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H I G H L I G H T S   A B S T R A C T  
• Create a model to identify areas that use river 

irrigation and those that use seasonal 
irrigation. 

• An overall methodology identified vulnerable 
agricultural areas at risk of meteorological 
drought in time and space. 

• The BEAST model performed well in time 
series analysis, making the geostatistical 
model applicable to all land covers 

• The geostatistical model is applicable globally 
at the pixel level for comprehensive analysis. 

 Identifying vulnerable agricultural lands at risk of meteorological drought is 
challenging for researchers. Its complexity lies in the fact that agricultural lands 
are irrigated by two sources: rain and rivers. In this research, we have developed a 
geostatistical model to separate river-dependent lands unaffected by 
meteorological drought waves and land vulnerable to the risk of meteorological 
drought. The inputs of this geostatistical model are the vegetation index and the 
humidity index extracted from Landsat 8, the rainfall from CHIRPS, and the 
LULC from ESA. The correlation between the Normalized Difference Vegetation 
Index (NDVI), the Normalized Difference Moisture Index (NDMI), and the 
rainfall was tested using the Pearson Correlation Coefficient (PCC) for more than 
five million pixels representing agricultural lands in Dhi-Qar Iraq. The Getis-Ord 
Gi* statistical index was used to cluster each pixel according to PCC value. This 
model achieved accurate results as it was validated using ground truth and the 
BEAST (Bayesian Estimator of Abrupt Change, Seasonality, and Trend) model, 
and the results of this model were promising. It was concluded that 42% of the 
lands in the study area are vulnerable to the risk of meteorological drought, rivers 
permanently irrigate 37%, and 21% are cultivated in the winter season only. 
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1. Introduction 
Risk assessment is a systematic procedure for assessing hazards' characteristics, probability, and magnitude linked to specific 

substances, situations, actions, or events while considering relevant ambiguity [1]. Risk refers to the possibility of adverse 
outcomes for human or environmental systems, and it is characterized by three essential elements: hazard, vulnerability, and 
exposure [2]. Land degradation is a risk with three basic components for risk assessment: hazard, the impact of global climate 
change; vulnerability, the exposure of bare land to the risk of degradation; and exposure, the direct impact on human life. Since 
land degradation is a complex problem [3], it will be a multi-hazard, where each of the most significant impacts that inevitably 
lead to degradation can be considered a hazard. One of the most critical factors in land degradation is drought in all its forms, 
especially in agricultural lands where drought is pivotal in exposing the cropland to degradation [4-5]. 

Drought is one of the five processes that lead to land degradation [4]. It is also described by its slow effect and recurrence 
according to severity and duration [6-7]. The risks of drought's impact lie in its effect on plant nutrients due to its effect on 
organic carbon. Drought also causes soil erosion due to winds and dust storms. In addition, the main danger to humans is the 
lack of cropland crops, food resources, and plant products.Drought is divided into four types: meteorological, agricultural, 
hydrological, and socioeconomic drought. The absence or severe decrease in rainfall during the rainy season over a specific area 
defines that it is suffering from a meteorological drought [8]. Meanwhile, the definition of agricultural drought is a lack of soil 
moisture and is a hazard, especially during the initial growth period of plant growth [3,9-10]. Building dams and controlling the 
course of the river, especially in the upstream countries, is considered one of the human interventions in creating drought, which 
is a type of socioeconomic drought [11]. Hydrological drought is a decrease in river water flow or groundwater reserves caused 
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by climate change [12]. Meteorological drought is the most common and significant variety, as it frequently serves as the 
precursor to other drought forms [13]. 

Researchers paid close attention to the drought issue in Iraq, evaluating drought characteristics throughout the country using 
different methods and data. Israa et al. [14], attempted to evaluate agricultural drought overall in Iraq by examining the NDVI 
time series derived from MODIS, which has a spatial resolution of 250 meters. Youssef et al. [15], employed four distinct spectral 
drought indices to monitor agricultural drought in Iraq: the vegetation health index (VHI), the vegetation drought index (VDI), 
the visible and shortwave infrared drought index (VSDI), and the temperature-vegetation dryness index (TVDI). All indices were 
derived from the MODIS dataset of the Terra satellite, which has a spatial resolution of 250 meters. Imzahim et al. [5], used 
NDVI and the Vegetation Condition Index (VCI) obtained from Landsat 8 to monitor agricultural drought in the middle 
Euphrates Area. Lubna et al. [16], used NDVI derived from landsat 8 t and standardized precipitation index (SPI) from ground 
weather stations (GWSs) to monitor the agricultural and metrological drought in the Wasit Province. Zaidoon et al. [17], 
presented a methodology for integrating TRMM  data with GMSs data through the SPI application to monitor the meteorological 
drought in the Western Iraq study area. 

