematical formula is 

 

𝑢𝑣 ̂ (𝑘) = 𝐹{𝐹−1{�̂�(𝑘) × 𝐹−1}{𝑣(𝑘)}}.                     (4) 

 

 

Where 𝐹and 𝐹−1 stand for forward and inverse Fourier transformations, respectively. This technique 

utilize FFT transformation in order to decrease computational complexity to 𝑂(𝑁 log 𝑁) operations [12]. 

Despite that, Due to resolved modes are nonlinearly interacted which results in unresolved high-

frequency components, so causes aliasing matters [13]. 

 

The ultimate common de-aliasing strategies for pseudospectral techniques are phase-shifting and the 

2/3 −rule (padding) [14]. In our procedure, the spectral fields are filled with details restored to spectral 

space employing the 2/3 −rule. The pseudospectral method involved here constructs upon previous 

work by AL-Bairmani et al., [15], where we employed like numerical manners to solve the Navier-

Stokes equations connected to a zeros before transformation to physical space, and where the highest 

third of wavenumbers are amputated after transformation the advection-diffusion equations in direct 

numerical simulations (DNS), sets the foundation for the pseudospectral method presented here. This 

tried-and-true technique has worked well for computationally efficiently catching the intricate dynamics 

of turbulent flows. 

 

 2.2 Simulation Setup 

 

We employed a uniform grid with 𝑁 = 2563 points to drive our numerical tests in a periodic cubic 

domain[0, 2𝜋3], depending on accepted standards for resolving the Kolmogorov scale in moderate 

Reynolds number turbulence, this resolution was selection [2]. The simulations solve the incompressible 

Navier-Stokes equations coupled with a passive scalar transport equation: 
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𝜕𝑢

𝜕𝑡
+ 𝑢. ∇𝑢 = −∇𝑝 + 𝑣∇2𝑢 + 𝑓                (5) 

∇. 𝑢 = 0                                                           (6) 
𝜕∅

𝜕𝑡
+ 𝑢. ∇∅ = 𝐷∇2∅                                       (7) 

 

Where 𝑢 is the velocity field, 𝑝 is pressure, 𝑣 is kinematic viscosity, 𝑓 is a large-scale forcing term, ∅ is 

the passive scalar, and 𝐷 is the scalar diffusivity. 

 

The Reynolds number, defined as 𝑅𝑒 = 𝑈𝐿/𝑣, was set to 1000, where 𝑈 is the characteristic velocity 

and 𝐿 is the integral length scale. The Schmidt number 𝑆𝑐 = 𝑣/𝐷 was set to 1.0, making the scalar and 

momentum diffusivities equal [16]. 

 

A third-order Runge-Kutta scheme for nonlinear terms and an implicit Crank-Nicolson scheme for 

viscous terms were utilized in order to performed time integration [17]. To conserve the CFL number 

below 0.5, the time step was dynamically varied, which results an ideal time steps of around ∆𝑡 ≈ 0.002. 
 

2.3 Implementation Details 

 

Both techniques were performed in a custom Fortran code optimized for parallel computing employed 

domain decomposition with MPI [18]. For effective spectral variations, the parallel FFT package 

FFTW3 was used [19]. 

 

2.3.1 Basic Spectral Method Implementation 

 

Regarding the fundamental spectral method: 

 

 In spectral space all operations were executed. 

 Truncated convolution sums were applied to calculate nonlinear terms. 

 A sharp spectral cutoff was employed to dominate an aliasing errors at 𝑘𝑚𝑎𝑥 = 𝑁/2. 
 Slab decomposition was utilized to optimize parallel achievement for distributed FFT 

computations. 

 

  

 

2.3.2 Full Pseudospectral Method Implementation 

 

For the pseudospectral method: 

 

 Linear terms (viscous diffusion, pressure projection) were addressed in Spectral space. 

 Pursuing inverse transforms, nonlinear terms were computed in physical space. 

 The 2/3 −rule with padded transforms was utilized to yield de-aliasing. 

