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ABSTRACT 

         The transport properties of several carbon 

nanoparticle derivatives, including single-layer nanotubes 

and bi-layer graphene, under an external constant electric 

field, are investigated. Results were analyzed and 

identified as a function of the quasi-classical 

approximation of relaxation time by using the Boltzmann 

kinetic equations. These approaches have been used to 

obtain the relationships between the electric conductivity 

σ(E) and electrons diffusion coefficient D(E) in carbon 

nanostructures. This study proves that when the 

temperature rises the electrical conductivity  σ(E) 

decreases for both single-layer and bi-layer carbon 

nanostructures. For a wide range of temperatures, the 

electrical conductivity  σ(E) behavior of the studied 

nanoparticles is nonlinearly dependent on the magnitude 

of the external electric field (E). In contrast, the electron 

diffusion coefficient D(E) is independent of temperature 

for both single- and bi-layers.  It also shows that the 

intensity of an external electric field possesses a 

nonlinear influence on the electron diffusion coefficient. 
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INTRODUCTION 

Carbon is one of the most significant and often occurring elements in nature, and it exhibits a 

range of ways of existence. Carbon is unique in that it can simultaneously exist in a number of 

crystalline forms, such as diamond, quasi-two-dimensional graphene, quasi-one-dimensional 

carbon, and quasi-zero-dimensional fullerenes. Numerous variations of carbon have only lately 

been found. Carbon nanotubes (CNTs) are extended cylindrical low-dimensional structures with a 

diameter ranging from one to several tens of nanometers and a length of up to several centimeters              

(Eletsky, 2007), consisting of one or more graphene sheets rolled into a tube and usually ending in a 

hemispherical head, which can be considered as half the molecule of fullerene. One atomic layer of 

graphite based on a hexagonal network of sp2-hybridized carbon atoms makes up the low-

dimensional carbon structure known as graphene (Baimova and Rysaeva, 2015). Due to its distinct 

electrical characteristics, graphene is intriguing from both the standpoint of potential practical 

applications and from a theoretical perspective. Graphene's valence and conduction bands do not 

have an energy gap, electrons close to the Fermi level exhibit linear dispersion (Shahil et al., 2012) 

(Lozovik and Sokolik, 2008). Low-dimensional carbon derivatives can be used as parts of various 

devices such as: diodes, transistors, logic components, switches, electrodes, sensors, atomic force 

microscopes (AFM), and scanning tunnelling microscopes (STM) (Cantalini and Valentinia, 2004). 

This is possible because low-dimensional carbon derivatives are versatile materials. Currently, there 

is an urge demand for researching the electrophysical characteristics of these derivatives because of 

their desirable traits in industrial applications. These derivatives have also a high potential to be 

used in chemistry, medicine, and biotechnologies  (Harris, 2004). In this research, the focus is on 

investigating how the temperature affects the electrical transport characteristics of quasi-one-

dimensional and quasi-two-dimensional of carbon derivatives involving, single-layer carbon 

nanotubes and bi-layer graphene ribbons. 

 

Model and Effective Equations 
The electrical properties of CNTs and how they influence by an external electromagnetic field 

are pivotal joint for numerous publications (Harris, 2004) (Mintmire and White, 1995). A model 

that considers only the π-electrons of the nearest neighboring atoms makes it possible to obtain a 

correct description of the main electronic properties of CNTs. The dispersion, which defines the 

electrical characteristics of graphene, is known as: (Lakhtakia, 2004): 

 

          ………………... (1) 

 
Where  

energy of π-electrons in the conduction and the valence bands, -Planck constant, p = (px, 

py),  =2.68 eV are the integrals of electron hopping element between adjacent crystal lattice sites, 

and the distance between nearby carbon atom is b= 0.141 nm in graphene. The conduction band and 

the valence band are denoted by various signs in the dispersion relation, respectively. It is possible 

to derive the CNT dispersion relation, if we consider how the graphene sheet is rolled into a 

cylinder and apply the conditions for quantization of the quasi-momentum P along the CNT 

circumference. We take into consideration single-walled CNTs (n, 0) of the "zig-zag" form, which 

have semiconductor characteristics, likewise a quasi-one-dimensional carbon nanostructure                     

(Dragoman, 2014). The problem geometry is shown in Fig. (1). 

         The dispersion relation for CNTs (n, 0) of the "zig-zag" can be written as: (Lakhtakia, 2004):  

 

                      ………………… (2) 
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Where s=1, 2,..., n   -   the components of momentums throughout the circumference of the 

nanotube, and p=(px, s) is the quasi momentum of CNTs electrons. 
 

 
Fig. 1: CNTs of the "zigzag" type in an external electric field. The field strength vector E is 

directed along the CNT axis 
 

       The procedure of determining the electron transport coefficient in CNTs is sufficiently 

detailed in (Salimath and Ghosh, 2014) (Buligin et al., 1999). The semiclassical relaxation time 

approximation is used to simulate the evolution of the electrical system. In the  - approach, the 

Boltzmann kinetic equation yields the function of the electron distributions in a momentum state p 

= (px, s) (Pitaevskii and Lifshitz, 1981): 

 

            

 

    Where F= eE is the constant electrostatic forces stand-in on the particles, and    (p, r) is 

the Fermi distribution functions.  

