

*Corresponding author: ali_alyasree@yahoo.com
https://wjcm.uowasit.edu.iq/index.php/wjcm

37

Wasit Journal of Computer and Mathematics Science

Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM

e-ISSN: 2788-5879 p-ISSN: 2788-5887

Model-Driven Engineering for Adaptive Software Systems in

Dynamic Environments
Mohammed Ibrahim Mahdi1 , Ali Fahem Neamah2,*

, Mohammed Jasim A.Alkhafaji3 , Zahraa kadhim Ali4

, Ihtiram Raza Khan5

1,2,Computer Science and Information Technology, Wasit University, Iraq

3Computer Technology Engineering, Taff University College, Karbala, Iraq

4College of Education for Pure Sciences, Wasit University, Wasit University, Al-kut, Iraq

5Department of Computer Science & Engineering, School of Engineering Sciences & Technology Jamia Hamdard Delhi, India

Corresponding Author: Ali Fahem Neamah

DOI: https://doi.org/10.31185/wjcms.381

Received 20 Jan 2024; Accepted 24 February 2025; Available online 30 March 2025

ABSTRACT: In such an environment, an urgent requirement has been felt for systems that can adapt at runtime to

changing situations, as available computing environments are more and more dynamic and complex. The research

presented in this paper is about the use of Model Driven Engineering (MDE) for systematic support of managing

software adaptability. MDE advocates the use of models as core working entities in software development, allowing

you to raise the level of abstraction, transformation and consistency of the adaptive processes. The work presents a

full-fledged framework that combines MDE principles together with real-time monitoring, self-configuration

strategies, and the MAPE-K feedback loop.
By means of theoretical study and cross-domain case comparisons (smart environment, education, transportation,

and cloud computing), we show how MDE enables the structural, behavior, and parameter adaptation. The quality of

adaptation is evaluated based on a series of metrics, including adaptivity time, model similarity, and transformation

delay. The results substantiate the distinctive capability of MDE-based approaches for responsiveness and system

correctness in volatile environments and draw attention to important limitations with respect to tool maturity, run-

time sync service and scale.

The paper concludes by discussing potential future endeavors to drive the field forward, including runtime

metamodel evolution, AI-driven model adaptation, and decentralized model-driven infrastructures. The work casts

MDE as a suitable and generalizable basis for the development of adaptive systems that exhibit resilience to

unanticipated failures, context-awareness, and autonomous adaptation.

Keywords :Model-Driven Engineering (MDE); Runtime Adaptation; Self-Adaptive Systems; MAPE-K Loop; Model

Transformation; Domain-Specific Modeling; Evaluation Metrics; Metamodel Evolution; Adaptive Architecture; AI

in Software Adaptation.

mailto:ali_alyasree@yahoo.com
https://wjcm.uowasit.edu.iq/index.php/WJCM
https://doi.org/10.31185/wjcms.381
https://orcid.org/signin
https://orcid.org/signin
https://orcid.org/signin
https://orcid.org/signin
https://orcid.org/signin
https://creativecommons.org/licenses/by/4.0/

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 38

1. INTRODUCTION

The diversity and capability of computing devices has continuously evolved since the inception of

informatics. Devices have become more integrated into various networked environments such as the Internet,

and the paradigms for software development have shifted significantly—from machine code to assembly

language, and from imperative programming to object-oriented approaches. With the advent of extensive

pre-defined libraries and frameworks, developers have become more capable of managing system complexity

through abstraction and reuse. To effectively capture and implement software requirements, modeling

languages have become essential tools for specifying structure and behavior, enabling the use of executable

models for early validation and testing.

Over the past decades, the discipline of model-driven engineering (MDE)—also referred to as model-

driven development (MDD) or model-driven software development (MDSD)—has gained prominence. MDE

places models at the core of the development lifecycle and relies on model transformations to generate, adapt,

and maintain system artifacts. This separation between domain logic and implementation details allows

developers to focus on high-level problem-solving while maintaining consistency and automation through

transformation engines. However, applying MDE in dynamic and unpredictable environments introduces a

new set of challenges[1].

Modern software systems must increasingly support runtime adaptation to cope with changes in

requirements, technologies, and operational contexts. Despite the promise of MDE, enabling real-time

reconfiguration of system models and behaviors remains a complex task. This research therefore centers on

addressing this gap by formulating a theoretical framework that explains how MDE facilitates adaptive

behavior in software systems. It also investigates the challenges hindering its runtime adoption in dynamic

environments, and evaluates its practical effectiveness through real-world implementations. By examining

both theoretical foundations and practical applications, this study contributes to the advancement of robust,

adaptable, and sustainable software systems based on model-driven principles[2].

2. BACKGROUND AND MOTIVATION

Despite decades of research efforts, many software systems continue to exhibit limited lifespans. Their

obsolescence is often attributed to changing user requirements, emerging technologies, and evolving

application contexts. Consequently, dynamic and timely reconfiguration has become an important issue

concerning their life time, reliability and quality of service. Nevertheless, developing such adaptive systems

is still difficult and challenging. Migration to new platforms or runtime reconfiguration to deliver to a new

requirement are a common mechanism of adaptation, and downloadable adaptation tends to focus on in

system adaptation at runtime in this paper.