 The spectral method's time-stepping strategy was implemented. 

 

Versus to analytical solutions for Taylor Green vortex evolution [20](Brachet et al., 1983) and decaying 

homogeneous turbulence [21], both implementations were validated. 
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Statistical analysis was carried out in real time (on-the-fly) during simulations, and Energy spectra were 

calculated by spherically averaging the squared Fourier coefficients in wavenumber shells: 

 

𝐸(𝑘) =
1

2
∑ |�̂� (𝐾)|2                             (8)

𝑘− 1/2<|𝐾|<𝑘+1/2

 

 

In order to ensure convergence, statistics were averaged over five more large-eddy turnover times after 

simulations were executed until statistical stationarity was achieved, or roughly ten large-eddy turnover 

times [22]. 

 

 

 3 Results and Discussion 

 

 3.1 Energy Spectra Comparison 

 

There are observable variances between the energy spectra constructed by the two techniques, specially 

at higher wavenumbers. The energy spectra from the entire pseudospectral procedure and the basic 

spectral procedure are seen in Figure 1, jointly with the theoretical Kolmogorov 𝑘−5/3scaling law. The 

predictable 𝑘−5/3 scaling in the inertial range (about 2 < 𝑘 < 20) is honestly regenerated by both 

techniques. Higher wavenumbers, yet, show notable variations. Energy drops sharply by more than 20 

orders of magnitude employing the classic spectral technique, with a cutoff at about 𝑘 = 20. The 

pseudospectral technique, on the other hand, keeps decrease more gradually, with an efficient resolution 

of about 𝑘 = 40.The resolution of fine-scale structures is crucially effected by this striking variation in 

high-wavenumber behavior. On the same grid, the pseudospectral strategy basically doubles the valuable 

resolution when compared to the basic spectral strategy. 
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[Fig. 1. : Comparison of energy spectra between basic spectral and full pseudospectral methods. The 

dashed line represents the theoretical 𝑘−5/3 Kolmogorov scaling.] 

 

3.2 Resolution Threshold Analysis 

 

We investigate each method's divergence from the theoretical energy spectrum aiming to compute its 

efficient resolution thresholds. Compensated energy spectrum 𝐸(𝑘)𝑘5/3for both techniques is shown in 

Fig. 2. The Kolmogorov scaling up to approximately 𝑘 = 15 is precisely reproduced via both manners 

depending on the compensated spectra as appeared from horizontal plateau in this area. The Kolmogorov 

scaling up to approximately 𝑘 = 15 is precisely reproduced via both manners depending on the 

compensated spectra as appeared from horizontal plateau in this area. On the other side, significant 

deviation with a sharp drop-off at 𝑘 ≈ 20 comes from basic spectral method. While, reasonable accuracy 

up to 𝑘 ≈ 30 with more gradual decline later on are maintained by pseudospectral method. 
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[Fig. 2. : Compensated energy spectra 𝐸(𝑘)𝑘5/3 for both methods. Horizontal plateaus indicate regions 

where Kolmogorov scaling is accurately reproduced.] 

 

 

 

The wavenumber at which the compensated spectrum deviates more than 10%  from its plateau value 

which is applied to quantitatively evaluate the resolution threshold. According to this measured, the 

resolution thresholds for the standard spectral approach and the pseudospectral approach are around 

𝑘𝑟𝑒𝑠 ≈ 18 and 𝑘𝑟𝑒𝑠 ≈ 35 , respectively. 

 

The identical compensated energy spectra 𝐸(𝑘)𝑘5/3 for both methods with clear resolution threshold 

indicators at the 10% deviation marks are shown in Fig. 3. to extra spotlight these resolution limits. The 

wavenumbers 𝑘𝑟𝑒𝑠 ≈ 18  for the spectral technique and 𝑘𝑟𝑒𝑠 ≈ 35  for the pseudospectral, where each 

technique deviates more than 10% from the plateau value, signifying their efficient resolution limits, 

are specified by vertical dashed lines. 
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[Fig. 3. : Compensated energy spectra 𝐸(𝑘)𝑘5/3 for both methods with resolution threshold indicators. 

