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Studying the Effect of Some Additives to the
Borosilicate Glass on the Neutron Shielding
Properties

Saddam Jamel Abd-Noor *, Ahmed Fadhil Mkhaiber

Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

ABSTRACT

The development of radiation shielding material is important since radioactive sources are used in industry, medicine,
and agriculture. As a result, more research and development has been put into looking into different glass systems based
on their unique qualities for protecting against neutron radiation. This study focuses on investigating glass-based materi-
als for neutron shielding purposes. This investigation delves into the neutron shielding properties of a mixture comprising
Sodium Aluminum borosilicate glass (SiB2Na2Al2O9)X, with added reinforcement materials (SiC)100-X, (TiB2)100-X, and
(BiClO)100-X (X = 95, 80, 65, and 50%), the mixtures are denoted as codes G1, G2 and G3 respectively. Results and
calculations indicate that adding reinforcing materials to borosilicate glass in various quantities enhances rapid neutron
removal (

∑
R). An increased reinforcing material ratio reduces shielding half value layer (HVL) and mean free path

(MFB)to neutron. Comparing theoretical results, adding titanium nitride (TiB2) as reinforcement to borosilicate glass
yields the maximum neutron attenuation and the least HVL at X = 50. Thus, the G2 shield is the best for neutron
radiation protection.

Keywords: Fast neutron, Half-value layer, Mean free path, Removal cross-section, Shielding material

Introduction

Nuclear technology is used in almost every area
of life, including health, manufacturing, gardening,
and power generation, for more than sixteen percent
of the world’s needs.1–3 It has the huge potential to
lead to innovations that help everyone.4–6 The neu-
trons pose a material or radiation threat due to their
strength because they are neutrally charged parti-
cles, and they can travel through matter over long
distances without scattering or being absorbed.7–9

Because these radiations have dangerous biological
effects that can have a big impact on people’s health,
it is important to keep workers and regular people
near these nuclear sites safe from dangerous radiation
leaks. It is important to have enough radiation protec-
tion in all of these situations. Because of this, Neutron

shielding is considered one of the most important
challenges in protecting the environment and public
health from exposure to neutron radiation.10–12

An effective removal cross-section (
∑

R) can be
used to describe the sample’s effect.13,14 It is the
same as an absorption cross-section. The concentra-
tion of material with low atomic numbers is crucial
for decelerating the neutrons. If there is enough mod-
erating material in the mixture, this process will
determine how many neutrons are weakened. One
essential consideration for neutron-shielding mate-
rial involves using fillers with a higher macroscopic
cross section for neutron absorption.15–17 Exten-
sive research has been dedicated to monitoring and
controlling neutron radiation due to its vital role
in various applications such as nuclear reactors
and radiation therapy.18,19 Furthermore, appropri-
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ate radiation-transparent shielding materials are re-
quired in radiotherapy.20 Glass compositions have
been formulated to exhibit exceptional transparency
and strong radiation absorption characteristics21–23

These borosilicate glass characteristics make them
ideal for incorporation into certain protective ma-
terials. For this purpose, literature has published
many works; for example, according to Lee et at.,24

borosilicate glass was used as a mineral additive and
fine aggregate to produce neutron shielding mortar.
The use of borosilicate glass powder and aggregates
together increased the compressive strength of the
mortar mixture and could shield 86% additional ther-
mal neutrons. It also controlled the expansion caused
by the alkali-silica reaction (ASR) between the al-
kali in cement and the reactive silica in borosilicate
glass aggregate. This suggests the possibility of us-
ing borosilicate glass for neutron shielding purposes
Singh et al.25 The study evaluated the gamma and
neutron shielding properties of bismuth borosilicate
glasses, specifically focusing on glasses with 20 mol%
Bi2O3, which were found to be superior in shield-
ing effectiveness. The research compared the buildup
factors of the glasses with those of steel-magnetite
concrete and lead and concluded that the glasses con-
taining Bi2O3 are promising materials for shielding
applications. Salama et al.26 The study investigates
the gamma radiation and neutron shielding prop-
erties of lithium sodium borosilicate glasses with
varying concentrations of lead oxide (PbO) through
experimental analysis and theoretical calculations.
The results confirm that glasses with lead concentra-
tions of 5–25 mol% have suitable and comparable
gamma attenuation coefficients, making them ef-
ficient, transparent materials for gamma-ray and
neutron shielding. Rammah et al.27 investigated the
impact of lead and bismuth oxide insertion on a novel
glass system of P (5, 10, 15, 20, 25) mol% by calcu-
lating various parameters such as mass attenuation
coefficient, linear attenuation coefficient, half and
tenth value layer, mean free path, effective atomic
number, exposure and energy absorption buildup fac-
tors, and fast neutron removal cross sections for the
fabricated glasses. The results show that the prepared
glasses are effective shielding materials for reducing
fast neutrons and gamma rays. Yilmaz et al.28 dis-
cussed the importance of radiation shielding in the
nuclear industry and explored boron as a potential
material for shielding. Boron, when combined with
other materials, can provide strong shielding proper-
ties due to its large cross-section, making it suitable
for various situations. Neutron shielding properties
are considered one of the most important challenges
in protecting the environment and public health from
exposure to neutron radiation.29–31 In this paper, we