The motivation for adaptive software system arises from the fact that, in real world applications where

static architectures are used, they are just not good enough. For example, think of an intelligent traffic

management system in a smart city. Because traffic conditions can change on the fly from accidents,

congestion, and weather, the system has to continuously adapt traffic signals, re-route vehicles, and expedite

the progression of emergency vehicles – and it has to do so without human interaction. Such a system

however cannot be based on predefined behaviors, but rather it has to be adapted from real-time context and

data. This underscores the urgency for software systems to not only detect change, but also reason and act

on their response to change.

To achieve such flexibility, we need to: Represent adaptation knowledge in structured form; Design

flexible processes to execute that knowledge; and Guarantee correctness of adaptation. The main challenges

are how to build reusable models for adaptation logic, how to compose adaptation behaviors at runtime and

how to efficiently execute them. Furthermore, it is essential that we model the underlying hardware

infrastructure and define architectural patterns in an agnostic way for generalization and reusability.

Then, in this paper, we aim at investigating the support of model-driven engineering (MDE) for these

goals. The goal is to provide MDE-based methods that serve for modeling, composing and executing

adaptation knowledge models, which are adaptable in different settings and distributed-scale contexts. In this

way, adaptive behavior can be incorporated to software systems in a systematic way, improving their

robustness and performance in changing environments.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 39

3. FUNDAMENTALS OF MODEL-DRIVEN ENGINEERING

Model Driven Engineering (MDE) is a software development methodology in which models are first

class citizens in the software development life cycle. It allows the modeling of system behavior and structure

to be abstracted at multiple levels, so that developers can better deal with complexity and automate

implementation. Section 2 presents a summary Nov 2015 4 The essentials behind MDE are presented in this

section, containing its basic assumptions, the modeling languages it relies on, and the transformation

mechanisms that guide the evolution of the computer system.

3.1 DEFINITION AND PRINCIPLES

MDE is a paradigm which relies on the use of formal models to represent the structure, information,

behavior, and the functional and non-functional properties of a software system. Contrarily to the traditional

development processes that consider the coding activities as the main one, MDE emphasizes the fact that

models are the most important artifact from which all other aspects of the system are derived.

One characteristic of MDE is the application of domain-specific modeling languages (DSMLs). They

offer notations closer to the problem domain, and are easier to understand and manipulate by domain experts.

Such a decoupling of high-level modeling and low-level tooling enables closer relation between system

descriptions and stakeholder needs.

Another fundamental principle is model transformation that means that one model is transformed into

another model to increase or decrease its level of abstraction or to reduce it to a specific implementation

platform. Such transformations serve to link high-level models to executable code and entirely disregard the

possibility of human error as a source of inconsistencies.

3.2 MODELING LANGUAGES

Modeling languages are essential tools in MDE as they provide both the syntax and semantics necessary

to express system models. These languages are defined using metamodels, which describe the structure and

constraints of valid models.

A central standard in this area is the Meta-Object Facility (MOF), which is a meta-metamodeling

framework standardized by the Object Management Group (OMG). MOF is often implemented using Ecore,

a widely-used metamodeling framework in the Eclipse Modeling Framework (EMF). Both MOF and Ecore

allow developers to define DSMLs that can be used to build platform-independent models[3].

Common modeling languages used in MDE include:

• UML (Unified Modeling Language): A general-purpose modeling language with visual syntax for

specifying software systems.

• MOF (Meta-Object Facility): Used to define metamodels that support model interchange and

tooling.

• Ecore: A practical implementation of MOF used in Eclipse tools.

Table 1 Comparative Table: UML vs MOF vs Ecore

Feature /

Aspect

UML (Unified Modeling

Language)

MOF (Meta-Object

Facility)

Ecore

Type General-purpose modeling

language

Meta-metamodeling

standard

Metamodeling framework

(implementation of MOF)

Abstraction

Level

Model (M1 level) Meta-metamodel (M3

level)

Metamodel (M2 level)

Primary Use Describing software

systems' structure/behavior

Defining metamodels for

modeling languages

Defining DSLs and tooling

in EMF

Syntax Graphical Abstract, conceptual Abstract with concrete

syntax in EMF

Semantics Informal / tool-dependent Formalized through

OMG standards

Formalized (Eclipse-

specific)

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 40

Tooling

Support

IBM Rational, MagicDraw,

Enterprise Architect

OMG-compliant tools Eclipse Modeling

Framework (EMF)

Model Level M1 (models of systems) M3 (defines

metamodeling

framework)

M2 (defines UML, BPMN,

etc.)