Previous studies have monitored and evaluated both meteorological and agricultural droughts. To our knowledge, no 
geostatistical model has been developed to identify agricultural lands vulnerable to the risk of meteorological drought, 
particularly in the Dhi Qar study area. This research aims to address this gap by presenting a geostatistical model that identifies 
agricultural lands vulnerable to metrological drought risk. The model will operate at the pixel level with a spatial resolution of 
30 meters. The objectives of this research are as follows: (i)- Isolating the influence of the river on agricultural areas. In other 
words, to what extent can rivers be relied upon for irrigation in the wet season? (ii)- Identifying the areas vulnerable to 
metrological drought.  

2. Materials and methods 

2.1 Study area 
This model was applied to the Dhi Qar Governorate in Iraq. Dhi Qar Governorate is a typical study area due to its 

environmental diversity, as it contains rivers, agricultural areas, pastures, marshes, and wetlands, see Figure 1. Dhi Qar 
governorate extends from Wasit governorate in the north to Basra governorate in the south and from Maysan governorate in the 
east to Al-Muthanna governorate in the west of Iraq. The study area is located between latitudes 30° and 32° North and longitudes 
45° and 47° East. Dhi Qar governorate is approximately 161.5 km long and has a width ranging from 55 km to 142 km. The 
major rivers in Dhi Qar are the Gharraf River and the Euphrates River. Gharraf River originates from the Kut Dam. The Kut 
Dam is situated on the Tigris River. The Euphrates River also flows through the southwestern part of the governorate. 

 
Figure 1: The study area 
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2.2 Data 
Different data sources were utilized for our research, including rainfall amounts, land used/land cover (LULC), vegetation 

index, and moisture index (see Table 1). Rainfall data from ground weather stations (GWS) are more spatially accurate but less 
reliable than satellite data in terms of temporal accuracy and spatial distribution. The Dhi Qar study area has four GWSs: Al-
Shtraa, Al-Fajr, Chibaish, and Souq Al-Shuyoukh (see Figure 1). These stations are poorly distributed in the study area, and 
there is also  inconsistency in the time of observations and frequent malfunctions at different periods for each station. In our 
previous work, CHIRPS   was chosen as the best alternative for rainfall data based on evaluating the quality of its data with the 
data of the four GWSs. CHIRPS  covers parts of the world between 50° N and 50° S and has different spatial resolutions. The available spatial 
resolution is between 0.05° and 0.01° depending on the region and the period [18] . This dataset has been previously reported by Funk et al., [19] .  

Table 1: The data used, its source, and its abbreviation 

Data Abbreviation Resolution Time Source 
Rainfall Estimates from Rain 
Gauge and Satellite 
Observations 

CHIRPS 500 m 2013-2023 https://data.chc.ucsb.edu/products/C
HIRPS-2.0/ 

land used/land cover LULC 10 m 2021 https://worldcover2021.esa.int/down
load 

Normalized Difference 
Vegetation Index 
Normalized Difference 
Moisture Index 

NDVI-L8 
 
NDMI-L8 

 
30 m 

 
2013-2024 
 
 

Post-processing of Landsat satellite 
images, source 
https://earthexplorer.usgs.gov/ 

 
Land cover/land use (LULC) data were collected from global ESA (European Space Agency) world cover. LULC data with 

a spatial resolution of 10 meters and overall accuracy 82..1 +/-1.0 in Asia [20-21].Compared with other global LULC products, 
ESA World Cover achieved the highest overall accuracy [22]. Landsat 8 data for the study area's red, blue, and thermal bands 
was downloaded from the United States Geological Survey (USGS). The data was used to extract NDVI and NDMI from 2013 
to 2024. 

2.3 Methodology 
The research methodology involves creating a geostatistical model to understand the relationship between rainfall, vegetation 

cover, and moisture content. This model is then validated through ground truth data and field visits. Additionally, the time series 
of rainfall and NDVI are analyzed to confirm the relationship between rainfall and vegetation cover in the areas identified by the 
geostatistical model.  

2.3.1 Geostatistical model development 
Our geostatistical model explores the relationship between rainfall, vegetation cover, and moisture content. This hypothesis 

can be summarized as follows: (A weak relationship among humidity, vegetation cover, and rainfall suggests that a river 
influences the area, and vice versa). This hypothesis was tested over twelve years, from 2013 to 2024. Based on the hypothesis 
and with three determinants (rain, humidity, vegetation), the correlation is once between rain and the vegetation Index (NDVI-
Rian) and another time between rain and the moisture Index (NDMI-Rian). There will be two possibilities: a strong correlation 
between NDVI-Rian and a strong correlation between NDMI-Rian (high-high correlation: H-H NDVI-Rain-NDMI).  