Vertical dashed lines mark the wavenumbers (𝑘 ≈ 18 for spectral method, 𝑘 ≈ 35 for pseudospectral 

method) where each method deviates by more than 10% from the plateau value, representing their 

effective resolution limits.] 

 

These results emphasizes that the given grid size, pseudospectral approaches offer roughly twice the 

effective resolution of standard spectral approaches. Due to it implies that pseudospectral approaches 

can gain similar accuracy to spectral methods while utilizing only half the grid points in each dimension 

(or one-eighth the total number of grid points in three dimensions), which support the heuristic often 

used in practice. This quantitative verification of the resolution feature has considerable effects for 

computational efficiency. 

 

 3.3 Numerical Artifacts Analysis 

 

Both method results in a numerical artifacts of a very different kind. The basic spectral approach makes 

in a steep "spectral cliff" with an incredibly sharp drop-off, which late the scales basically binary: either 

fully resolved or totally removed. In some applications where a distinct difference of scales is demand, 

this feature may be useful. 

 

In comparison, the pseudospectral method displays a more progressive roll-off of high wavenumber 

energy. The dealiasing operation, which leads to smoother transition between resolved and unresolved 

scales, is to some extent to blame for this phenomenon. This gradual decay shows that poorly resolved 

scales save some energy, which could contaminate the solution. Although, it might more precisely 

describe the continuous character of the energy cascade in turbulence. 

 

The distribution styles for the Basic Spectral technique are displayed in Fig. 4. , and the comparable 

distributions for the Pseudospectral method are displayed in Fig. 5. The scalar value distribution of the 

Basic Spectral technique (Fig.4.) is centered on a mean of 0.4903 with a standard deviation of 0.1296. 
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The mean and standard deviation of the gradient values distribution are 0.0631 and 0.0268, respectively. 

With the highest density obvious at scalar amounts between 0.45 and 0.55 and gradient amounts between 

0.04 and 0.06. Thus, the joint distribution presents a focused link between scalar and gradient 

magnitudes. 

 

 

 
 

[Fig. 4. : Scalar value distribution (top left); gradient magnitude distribution (top right); and joint 

distribution of scalar vs. gradient (bottom) from simulations using basic spectral method.] 

 

With a mean of 0.4764 and a standard deviation of 0.1176, the pseudospectral approach in Fig. 5. 

presents a marginally various scalar value distribution. Compared to the Basic Spectral approach highest 

of roughly 0.20, the gradient value distribution has bigger values overall, with a wide diffusion that 

yields about 0.35. Further, the pseudospectral approach supplies two more metrics: Energy Spectrum 

Slope of -34.8636 and a Structure Function Slope of 0.1109 that are missing from the Basic Spectral 

analysis. There are also obvious distinct in the joint distribution styles between the approaches. The 

pseudospectral approach displays a somewhat different concentration style and a wider gradient value 

range, even though both demonstrate concentration around comparable scalar value ranges (0.4–0.5). 
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[Fig. 5. : Scalar value distribution (top left); gradient magnitude distribution (top right); and joint 

distribution of scalar vs. gradient (bottom) from simulations using the pseudospectral method.] 

 

The distribution of the Basic Spectral manner shows to be more robustly concentrated, which could point 

out lower diffusive conduct or higher numerical steadiness. Depending on statistical assessments, the 

Basic Spectral manner distributions present various asymmetric attributes, with a minor negative 

skewness (-0.0798) and a minor positive skewness (0.0113) contrasted to the Pseudospectral manner. In 

addition, the Basic Spectral approach distribution exhibits to have slightly flatter tails than the 

Pseudospectral approach, while both approaches show a negative kurtosis magnitudes, with the Basic 

Spectral approach at -0.1428 and the Pseudospectral approach at -0.0198. With consequences for their 

employ in numerous computational fluid dynamics stories, these quantitative variations reveal the 

numerical conduct of both spectrum methods. Depending on the implementation state, the higher 

gradient values in the pseudospectral technique may indicate better resolution of sharp characteristics or 

robuster numerical diffusion. 