Example Use

Case

Design of class diagrams,

use case models

Define UML itself as a

metamodel

Create a DSL for workflow

modeling

3.3 TRANSFORMATION TECHNIQUES

Transformation is at the heart of MDE. It enables the automatic generation of artifacts (such as code,

documentation, or configuration files) from models[15]. Model transformations can be categorized into:

• Model-to-Model (M2M): Transforms one model into another model, possibly at a different level

of abstraction or in a different language.

• Model-to-Text (M2T): Generates textual artifacts (like source code) from a model.

Dynamic environments require transformation techniques that support runtime adaptation. This

introduces the concept of dynamic model transformations, where transformations are applied during

system execution. Such capabilities enable systems to respond to environmental changes without manual

intervention[2].

For effective transformation at runtime, transformation definitions themselves must be adaptable. This

requires the use of transformation metamodels, which define how transformation logic can evolve and how

it interacts with different runtime contexts.

4. ADAPTIVE SOFTWARE SYSTEMS

Software systems that can adapt are able to alter their own structure and the way they work through self-

managing their own component parts, dynamically creating and removing parts in response to their changing

context. Such systems are generally based on a flexible architecture, with interfaces to model driven

principles, e.g. model-driven-architecture (MDA) together with generic architecture components and

platform-specific architecture component—through a central control engine to monitor and orchestrate

changes[2][3].

In support of this, we consider the manner in which MDE facilitates dynamic evolution in order to learn

more about the ASM architecture. The layered approach in Model-Driven Architecture (MDA) separates the

concerns in three levels: the computation-independent model (CIM), platform-independent model (PIM) and

platform-specific model (PSM). At runtime, either a control engine or an adaptation manager evaluates the

context up to now and then the transformations or configurations operate either directly on the models or via

separately interpreted intermediate representations.

The following Figure show A High Level Architecture for an MDE-Based Adaptive System An MDE-

Based Adaptive System - Architecture This section presents and discusses a conceptual architecture for an

MDE based adaptive system.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 41

Fig 1: Architectural Diagram

In this style, it uses Domain - Specific Languages (DSLs) to represent system behavior and

configuration rules closely to domain knowledge. These DSLs are projected to ADLs that constitute a formal

description language of the architectural components, their interfaces and dependencies. ADL is the key

mechanism of constructing, interpreting, and validating models that is in the adaptive loop. Therefore, DSLs

present domain experts with high-level abstraction, and ADLs guarantees architectural soundness and

possibility of formal reasoning.

When we integrate both DSL and ADL layers into the MDE process, adaptive systems are able to reason

about structure and behavior at the same time, which in turn leads to more robust and scalable adaptation

strategies. Another benefit of using ADLs is the possibility of verification and traceability of architectural

decisions, and this is of particular relevance in critical systems.

In order to enable flexible adaptation process, the system should also enable intermediate models that

hide platform-specific details and support the generalized reconfiguration of patterns. This encourages re-use

and eases system evolution. Runtime adaptation can be performed through component replacement,

connector reconfiguration, data flow re-pathing, etc., all of these are performed by means of model

transformation initiated by the control engine in reaction to the monitored events.

For a better understanding of the architecture of adaptive software systems that are based on MDE

approaches Figure 1 depicts a layered model that combines runtime monitoring, control decision logic,

domain-specific modeling, architectural description and platform specific execution. This architecture

highlights how the flexible behavior can be straightforwardly defined and systematically activated via MDA

layers controlled by a central manager. The architecture of a MDE-based adaptive software system that

integrates monitoring, control, modeling and platform-specific execution is depicted in Figure 1. The

following Figure MDE-based adaptive software system for monitoring and control.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 42

Figure 2. Architecture of an MDE-Based Adaptive Software System integrating DSL, ADL, and runtime

control components.

5. ADAPTIVE TECHNIQUES IN DYNAMIC ENVIRONMENTS:

INTEGRATION AND EXECUTION

Contemporary software systems are being asked to run on volatile, heterogenous, and rapidly changing

settings. Such systems need to adapt not only to functional changes but also to changing performance

requirements, deployment environments, and usage behavior. In this way, Model-Driven Engineering

(MDE) constitutes an attractive approach to address adaptability in a systematic way by considering the use

of abstraction and model transformations techniques, as well as architectural reasoning to support it [4]. This

section provides an overall overview of adaptive methods in medium dynamic environments, focusing on

three basic aspects (i.e., real-time monitoring, feedback control and self-configuration) of medium dynamic

systems.

5.1 REAL-TIME MONITORING IN ADAPTIVE SYSTEMS

Real-time monitoring is the foundational element for any system aspiring to self-adaptation. It enables

the continuous capture of system and environmental data, serving as the sensor layer that fuels the adaptive

process. Monitoring can target a wide range of indicators, including system load, response time, component

health, failure rates, resource consumption, and even contextual data such as user location or environmental

conditions.

In MDE-based systems, monitoring is modeled explicitly within the platform-independent model (PIM),

and mapped to specific probes and sensors in the platform-specific model (PSM). Assertions can be used to

define acceptable parameter ranges, and violations of these assertions trigger reconfiguration.