     We utilize the method outlined in (Ohta et al., 2006) to understand how the CNT transport 

properties depend on the energy E.  

      Equation 2.4 below, illustrates how the current density's longitudinal components are shaped 

j= : 

 
 

   Expressions for σ(E) and D(E) of single-walled CNT for temperature distribution that is 

uniform. T(r) = constant in a linear approach in . The following formula describes σ(E) of 

zigzag CNTs: 

 
         .  ……(5) 
 

The following form is the expression for D(E) in CNTs of the "zig-zag" type:  
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Where the following notation is: 

 

 
  

 
 

  

  

            And : are the Fourier expansion coefficients of the electron energy. 

           

         The order of expansion in the Fourier series is determined by the electron Fourier dispersion 
relationship in CNTs  and . The relative unit of measure electric field strength 

is used for the procedure of non-dimensionalization, the practicality of 

qualitative analysis and visualization. 

         Additionally, the effects of E(x, t) directed along the ribbon's surface and applied along the x-

axis on the temperature dependence of the bi-layer graphene nano-ribbons' transportation 

characteristics were investigated. The geometric configuration of a bi-layer graphene ribbon placed 

in an external constant electric field is shown in Fig. (2). The tape under discussion has hexagonal 

construction in bi-layers that are packed in an ABAB pattern. The system is taken into account by 

the Hubbard model (Georges, 1996), which uses the nearest neighbor approximation and only the 

energy of π-electron. Graphene layers are subjected to coulomb potentials U. The tight-binding 

approximation band structure allows for the expression of the dispersion equation for a bi-layer 

graphene tape in the type (Ohta et al., 2006). 

 

            

Where the dispersion relation of single-layer graphene εp is determined by the formula (7) 

 

 
 

Table 1: Parameter Values for Equations 

 
The Parameters Values 

b- The distance between nearby carbon atom in graphene 0.141 nm 

a=3b/2ħ ħ is the Planck constant 

t0- The integral of electrons hopping between nearby crystal 

lattice locations 
≈ 2.67eV 

 -The hopping integral between layers ≈ (0.4) eV 

p = (px , s) The graphene electron's quasi-momentum 

px Parallel to the sheet graphene quasi-momentum 

s- The width of the graphene sheet is used to count the 

quantization’s of the momentum components 
1, 2, …, n 
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Fig. 2: Two-layer graphene ribbon in an external electric field. The field strength vector E is 

directed along the ribbon 

 

         The conduction and valence bands are denoted by various signs in the dispersion, respectively. 

Expressions for single-layer carbon nanotubes and bi-layer graphene tapes' specific σ(E) and D(E) 

are comparable. The acquired results of the temperature dependency of the transport properties for 

the types of carbon nanoparticles under consideration are shown graphically in the following 

section. 

 

RESULTS AND DISCUSSION 

Two different forms of nanostructures: Single-layer "zig-zag" carbon nanotubes and bi-layer 

graphene ribbons are used to illustrate how the transport properties of carbon derivatives depend on 

the temperature. The electron relaxation period is estimated to be 1.4 10-12 s (Dragoman, 2014). 

For the numerical analysis of the temperature dependences, semiconductor CNTs of the (10,0) type 

and bi-layer graphene tapes are considered.  The relationship between the strength of E and σ(E) of 

single-layer carbon nanotubes of the "zig-zag" type and bi-layer graphene tapes have property that 

is typical for semiconductor structures: as the external field's amplitude increases, it was first tends 

toward saturation before monotonically decreasing as the intensity increases, which is consistent 

with (Salimath et al., 2014). This phenomenon can be explained by the fact that increasing the 

number of electrons is actually filling up all the potential states in the conduction band. It should 

also be noted that a periodic and restricted dispersion relations rule in semiconductor constructions 

typically exhibit a similar type of change in σ(E) when they are subjected to an external electric 

field (Dykman, 1981). Fig. (3) shows the relationship between ϭ(E) of semiconductor type (10.0) 

and the tension of the external constant electric field E at various temperatures including: T = 10, 

50, 100 and 300 K (black, red, green and blue curves respectively). These four values of ϭ(E) were 

obtained using formula (2.5).   
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Fig. 3: Electrical conductivity σ(E) of CNTs type (10.0) at various temperatures as a function 

of the strength of an external electric field E.  