 

 

3.4 Visualization Comparison of Spectral and Pseudospectral Methods 

 

We supply visual comparisons of the scalar field distributions and flow structures generated by the basic 

spectral and full pseudospectral procedures for more spotlight the variances between them. Fig. 6. and 

Fig. 7. Clarify outcomes from the spectral technique, whereas the pseudospectral technique returns are 

seen in Fig. 8. and Fig. 9. 

 

 3.4.1 Cross-Sectional Scalar Field Distributions 

 

Notable distinctions in the fine-scale structures achieved by each approach are appear in the cross-

sectional views of the scalar fields Figures (6 and 8). The findings of the spectral procedure (Fig. 6) 
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show fewer different borders between areas with high and low scalar magnitudes and more diffuse 

structures. However, the pseudospectral procedure (Fig. 8) results more various gradients and more 

singular structural aspects that are particularly exhibit in the X-Z and Y-Z planes. 

 

 
 

[Fig. 6. : 2D cross-sectional slices of the scalar field in X-Y, X-Z, and Y-Z planes using the basic spectral 

method. Note the more diffuse structures and less defined boundaries between regions of different scalar 

values.] 

 

 

Regarding to quantitative details, the pseudospectral procedure secures a 15% greater difference in 

scalar gradients via all planes, which is confirmed our prior deductions about its superior resolution 

properties. Consequently, this developed gradient preservation which is crucial for sincerely catching 

small-scale mixing processes in turbulent flows [23]. 

 

 
[Fig. 7. : 3D isosurfaces of the scalar field obtained using the basic spectral method. The visualization 

shows smoother surfaces with fewer small-scale features.] 
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[Fig. 8. : 2D cross-sectional slices of the scalar field in X-Y, X-Z, and Y-Z planes using the 

pseudospectral method. Note the sharper gradients and more distinct structural features compared to the 

spectral method results. 

 

 3.4.2 Three-Dimensional Isosurface Comparison 

 

A more sound interpretation of the structural variations is rendered by the three-dimensional isosurface 

representations (Figures 7 and 9). Smoother isosurfaces with fewer small-scale attributes are shown in 

the spectral technique findings (Fig. 7). Appreciably more complicated styles are captured by the 

pseudospectral technique (Fig. 9), particularly close to the domain boundaries when high-wavenumber 

components become essential. 

 

 
[Fig. 9. : 3D isosurfaces of the scalar field obtained using the pseudospectral method. The visualization 

reveals more complex structures and finer details, particularly near domain boundaries where high-

wavenumber components are significant.] 

 

Our spectral analysis outcomes, which reveal that the pseudospectral technique efficiently resolves 

around twice the wavenumber range in contrast to the basic spectral technique, are supported by this 
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image. The more gradual spectral roll-off shown in Fig. 1. is harmonic with the increased structural 

complexity, which qualifiers the pseudospectral technique to preserve more energy at higher 

wavenumbers. 

 

4. Conclusions 

 

In this research, full pseudospectral and basic spectral approaches to turbulent flow simulations were 

investigated. Our major conclusions are as follows: 

 

1. The Kolmogorov 𝑘−5/3 scaling in the inertial range is sincerely regenerated by both mechanisms. 

2. For the same grid size, the pseudospectral approach renders about double the effective resolution of 

the basic spectral approach. 

3. The pseudospectral approach exhibits a more gradual energy drop, while the basic spectral method 

shows a steeper spectral cliff at high wavenumbers. 

4. Maximum gradient magnitudes that are crucial for capturing intermittent phenomena in turbulence 

are better maintained using the pseudospectral approach. 

 

Pseudospectral approach have preferences for applications requiring high resolution with constrained 

processing supplies. Basic spectral techniques might be better when clear scale separation is more 

significant than fine structural resolution. Future work should consider higher Reynolds numbers, more 

complex geometries, and analysis computational efficiency versus accuracy tradeoffs. 
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