Architectural Note:

Monitoring elements are often defined as runtime models themselves (runtime metamodels), allowing for

reflection and introspection of the system’s own behavior.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 43

5.2 FEEDBACK MECHANISMS AND MAPE-K LOOP INTEGRATION

The MAPE-K loop—standing for Monitor, Analyze, Plan, Execute over Knowledge—is a conceptual

framework widely adopted for engineering self-adaptive systems. Its integration into MDE-based

environments enhances traceability, formal reasoning, and model-driven automation at each stage[4][11].

● Monitor: Data is collected through probes, logs, and sensors. In MDE systems, this may correspond to

model observation activities where instances of model elements are evaluated against metrics.

● Analyze: The collected data is processed to detect trends, anomalies, or violations. Analysis may include

threshold checks, model consistency evaluation, or even predictive modeling using machine learning over

model artifacts.

● Plan: Based on the analysis, the system identifies the best adaptation strategy. This may involve choosing

transformation rules, model substitutions, or architectural pattern switching.

● Execute: The selected plan is enacted. In MDE, this typically involves applying model transformations or

changing configurations via platform-specific generators.

● Knowledge: This central component includes architectural descriptions, transformation libraries, system

goals, historical data, and domain ontologies. In MDE, it is often encoded using DSLs and validated using

ADL constraints.

Figure 3. Architecture of an MDE-Based Adaptive Software System Integrating the MAPE-K Feedback

Loop.

Figure 3 presents a conceptual architecture of an adaptive software system grounded in MDE principles

and governed by the MAPE-K loop. Monitoring sensors feed real-time data into the feedback loop, where

the system continuously analyzes operational context, plans appropriate adaptations, and executes them. The

loop is supported by a shared knowledge base, which includes system models (PIM/PD) and architecture

descriptors (DSL/ADL). These models guide runtime decisions and transformation processes, ultimately

resulting in platform-specific reconfigurations that reflect new environmental or operational conditions. This

integration ensures that adaptation is both informed and traceable across model layers.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 44

5.3 SELF-CONFIGURATION AND RUNTIME RECONFIGURATION

Self-configuration refers to a system’s ability to autonomously alter its structure, dependencies, or

parameters in response to internal or external changes[5][12]. Unlike static reconfiguration, which requires

stopping the system, self-configuration is performed at runtime, often without disrupting the user

experience.

MDE plays a key role here by:

• Providing abstract component models that can be transformed into executable reconfiguration

scripts.

• Defining architectural constraints to ensure safety and consistency during reconfiguration.

• Enabling dynamic selection and instantiation of components based on current context.

Table 2 Types of self-adaptation:

Type Description Example

Structural Changing components or connectors Replacing a failing sensor module

Behavioral Changing execution logic Switching to a fallback algorithm

Parameter-based Adjusting thresholds or timeouts Increasing cache size in high load

Use Case:

In cloud-native applications, systems often perform autoscaling based on CPU or memory usage. When

usage crosses 75%, the system replicates components and rebalances traffic using service meshes—all

coordinated via runtime models.

Modeling Insight:

In MDE, self-configuration strategies are often defined as meta-transformations (transformations of

transformations), allowing systems to not just adapt behavior, but also adapt how they adapt.

Adaptive software systems in dynamic environments must integrate real-time monitoring, feedback

loops, and runtime reconfiguration in a seamless and safe manner. MDE enables these capabilities through

high-level abstractions, formal modeling, and model-to-model or model-to-text transformations. The

combination of these mechanisms results in systems that are not only adaptive but also explainable and

verifiable.

Future directions involve enriching the MAPE-K architecture with learning components (MAPE-KL),

incorporating uncertainty modeling, and integrating reinforcement learning into the Plan-Execute phases

using evolving model transformations.

6. EVALUATION OF ADAPTIVE SYSTEMS

Evaluating adaptive software systems developed using Model-Driven Engineering (MDE) presents a

multifaceted challenge. Unlike static systems where functionality and performance can be assessed against

fixed criteria, adaptive systems must be evaluated in terms of correctness, responsiveness, flexibility, and

consistency under evolving conditions. Moreover, the presence of runtime model transformations and

dynamic configuration changes introduces an additional layer of complexity[6].

This chapter outlines key evaluation criteria, applicable testing methodologies, and discusses how

model-based validation ensures the reliability and effectiveness of MDE-based adaptive behavior.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 45

Figure 4. Mapping of Evaluation Metrics to the MAPE-K Loop in MDE-Based Adaptive Systems.

Figure 4 Illustration of the interplay between evaluation metrics in the MAPE-K floor cycle showing in

which phase of adaptation in MDE-based systems they can be used. The former involve the time the system

needs to adapt and the transformation latency, which are quite related to the Monitor and Plan phase, since

they reflect the capacity and time efficiency of the system to take the right decisions. Goodness of Fit is

checked during the Analysis and Execution stages, by guaranteeing the models at runtime truthfully represent

the runtime situation and that adapAtions do not violate the architecture. System Downtime is influenced by

the Execute and Knowledge aspects, underscoring the need for robust model driven execution and system

availability. This visualization promotes a systematic survey of the quality of adaptive systems by matching

quantitation to functional steps of the adaptation process.