 

Fermi-Dirac distribution implies that as the temperature rises, the concentration of the free 

charge carriers should also rise in the conduction-band. Furthermore, increasing the temperature 

causes the conduction band to be filled up with low-energy quantum states, as a result of the 

degeneracy of the energy states has been doubled in the conduction band. On the other hand, σ(E) 

coefficient decreases with rising the temperature because the fully filled states do not contribute to 

the substance's conductivity. The fact that the energy gap in the electronic spectrum is very small 

within the confines of the model under examination, which also ensures conducting qualities, 

should be taken into consideration. Regarding bi-layer carbon nanoribbons, as shown in Fig. (4), a 

similar type of dependency of σ(E) on the magnitude of the strength of E is also found. 
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Fig. 4: Electrical conductivity σ(E) of CNTs bi-layer type (10.0) at various temperatures as a 

function of the strength of an external electric field E. 
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        As the temperature rises, the electrical conductivity coefficient decreases, which is explained 

by the reasons described above. It should be noted that the application of electrostatic potential and 

accounting for the jump of electro-nov between layers of tape has resulted in single-layer carbon 

nanotubes of the "zig-zag" type having a quantitatively higher σ(E) than bi-layer carbon 

nanoribbons containing the same number of unit cells in the cross-section.  A rise in the constant 

voltage across the layers of tape results in a reduction in σ(E) (Buligin et al., 1999). This behavior 

reflects by rearranging the Fermi level, which eventually raises the number of localized 

(degenerate) states in the electronic spectrum. For D(E) calculations in Figs.(5 and 6) the applied 

transverse voltage between the graphene layers is 1 V. Figs.( 5 and 6), also suggest that D(E) of 

both single-layer "zig-zag" CNTs and bi-layer graphene tapes are temperature independent. These 

results of D(E) calculations Figs. (5 and 6), were obtained by employing formula 2.6. This finding 

can be explained by the fact that, the concentration gradient is independent of the temperature and 

instead it characterized by the diffusion coefficient, which has a constant value. 
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Fig. 5: D(E) versus the strength of E, of CNTs type (10.0). 
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Fig. 6: The influence of the external electric field E, on D(E) for bi-layer graphene tapes  

             type (10.0) 
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          In both single-layer and bi-layer carbon nanostructures, D(E) relies nonlinearly on the 

strength of E. Initially increasing E causes the field to grow then decreases to a stationary value. 

Systems of periodic and constrained electron dispersion relations in general, exhibit the described 

transport phenomena in reference (Dykman, 1981). These key results can be applied to generate 

carbon nanoparticle-based composites and nano/ microelectronic components in addition to carbon 

nanoparticles with specified transport properties. 

 

CONCLUSION 

         This research includes a theoretical analysis of the transport properties of carbon nanoparticle 

derivatives which involve quasi-one-dimensional (single-layer carbon nanotubes) and quasi-two-

dimensional (bi-layer graphene nanoribbons). This study shows that for various temperatures 

including 10, 50, 100 and 300 K, the amplitude of the external constant electric field E has a 

nonlinear relationship with σ(E) of carbon nanoparticles. It also explains how the σ(E) coefficient 

decreases with increasing the temperature. On the other hand, both single-layer and bi-layer 

nanoparticle derivatives demonstrate a temperature-independent behavior of electron diffusion 

through the studied structures. This study also proves that D(E) has a nonlinear dependence on the 

intensity of E for the explored structures. 
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 للأنابيب النانوية أحادية الجدار والجرافين ثنائي الطبقة  يةقلاالتحقيق النظري في الن

 

 ر عبداللهظماهر نا
 جامعة ديالى /المقداد التربيةقسم الرياضيات/ كلية 

 
 الملخص

بما في ذلك الأنابيب النانوية أحادية الطبقة    الكربونية،تمت دراسة خصائص النقل للعديد من مشتقات الجسيمات النانوية  
ثنائي   خارجي.  الطبقة،والجرافين  ثابت  كهربائي  مجال  لوقت   تحت  الكلاسيكي  شبه  للتقريب  كدالة  وتحديدها  النتائج  تحليل  تم 

 σالاسترخاء باستخدام معادلات بولتزمان الحركية. تم استخدام هذه الأساليب للحصول على العلاقات بين الموصلية الكهربائية  

(E)  ومعامل انتشار الإلكترونات D(E)   تنخفض    الحرارة،في الهياكل النانوية الكربونية. تثبت هذه الدراسة أنه عندما ترتفع درجة
من درجات  لكل من الهياكل النانوية الكربونية أحادية الطبقة وثنائية الطبقة. بالنسبة لمجموعة واسعة    σ (E)الموصلية الكهربائية  

الكهربائي    الحرارة، التوصيل  سلوك  الكهربائي    σ (E)يعتمد  المجال  حجم  على  بشكل غير خطي  المدروسة  النانوية  للجسيمات 
مستقل عن درجة الحرارة لكل من الطبقات الفردية والثنائية. كما   D (E)فإن معامل انتشار الإلكترون    المقابل،(. في  Eالخارجي )

 يوضح أن شدة المجال الكهربائي الخارجي لها تأثير غير خطي على معامل انتشار الإلكترون. 
 
معادلات بولتزمان    الإلكترون،انتشار    الكهربائي،التوصيل    الطبقة،الجرافين ثنائي    الجدار،: الأنابيب النانوية أحادية  دالةالكلمات ال

 .الحركية
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