will study the potential effects of adding certain re-
inforcement materials (SiC), (TiB2) and (BiClO) to
borosilicate glass, with a particular focus on its shield-
ing properties against neutrons. In addition to their
performance in preventing neutron radiation leakage,
this research aims to use new reinforcement mate-
rials capable of absorbing neutrons, improving the
efficiency of neutron shielding, and enhancing public
safety.

Materials and methods

For study of the properties of neutron shielding
material, mixture materials were used consisting of
matrix material borosilicate glass (SiB2Na2Al2O9)X
with the symbol (G) and reinforced with three
compounds with different concentrations: silicon
carbide (SiC)100-X, titanium nitride (TiB2)100-X, and
bismuth oxychloride (BiClO)100-X, (X = 95, 80, 65,
50 %wt) which is named as follows G1, G2 and
G3, The XCOM program https://physics.nist.gov/
PhysRefData/Xcom/html/xcom1.html was used to
calculate the weight percentages of the elements
present in the mixed materials at different con-
centrations.32 Then, the following parameters were
calculated:

Removal cross sections of fast neutrons (6R)

The absorption reaction is responsible for removing
the cross-section of fast neutrons.33 Choosing mate-
rials where interactions are less likely helps prevent
effects caused by secondary radiation released af-
ter neutron interactions.34 The neutron attenuation
of a material can be determined by employing an
exponential equation that considers the shield mate-
rial’s thickness and the neutron removal cross-section
6R (cm–1).35

Ix = Io e−6Rx (1)

Let us denote Io: the incident beam intensity.
Ix: the intensity after entering a material of thick-

ness X.
6R: the neutron removal cross-section.
The total macroscopic cross-section of fast neutrons

is the quantity that describes the probability of a
neutron reaction occurring along the path it travels
through the material. It is symbolized by the symbol
(
∑

R) and is measured in units (cm–1). In the case
of compounds and mixtures, the total macroscopic
cross-section of the fast neutron (

∑
R) is the sum

of the whole macroscopic mass cross-section of the
attenuation for each element in the mixture (

∑
/ρ)i

https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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Table 1. Density values for different mixtures.

Chemical Density of Name of Density of Density of Density of Density of
formula composite group Vf (5%) mixture Vf (20%) mixture Vf (35%) mixture Vf (50%) mixture

SiB2Na2Al2O9 (G) 2.23 G _ _ _ _ _ _ _ _
SiC (1) 3.21 G1 0.03527 2.26457 0.14798 2.37501 0.27224 2.49679 0.40993 2.63173
TiB2 (2) 4.52 G2 0.02531 2.28796 0.10980 2.48144 0.20990 2.71066 0.33037 2.98655
BiClO (3) 7.78 G3 0.01486 2.31248 0.06687 2.60111 0.13370 2.97206 0.22278 3.46641

multiplied by the molecular density of each compo-
nent in the substance (ρi).36

∑
R
=

∑
i
ρi

(∑
/ρ
)
I

(2)

To calculate each element’s macroscopic mass
cross-section for each, dement

∑
/ρ (cm2/g), the fol-

lowing empirical equation was used:37

∑
/ρ(cm2/g) = 0.206 A−1/3 Z−0.294 (3)

Z and A represent the element’s atomic number and
weight, respectively.