6.1 Evaluation Objectives and Dimensions

The evaluation of adaptive systems must consider both functional and non-functional aspects[7]:

• Functional correctness of adaptation actions (e.g., replacing a failing component without breaking

dependencies);

• Timeliness of adaptation (i.e., the delay between event detection and response);

• Model synchronization during runtime adaptation;

• System consistency before, during, and after model transformations;

• Impact on user experience and service continuity.

These objectives are best structured around measurable criteria, as illustrated below.

Table 3 Key Evaluation Metrics

Metric Definition Purpose Example

Time to Adapt Duration between context

change detection and

adaptation execution

Measures system

responsiveness to

change

Time between high CPU

load detection and

autoscaling

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 46

Model

Consistency

Degree to which runtime

models remain synchronized

with actual system state

Ensures validity of

model-driven decisions

Detecting stale runtime

models due to delayed

updates

System Downtime Periods of interrupted service

during adaptation

Measures impact of

adaptation on

availability

Service reboot during

reconfiguration

Transformation

Latency

Time taken to perform

model-to-model or model-to-

text transformations

Assesses efficiency of

MDE runtime

transformations

Code generation time

from new PIM

Adaptation

Success Rate

Ratio of successful

adaptations over total

adaptation attempts

Quantifies reliability of

adaptation mechanisms

Number of effective

configuration switches

Rollback

Frequency

How often adaptations are

reversed due to failure

Identifies fragility in

adaptation strategies

Reverting a plugin due

to compatibility issue

6.1 MODEL-BASED TESTING (MBT)

Model-Based Testing is a powerful approach within MDE that enables the derivation of test cases from

formal models. In adaptive systems, MBT serves multiple roles[10]:

• Generating runtime test cases from updated system models post-adaptation;

• Validating transformation rules before deployment through simulation;

• Testing adaptation logic under simulated dynamic contexts;

• Performing regression testing after multiple adaptation cycles.

Example Use Case:

In a context-aware learning system, MBT can be used to automatically generate test scenarios for

different user profiles and environmental conditions[16]. This ensures that personalized adaptations (e.g.,

layout simplification or content prioritization) are not only triggered, but also executed correctly and revert

safely if needed.

6.3 Hybrid Evaluation Approaches

Purely analytical evaluations may not suffice. Hence, hybrid approaches combining simulation, formal

verification, and empirical testing are essential[17]. These include:

• Simulation-Based Validation: Running simulated adaptation sequences to test performance under

stress (e.g., simulated traffic surges).

• Formal Verification: Using temporal logic and model checkers to verify adaptation invariants.

• Empirical Field Testing: Logging actual adaptation behaviors in live environments and comparing

them with expected model outcomes.

In addition, runtime monitoring acts as a continuous testing mechanism, especially when integrated with

traceability tools that link changes back to model-level decisions.

evaluation and testing are indispensable to ensure that adaptive systems built using MDE are reliable,

efficient, and safe. By integrating measurable metrics, leveraging model-based testing, and employing hybrid

validation techniques, developers can systematically assess both the correctness and performance of adaptive

mechanisms. Furthermore, the use of runtime models as test oracles allows for in-situ validation, closing the

feedback loop between design-time intent and runtime behavior.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 47

7. CHALLENGES AND LIMITATIONS

While Model-Driven Engineering (MDE) offers a structured and scalable approach for designing

adaptive systems, its practical application is hindered by several theoretical and technical limitations[8]. This

section identifies and categorizes the key challenges under four major themes: tooling constraints, model-

execution gap, scalability issues, and real-time performance.

7.1 TOOLING AND LANGUAGE LIMITATIONS

The maturity of MDE tooling remains one of the primary bottlenecks in real-world adoption. Many

transformation tools, metamodeling frameworks, and runtime modeling environments lack:

• Dynamic model support: Most tools are optimized for design-time modeling, offering limited

support for runtime model manipulation or synchronization.

• Integration capabilities: Bridging between DSMLs and ADLs often requires manual effort due to

tool incompatibility.

• User-friendly interfaces: Domain experts may struggle to interact with abstract metamodels or

transformation scripts due to steep learning curves.

• Debugging and traceability: Insufficient debugging support for transformation chains and model

evolution paths hinders diagnosis.

Example:

Frameworks like ATL or Acceleo offer powerful model-to-model/text transformations but do not natively

support rollback, delta tracking, or hot-reloading during runtime adaptation.

7.2 MODEL-EXECUTION INCONSISTENCY

A critical challenge is maintaining synchronization between models and the actual system state.

When adaptation occurs, particularly at runtime, models may lag behind the system’s real-time behavior,

leading to semantic drift.

This inconsistency leads to:

• Invalid assumptions about component states

• Faulty adaptation plans

• Violation of system constraints

Mitigation Approaches:

• Using reflective models and probes

• Employing runtime validation against live system traces

• Integrating bi-directional synchronization engines (e.g., EMF-IncQuery, Kevoree Model Sync)

7.3 SCALABILITY AND COMPLEXITY MANAGEMENT

As systems grow in size and heterogeneity, so does the complexity of managing and adapting models.

Challenges include:

• Model explosion: The number of artifacts increases exponentially with system variants.

• Transformation chaining: Multiple transformations across abstraction levels may be needed.

• Model composition conflicts: Combining multiple DSLs or views may introduce semantic overlaps

or ambiguities.

7.4 REAL-TIME CONSTRAINTS AND LATENCY

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 48

Adaptive systems operating in safety-critical or high-frequency environments (e.g., autonomous vehicles,

healthcare monitoring) must react within strict time bounds.

Challenges:

• Delays in model evaluation or transformation

• Inability to verify transformation effects before execution

• Trade-offs between model precision and computation overhead

Table 4: Summary of Limitations

Category Challenge Impact

Tooling Poor runtime model support Slows down adaptation cycles

Synchronization Model-execution drift Causes invalid decisions

Scalability Model explosion and conflict Complicates maintenance

Real-Time Performance High transformation latency Fails to meet critical time windows

7.5 ETHICAL AND STANDARDIZATION CONSIDERATIONS

As MDE-based systems increasingly govern autonomous decisions, ethical concerns related to

accountability, explainability, and traceability emerge. Moreover, the lack of standardization in

DSML/ADL interoperability hinders cross-domain adoption.

8. FUTURE DIRECTIONS IN MODEL-DRIVEN ENGINEERING

As adaptive software systems continue to evolve in scale, complexity, and criticality, the capabilities of

Model-Driven Engineering (MDE) must be extended to meet new demands. Addressing current limitations

and preparing for future environments requires a strategic shift in how models are designed, interpreted, and

used at runtime[6][9]. This section outlines three promising directions that are currently shaping the future

of MDE-based adaptive systems: Metamodel Evolution, Runtime Metaprogramming, and AI-Assisted

Model Adaptation.

8.1 TRENDS IN METAMODEL EVOLUTION

Traditional MDE approaches rely on rigid metamodel structures that are difficult to change after

deployment. However, the increasing need for dynamic, context-sensitive adaptation calls for evolvable

metamodels that support modification at runtime[9].

Future research in this area aims to:

• Enable incremental evolution of metamodels without disrupting running systems.

• Preserve model integrity and traceability during structural changes.

• Support versioned and contextual metamodels that adapt depending on domain-specific runtime

needs.

8.2 RUNTIME METAPROGRAMMING

As systems become increasingly reflective and self-managing, the concept of runtime

metaprogramming gains traction[10]. It involves generating, modifying, and executing metamodels and

model transformations on the fly.

Key directions include:

• Dynamic transformation generation, based on current context and system state.

• On-the-fly DSL synthesis for microdomains or emergent behavior.

• Integration with model interpreters and compilers embedded in runtime environments.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 49

This approach allows systems to adapt not only through pre-defined models but also by creating new

modeling constructs during execution.

Use Case:

A runtime system may synthesize a temporary DSL to model a new communication protocol discovered in

the field, and apply a transformation to integrate it into the component graph without prior definition.

8.3 AI-ASSISTED MODEL ADAPTATION

Artificial intelligence presents a transformative opportunity for MDE. While current model

transformations and adaptation rules are largely static, AI techniques can introduce data-driven, context-

aware, and predictive capabilities into the adaptation process[11].

Research directions include:

• Reinforcement learning to optimize model transformation selection and sequencing.

• Natural language processing (NLP) to help generate DSLs or adaptation policies from informal

descriptions.

• Anomaly detection and proactive reconfiguration based on runtime data analysis.

Caution Point:

AI-in-the-loop raises challenges for explainability, safety, and certification, particularly in safety-critical

systems.

8.4 CONCLUDING PERSPECTIVE

As adaptive systems continue to scale in complexity and autonomy, the future of MDE must evolve

beyond rigid modeling practices toward dynamic, intelligent, and extensible infrastructures[13]. The

convergence of runtime metamodel evolution, metaprogramming flexibility, and AI-augmented

decision-making defines a new generation of model-driven systems. These systems will not only respond to

change but anticipate and reconfigure themselves in alignment with contextual goals and user

expectations[14].

To frame these developments, Table 5 provides a synthesized view of these emerging directions, highlighting

their conceptual focus, research opportunities, and potential impact across domains.