The half-value layer for the neutrons (HVL)

It is the material’s thickness that is necessary to
attenuate the incident neutron flux to precisely fifty
percent of its initial intensity; we also used the fol-
lowing equation to determine the (HVL):38

HVL (cm)= 0.693/
∑

total (4)

The mean free path of the neutrons (MFP)

It is defined as the average distance traveled by
the neutron without interaction inside the shielding
material and is given by the following relationship:39

MFP (cm)= 1/
∑

total
(5)

The density of the composite materials(ρ)

The density of mixture(ρ) samples used in this
study was calculated from the following equa-
tions:40,41

Wc =W f +Wm (6)

ψ =
W f

Wc
× 100% (7)

Table 2. Shows the partial removal cross-section of the elements
included in the shield composition.

Element A Z
∑

/ρ (cm2/g)

B 10.811 5 0.058042764
C 12.0107 6 0.053117135
O 15.9994 8 0.044359931
Na 22.98977 11 0.035797516
Al 26.9815386 13 0.032310646
Si 28.0855 14 0.031194512
Cl 35.453 17 0.02726241
Ti 47.867 22 0.022865615
Bi 208.98 83 0.009468693

V f =
1

1+
[(

1−ψ
ψ

)
∗
ρ f
ρm

] (8)

ρ = ρ fV f + (1−V f )ρm (9)

Where ψ = fraction weighted for reinforcement
materials, Vf = is the volume fraction, ρf, ρm the
reinforcement and matrix material density, Wf & Wm
are the weight of reinforcement and matrix mate-
rial, respectively, and Wc: the weight of the mixture
material.

Results and discussion

The density of the composite materials(ρ)

The density values of the mixture were calculated
using mathematical Eqs. (6) to (9) by adding rein-
forcement materials to borosilicate glass at different
concentrations, ranging from (0, 5, 20, 35 and 50)
%. Borosilicate has a lower density than the other
reinforcing materials shown in Table 1. The density
increase depends on the type of additional rein-
forcement materials used and concentration.42 The
densities of the G1 and G2 contents increased a lit-
tle. Nevertheless, the densities of the G3 content
significantly increase due to the high density of the
reinforcement material (BiClO).

Table 2 lists the elements that make up each con-
stituent in increasing order based on their atomic
weight, atomic number, and mass removal cross-
section. Building a correct database of different
elements’ fast neutron removal cross-sections is essen-
tial to solving the neutron shielding problem.
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Fig. 1. Removal cross-section as a function of reinforced materials
at a concentration of 50%.

Removal cross sections of fast neutrons

The effective neutron removal cross-section
∑

R.
(cm–1) is a critical parameter in neutron shielding
studies.43 Higher values of this parameter mean bet-
ter shielding ability.10 The cross-section of a shield
is influenced by the composition of its elements, par-
ticularly the type and density. When determining the
total cross-section for neutron removal, the presence
of light elements is crucial. Among these elements,
boron stands out with a high-value removal cross-
section. Increasing the proportion of boron in the
shield will consequently increase the removal cross-
section for fast neutrons (6R).44,45 Tables 3 to 6
demonstrate that the mixture G2[(borosilicate) +
(TiB2)] has a significantly higher concentration of
boron in its chemical composition compared to the
other mixtures; for this reason, this specific mixture
has the largest total cross-sectional area, which is
consistent with what H.O. Tekin and others found in
previous studies.28,46 On the other hand, the mixture
G3[(borosilicate) + (BiClO)], the neutron attenua-
tion values may be lower for bismuth oxychloride
added to borosilicate glass due to the different neu-
tron properties of the materials used. Neutrons can
react differently with bismuth oxychloride than tita-
nium nitride, resulting in less attenuation. The effect
of these properties depends on the structure of the
material and possible nuclear interactions. And bis-
muth concentration can influence the outcomes. This
is consistent with what Singh et al.25 in previous
studies.47 Consequently, the mixture (G2) is more
effective in attenuating fast neutrons than the other
mixtures. We notice (6R) (G2 >G1>G3) as illus-
trated in Fig. 1. The figure below shows the change
in the values of the effective cross-section for the
removal of fast neutrons with a change in the type
of reinforcing material added by 50 percent.

Fig. 2 Shows the relation between fast neutron
removal cross-section and reinforcing material con-
centration. The figure shows that reinforcement

Fig. 2. Removal cross-sections as a function of concentration
(%) and correlation coefficient.

material concentration directly affects the removal
of cross-section values. With increasing concentra-
tion, the weighted fraction of the elements will also
increase. Integrating reinforcement materials in dif-
ferent weight ratios improves neutron absorption and
reduces their effects on the surrounding environ-
ment.48,49

Half-value layer for the neutrons (HVL)

For each combination, Table 7 displays the values
of the half-value thickness at various concentrations.
As illustrated in Fig. 3, a correlation was estab-
lished between the additive concentration and the
half-value layer. The thickness required to reduce
the neutrons’ intensity to half its value decreases
as reinforcement material increases; this is because
there is a direct correlation between increasing
the reinforcing material concentration and the total
cross-section.50,51 Fig. 2. Calculated the correlation
coefficient by the following equations:

YG1 = 0.0251X+ 0.0902

R2
= 0.9979 (10)

YG2 = 0.0409X+ 0.0899

R2
= 0.9936 (11)

YG3 = 0.0082X+ 0.0903

R2
= 0.9853 (12)

X = Concentration of reinforcement material, Y =
total cross-section.

Fig. 3 establishes a correlation between the rein-
forcement materials’ additive concentration and the
half-value layer. The figure shows that the (HVL)
required to reduce the neutrons’ intensity to half
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Table 3. Effective removal cross-section for group G.

Composite Fraction Partial
Group Concentration Element Density (g/cm3)

∑
/ρ (cm2/g) by Weight Density (g/cm3)

∑
(cm–1) Total

∑
(cm–1)

G 0 Si 2.23 0.031194512 0.095645 0.21328835 0.00665343 0.09043367
B 0.058042764 0.073633 0.16420159 0.00953071
Na 0.035797516 0.156582 0.34917786 0.0124997
AL 0.032310646 0.18377 0.4098071 0.01324113
O 0.044359931 0.49037 1.0935251 0.0485087

Table 4. Effective removal cross-section for group G+ SiC.

Composite Fraction Partial
Group Concentration Element Density (g/cm3)

∑
/ρ (cm2/g) by Weight Density (g/cm3)

∑
(cm–1) Total

∑
(cm–1)

G1 0.05 Si 2.264568175 0.031194512 0.125884 0.2850729 0.00889271 0.09151941
B 0.058042764 0.069951 0.158408808 0.00919449
Na 0.035797516 0.148753 0.33686131 0.0120588
AL 0.032310646 0.174583 0.395355106 0.01277418
O 0.044359931 0.465851 1.054951349 0.04679757
C 0.053117135 0.014978 0.033918702 0.00180166

0.2 Si 2.375016589 0.031194512 0.216605 0.514440468 0.01604772 0.09498848
B 0.058042764 0.058906 0.139902727 0.00812034
Na 0.035797516 0.125266 0.297508828 0.01065008
AL 0.032310646 0.147016 0.349165439 0.01128176
O 0.044359931 0.392296 0.931709508 0.04133057
C 0.053117135 0.059911 0.142289619 0.00755802

0.35 Si 2.496791071 0.031194512 0.307325 0.767326316 0.02393637 0.09881328
B 0.058042764 0.047861 0.119498917 0.00693605
Na 0.035797516 0.101778 0.254118402 0.00909681
AL 0.032310646 0.119451 0.29824419 0.00963646
O 0.044359931 0.318742 0.795832179 0.03530306
C 0.053117135 0.104843 0.261771066 0.01390453

0.5 Si 2.631727941 0.031194512 0.398046 1.04754878 0.03267777 0.10305152
B 0.058042764 0.036817 0.096892328 0.0056239
Na 0.035797516 0.078291 0.206040612 0.00737574
AL 0.032310646 0.091885 0.241816322 0.00781324
O 0.044359931 0.245185 0.645260215 0.0286237
C 0.053117135 0.149776 0.394169684 0.02093716

its value decreases as the reinforcement materials’
percentage increases due to the correlation between
the total cross-section and the percentage increase in
reinforcing material concentration. The figure shows
the Half-value layer as a function of Concentration for
all mixture materials.

The mean free path of the neutrons (MFP)

The values of the mean free path for different com-
posites and at various concentrations are shown in
Table 8.

The lowest MFP values are seen in the G2 com-
posite, which means it offers the best protection
compared to the other mixtures. This may occur
due to the homogeneity of the mixture elements;
Fig. 4 shows that the mean free path decreases as
the concentration of reinforcing materials increases.
The shields become denser, and the removal cross-
section increases. Therefore, values decrease MFP.
This means that increasing density reduces the dis-

tance that a particle travels before colliding with
another particle, and this may happen as a result of
increasing the strength of the mixture and improving
its durability, which contributes to a decrease in the
free path rate of the neutron within the material. That
is consistent with previous studies.14,52 calculated the
correlation coefficient between the concentrations of
the added reinforcing materials and the Mean free
path of neutrons for the mixtures being studied. The
results indicated a robust and positive correlation, as
demonstrated by the following equations:

YG1 = −2.7058X+ 11.063

R2
= 0.9999 (13)

YG2 = −4.0962X+ 11.075

R2
= 0.9994 (14)

YG3 = −0.9637X+ 11.075

R2
= 0.9881 (15)
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Table 5. Effective removal cross-section for group G+ TiB2.