Table 5. Summary of Future Directions in Model-Driven Adaptation

Direction Focus Area Research Opportunities Expected Impact

Metamodel

Evolution

Adaptive model

structures

- Incremental metamodel

updates- Context-specific

extensions- Runtime versioning

Enables long-running

systems to evolve without

redeployment

Runtime

Metaprogramming

Generative

modeling at

runtime

- On-the-fly transformation

synthesis- DSL generation-

Embedded interpreters

Empowers systems to

self-adapt beyond

predefined behaviors

AI-Assisted

Adaptation

Intelligent

decision-

making

- RL-based adaptation policy

learning- AI-driven anomaly

detection- NLP for DSLs

Enhances proactivity,

context-awareness, and

runtime learning

These directions are not isolated; instead, they represent intersecting threads of a broader research

vision—one in which MDE becomes not just a design-time methodology, but a lifelong partner in the

continuous adaptation of complex, data-intensive, and distributed software systems.

Future research must focus not only on the feasibility of these techniques, but also on their

composability, ethical use, and alignment with safety and verifiability standards, particularly in domains

such as autonomous vehicles, healthcare, and financial infrastructures.

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 50

9. CASE STUDIES OF ADAPTIVE SOFTWARE SYSTEMS

To reinforce the theoretical framework presented in this study, we now explore real-world applications

where Model-Driven Engineering (MDE) has been successfully applied to enable runtime adaptation in

dynamic environments. These case studies span multiple domains and demonstrate how MDE principles—

particularly model abstraction, transformation, and traceability—have been used to address adaptability

requirements[8].

Each case highlights a specific context, adaptation strategy, and set of tools. Although the

implementation details vary, a common pattern emerges: MDE consistently contributes to improving the

flexibility, maintainability, and responsiveness of complex software systems.

Figure 5 Distribution of Adaptation Types across Domains in MDE-Based Case Studies.

Figure 5 presents a comparative visualization of adaptation strategies employed across the analyzed

domains. It illustrates how different types of adaptation—structural, behavior-based, parameter-based,

and event-driven—manifest in real-world MDE implementations. The distribution shows that structural

adaptations dominate in infrastructure-focused domains such as Smart Home Automation and Vehicular

Sensor Networks, where reconfiguration of devices and routing is critical. In contrast, behavior-based

adaptation is more prevalent in e-learning environments, reflecting the need for content personalization.

Event-driven adaptation plays a major role in emergency and safety systems, enabling rapid response to

external triggers. This diversity highlights the importance of aligning adaptation strategy selection with

domain-specific needs and reinforces the role of MDE in abstracting and implementing such strategies

systematically.

Table 6. Comparative Analysis of Case Studies in MDE-Based Adaptive Systems

Case Domain MDE Tool /

Framework

Adaptation Type Outcome

Smart Home

Automation

Ambient

Intelligence

Kevoree Structural +

Contextual

Improved device

orchestration with

dynamic rules

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 51

e-Learning

Platform

Educational

Systems

EMF + ATL Behavior-based +

Policy-driven

Personalized content

delivery based on learner

profile

Vehicular

Sensor Network

Intelligent

Transport

Papyrus + UML

profiles

Topology-aware

Reconfiguration

Fault-tolerant routing and

traffic optimization

Cloud

Autoscaling

Cloud

Computing

Acceleo + OCL Resource-Aware +

Parameter

Optimized VM

deployment with minimal

SLA violations

Emergency

Alert System

Public Safety Epsilon +

DSLTool

Event-Driven +

Rule-Based

Reduced response time to

environmental hazards

9.1 COMPARATIVE ANALYSIS

This comparison reveals several key insights:

• Tool Diversity: While tools like EMF, ATL, and Epsilon dominate, each domain requires specific

model transformation pipelines and integration mechanisms. No single framework fits all needs.

• Adaptation Types: Structural and parameter-based adaptations are common in infrastructure-

oriented systems (e.g., cloud, IoT), whereas behavioral and policy-driven adaptations appear in user-

centered domains (e.g., education, safety).

• Outcome Patterns: Across domains, MDE contributes to higher adaptability, improved quality-of-

service, and reduced human intervention. However, tool integration complexity and transformation

overhead remain challenges.

9.2 LESSONS LEARNED

1. Domain Context Matters: The success of MDE depends heavily on tailoring modeling abstractions

to the domain (e.g., using UML profiles in vehicular systems, DSLs in emergency systems).

2. Balance Between Generality and Specialization: Highly specific DSLs offer precision but limit

reuse. Hybrid approaches that combine generic ADLs with domain-specific extensions show

promise.

3. Tooling Maturity Varies: Kevoree and EMF offer strong support for runtime reconfiguration,

while others like Acceleo are better suited for offline generation unless extended manually.

9.3 IMPLICATIONS FOR THIS RESEARCH

These cases reinforce the core assumption of this study: that MDE provides a flexible and robust

foundation for runtime adaptation, but requires careful selection of modeling strategies and toolchains[18].

The comparative perspective informs future work, such as building adaptive tool selection frameworks or

meta-transformers capable of dynamically choosing or synthesizing transformations based on domain

patterns.