Composite Fraction Partial
Group Concentration Element Density (g/cm3)

∑
/ρ (cm2/g) by Weight Density (g/cm 3)

∑
(cm–1) Total

∑
(cm–1)

G2 0.05 Si 2.287958234 0.031194512 0.090862 0.207888461 0.00648498 0.09201259
B 0.058042764 0.085506 0.195634157 0.01135515
Na 0.035797516 0.148753 0.340340651 0.01218335
AL 0.032310646 0.174581 0.399434036 0.01290597
O 0.044359931 0.465853 1.065852207 0.04728113
Ti 0.022865615 0.034445 0.078808721 0.00180201

0.2 Si 2.481437715 0.031194512 0.076515 0.189867207 0.00592281 0.09728328
B 0.058042764 0.121126 0.300566625 0.01744572
Na 0.035797516 0.125266 0.310839777 0.01112729
AL 0.032310646 0.147016 0.364811047 0.01178728
O 0.044359931 0.392296 0.97345809 0.04318253
Ti 0.022865615 0.137781 0.34189497 0.00781764

0.35 Si 2.710662902 0.031194512 0.062169 0.168519202 0.00525687 0.10352784
B 0.058042764 0.156746 0.424885567 0.02466153
Na 0.035797516 0.101778 0.275885849 0.00987603
AL 0.032310646 0.119451 0.323791394 0.01046191
O 0.044359931 0.318741 0.863999404 0.03832695
Ti 0.022865615 0.241115 0.653581486 0.01494454

0.5 Si 2.986548148 0.031194512 0.047822 0.142822706 0.00445528 0.11104344
B 0.058042764 0.192366 0.574510321 0.03334617
Na 0.035797516 0.078291 0.233819841 0.00837017
AL 0.032310646 0.091885 0.274418977 0.00886665
O 0.044359931 0.245185 0.732256808 0.03248286
Ti 0.022865615 0.344451 1.028719496 0.0235223

Table 6. Effective removal cross-section for group G+ BiClO.

G
ro

up

Co
nc

en
tr

at
io

n

El
em

en
t

Co
m

po
si

te
D

en
si

ty
(g

/c
m

3 )

∑ /ρ
(c

m
2 /

g)

Fr
ac

tio
n

by
W

ei
gh

t

Pa
rt

ia
l

D
en

si
ty

(g
/c

m
3 )

∑ (c
m

–1
)

To
ta

l∑ (c
m

–1
)

G3 0.05 Si 2.312482506 0.031194512 0.090862 0.210116785 0.00655449 0.09071235
B 0.058042764 0.069951 0.161760464 0.00938902
Na 0.035797516 0.148753 0.34398871 0.01231394
AL 0.032310646 0.174582 0.403717821 0.01304438
O 0.044359931 0.468923 1.084376234 0.04810286
CL 0.02726241 0.006807 0.015741068 0.00042914
Bi 0.009468693 0.040122 0.092781423 0.00087852

0.2 Si 2.601109445 0.031194512 0.076515 0.199023889 0.00620845 0.09168774
B 0.058042764 0.058906 0.153220953 0.00889337
Na 0.035797516 0.125266 0.325830576 0.01166393
AL 0.032310646 0.147016 0.382404706 0.01235574
O 0.044359931 0.404584 1.052367264 0.04668294
CL 0.02726241 0.027226 0.070817806 0.00193066
Bi 0.009468693 0.160487 0.417444252 0.00395265

0.35 Si 2.972059957 0.031194512 0.062169 0.184769995 0.00576381 0.09294114
B 0.058042764 0.047861 0.142245762 0.00825634
Na 0.035797516 0.101778 0.302490318 0.0108284
AL 0.032310646 0.119451 0.355015534 0.01147078
O 0.044359931 0.340242 1.011219624 0.04485763
CL 0.02726241 0.047646 0.141606769 0.00386054
Bi 0.009468693 0.280853 0.834711955 0.00790363

0.5 Si 3.466413586 0.031194512 0.047822 0.165770831 0.00517114 0.09461178
B 0.058042764 0.036817 0.127622949 0.00740759
Na 0.035797516 0.078291 0.271388986 0.00971505
AL 0.032310646 0.091885 0.318511412 0.01029131
O 0.044359931 0.275902 0.956390441 0.04242541
CL 0.02726241 0.068065 0.235941441 0.00643233
Bi 0.009468693 0.401218 1.390787526 0.01316894
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Table 7. The half–value layer for Fast Neutron is at different con-
centrations of reinforcement material (cm).

Concentration G+ SiC G+TiB2 G+ BiClO

0% 7.663080895 7.663080895 7.663080895
5% 7.572176669 7.53159476 7.639539103
20% 7.295630851 7.123530594 7.558271616
35% 7.013243294 6.693859353 7.456332364
50% 6.724791758 6.240804695 7.324669604

Table 8. MFP for Fast Neutron at different Concentrations of
reinforcement material.

Concentration G+ SiC G+ TiB2 G+ BiClO

0% 11.05783679 11.05783679 11.05783679
5% 10.92666186 10.86810211 11.02386595
20% 10.52760585 10.27926493 10.90659685
35% 10.12012019 9.659248706 10.75949836
50% 9.70388421 9.005490181 10.56950881

Fig. 3. Half-value layer(cm) as a function of concentration (%)
+correlation coefficient.

Fig. 4. Show the relationship between MFP (cm) and concentration
(%) correlation coefficient.

X = Concentration of reinforcement material, Y =
mean-free path. Note: A negative sign means that the
relationship is inverse between them.

Conclusion

The findings indicated that the macroscopic cross-
section of the removal of neutrons depends on the
chemical composition of the shielding materials,
making it crucial in the selection of materials for fast
neutron shielding. The G2 mixture exhibits significant
neutron attenuation as a result of the elevated weight
% of boron. Boron is a practical element for absorbing
fast neutrons due to its substantial removal cross-
section. Adding the reinforcement material (TiB2) has
enhanced the neutron shielding properties of borosil-
icate glass, making it an efficient barrier against fast
neutrons.
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سليكات على خصائص ودراسة تأثير بعض المواد المضافة لزجاج البور

 التدريع النيوتروني

 

 أحمد فاضل مخيبر ، صدام جميل عبد نور 

 العراق ،بغداد  ،جامعة بغداد،الهيثم -كلية التربية أبن ،قسم الفيزياء 

 

.مادة التدريع عرضي للإزالة، المقطع ال  ،متوسط المسار الحر ،قيمة سمك النصف نيوترون سريع، :الكلمات المفتاحية  

 ةالخلاص

لاستخدام المصادر المشعة في الصناعة والطب والزراعة. ونتيجة لذلك، تم يعد تطوير مواد الحماية من الإشعاع أمرًا مهمًا نظرًا 

إجراء المزيد من البحث والتطوير للنظر في أنظمة زجاجية مختلفة بناءً على صفاتها الفريدة للحماية من الإشعاع النيوتروني. تركز 

ترونية. يتعمق هذا البحث في خصائص التدريع هذه الدراسة على دراسة المواد ذات الأساس الزجاجي لأغراض الحماية النيو

، )(X-100SiC دعيم، مع إضافة مواد ت)X)9O2Al2Na2SiBمنيوم الصوديوم ط يشتمل على زجاج بوروسيليكات ألالنيوتروني لخلي

X-100)2(TiBو ،X-100BiClO) )حيث( X=95, 80, 65, and 50%), بالرمزويشار إلى المخاليط G1  وG2  وG3  .على التوالي

سليكات بكميات مختلفة يعزز الإزالة السريعة للنيوترونات وإلى زجاج البور مواد التدعيمتشير النتائج والحسابات إلى أن إضافة 

(R .)∑ للدرع قيمة سمك النصف تعمل زيادة نسبة التعزيز على تقليل (HVL( ومتوسط المسار الحر )MFB للنيوترون. بمقارنة )

سليكات يؤدي إلى الحد الأقصى من التوهين وتعزيز إلى زجاج البورمادة ( ك2TiBالتيتانيوم ) نتريدرية، فإن إضافة النتائج النظ

 هو الأفضل للحماية من الإشعاع النيوتروني. G2. وبالتالي فإن درع X = 50عند  HVLالنيوتروني وأقل قيمة 
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