10. CONCLUSION

This paper presented a comprehensive overview on the state of the art in model-driven engineering

applied to adaptation processes of software systems, with a focus on the development of a model-driven

approach that covers the entire adaptation process, from offline design to online execution. Adopted model-

driven engineering techniques are illustrated, together with supported adaptation techniques and changing

aspects. Orthogonal directions for further research have been identified: the design of computationally

efficient transformation and refinement techniques to ensure timely execution of the adaptation processes,

the definition of a more formal representation for adaptation processes, the analysis of properties of the

adaptation process model and of its execution, the design of a rich and intuitive visual language that would

allow non-experts to understand the adaptation processes, and their tooling to support the development of

adaptation processes. A short introduction of follows Adaptation is the process that enables changing a

Ali Fahem Neamah et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 1 (2025) p. 37-52

 52

system while preserving its coherent functioning. With the emergence of runtime adaptability, adaptation is

not only bearer composed of the components of the composed computation. The runtime adaptability concern

enables conditions that involve the contributing components of an adapt medium. Two elements are to be

specified as adaptation processes that are triggered at the global level: the adaptation and synchronisation

processes. The general argument for finishing the adaptation, is that all the necessary changes are done, and

the system has returned to a normal functioning. A number of necessary improvements are outlined. Explicit

support for a wider set of adaptation processes, for instance: those replacing or removing components; multi-

step processes, including failures or cascading adaptations. Adaption policies are not yet a first-class level of

abstraction, neither are guiding frameworks.

Funding

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES:

[1] F. Mantz, "Coupled Transformations of Graph Structures applied to Model Migration," 2014. [PDF]

[2] A. Phung Khac, M. T. Segarra, J. M. Gilliot, and A. BEUGNARD, "Dynamic composition and adaptation

in adapt-medium," 2008. [PDF]

[3] B. Rumpe, "Agile Test-based Modeling," 2014. [PDF]

[4] D. Rodríguez-Gracia, J. Criado Rodríguez, L. Fernando Iribarne Martínez, N. Padilla Soriano et al.,

"Composing Model Transformations at Runtime: an approach for adapting Component-based User

Interfaces," 2012. [PDF]

[5] H. Krahn, B. Rumpe, and S. Völkel, "Roles in Software Development using Domain Specific Modeling

Languages," 2014. [PDF]

[6] H. Arturo Florez Fernandez, "ADAPTING MODELS IN METAMODELS COMPOSITION

PROCESSES," 2013. [PDF]

[7] L. Hermerschmidt, K. Hölldobler, B. Rumpe, and A. Wortmann, "Generating Domain-Specific

Transformation Languages for Component & Connector Architecture Descriptions," 2015. [PDF]

[8] C. Krupitzer, M. Pfannemüller, V. Voss, and C. Becker, "Comparison of approaches for developing self-

adaptive systems," 2018. [PDF]

[9] J. Fox, "A Formal Model for Dynamically Adaptable Services," 2010. [PDF]

[10] G. Püschel, "Testing Self-Adaptive Systems," 2018. [PDF]

[11] G. Valetto and G. E. Kaiser, "Combining Mobile Agents and Process-based Coordination to Achieve

Software Adaptation," 2002. [PDF]

[12] Y. Abuseta, "An Investigation of the Monitoring Activity in Self Adaptive Systems," 2018. [PDF]

[13] Y. Abuseta and K. Swesi, "Design Patterns for Self Adaptive Systems Engineering," 2015. [PDF]

[14] G. Jouneaux, O. Barais, B. Combemale, and G. Mussbacher, "Towards Self-Adaptable Languages,"

2021. [PDF]

[15] D. Fonte, I. Vilas Boas, J. Azevedo, J. João Peixoto et al., "Modeling Languages: metrics and assessing

tools," 2012. [PDF]

[16] P. Mohagheghi, "An Approach for Empirical Evaluation of Model-Driven Engineering in Multiple

Dimensions," 2010. [PDF]

[17] C. Wiecher, C. Mandel, M. Günther, J. Fischbach et al., "Model-based Analysis and Specification of

Functional Requirements and Tests for Complex Automotive Systems," 2022. [PDF]

[18] B. Strenge and T. Schack, "AWOSE - A Process Model for Incorporating Ethical Analyses in Agile

Systems Engineering," 2019. ncbi.nlm.nih.gov

https://core.ac.uk/download/161975997.pdf
https://core.ac.uk/download/217697566.pdf
https://arxiv.org/pdf/1409.6616
https://core.ac.uk/download/143456614.pdf
https://arxiv.org/pdf/1409.6618
https://core.ac.uk/download/229161010.pdf
https://arxiv.org/pdf/1510.08981
https://ub-madoc.bib.uni-mannheim.de/43909/3/Comparison%20of%20Approaches%20for%20developing%20Self-adaptive%20Systems.pdf
https://arxiv.org/pdf/1011.2652
https://core.ac.uk/download/236377202.pdf
https://core.ac.uk/download/161437195.pdf
https://arxiv.org/pdf/1802.03667
https://arxiv.org/pdf/1508.01330
https://core.ac.uk/download/489502767.pdf
https://arxiv.org/pdf/1206.4477
https://core.ac.uk/download/249980916.pdf
https://arxiv.org/pdf/2209.01473
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089881/