The second possibility is the opposite of the first ((low-low correlation: L-L NDVI-Rain-NDMI). Accumulated rainfall data 
were collected from the beginning of the rainy season in October- November [23], to the start of March, and the time lag for 
collecting the NDVI and NDMI data was 20 days. Therefore, with the fixed time lag for collecting the NDVI-NDMI data in 
March, we will have a third possibility in our hypothesis (high-low correlation: H-L NDVI-Rain-NDMI). The third possibility 
indicates the presence of agriculture during the data collection period, which may indicate a strong correlation with NDVI-Rain 
and a weak correlation with NDMI-Rain. The second possibility is the presence of water and agriculture throughout the year 
(region of influence of rivers). The first possibility indicates the synchronization of agriculture with the abundance of water. 
Note Table 2 and Figure 2. 

Table 2: Possible probabilities hypothesis for the geostatistical model 

probability Interpretation 
H-H NDVI-Rain-NDMI The relationship between water abundance and rainfall abundance 

L-L  NDVI-Rain-NDMI The water source is constant (river effect), and water availability is not related to 
rainfall abundance. 

H-L NDVI-Rain-NDMI The effect of time lag. 
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Figure 2: Explains the methodology of Geostatistical model development 

Personal Correlation Coefficient (PCC) is applied to find the relationship between vegetation index, moisture content, and 
rainfall. PCC is a global spatial statistical test that examines the linear relationship between two variables [24]. It is calculated 
for each pixel representing the agricultural lands using Equation 1: 

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦) = ∑ (𝑥𝑥𝑖𝑖−ẍ)(𝑦𝑦𝑖𝑖−ẏ)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−ẍ)𝑛𝑛
𝑖𝑖=1

2 ∑ (𝑦𝑦𝑖𝑖−ẏ)𝑛𝑛
𝑖𝑖=1

2
  (1) 

The values of x and y are the first and second variables, respectively, and in the case of our geostatistical model, x will be 
the value of the NDVI and NDMI, and y will be the value of the amount of rainfall for pixel i. PCC has been used in many 
studies to find the relationship between climate elements and ecosystem elements [25-27]. Paul et al. [28], used PCC to analyze 
the relationships between parameters, including mean annual temperature, annual rainfall, NDVI, night light, distance from 
water, human population density, and elevation. They applied this data to investigate the habitation patterns of deer in northern 
India. In another study, Ferro et al. [29], employed PCC to identify correlations between NDVI and quantitative and qualitative 
parameters of vines. Similarly, Feizabadi et al. [30], Utilized PCC to find correlations among various parameters such as the 
Digital Elevation Model (DEM), NDVI, human influences, annual mean temperature (°C), and annual precipitation (mm). Hua 
et al. [31], used PCC to assess the correlation between estimated slopes, annual changes in phenology, and different climatic 
factors. Lastly, Sannigrahi et al. [32], applied PCC to establish correlations between multiple parameters to study the impacts of 
climate change and land use dynamics on the biophysical and economic values of ecosystem services in a nature reserve area. 
These parameters included vegetation indices, climate data (e.g., evaporation, precipitation, temperature), DEM, soil data, roads, 
railways, and other relevant data for their study. 

The value of PCC is between a negative one and a positive one, where a positive one indicates a strong correlation value, a 
negative one indicates an inverse correlation value, and zero indicates no correlation between the parameters. The parameters of 
the geostatistical developer model are rainfall from CHIRPS, NDVI, and NDMI extracted from Landsat 8  (Equations 2 and 3). 
Samples measuring 30 m x 30 m were collected from agricultural lands and extracted from the LULC layer, (see Figure 2). Next, 
classify each pixel containing a PCC value using the Getis-Ord Gi* statistical index. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

   (2) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1
𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁1

   (3) 

The Getis-Ord Gi* statistical index provided a better understanding of the relationship between vegetation, humidity, and 
rainfall in agricultural lands where the river is used as a source of irrigation. The statistical significance of the hot spot analysis 
was tested using the standardized Z-value, with higher positive Z-values indicating tighter clustering of high values (hot spots) 
and lower negative Z-values indicating tighter clustering of low values (cold spots). It has been utilized in spatial analysis for 
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ecosystem and ecological environmental studies [33-37], natural hazards [38-39], flood studies [40-41], health and population 
patterns [42-43], and drought [44-46]. This study used the Getis-Ord Gi* index to investigate the clustering of high and low 
correlation of the vegetation, humidity, and rainfall (NDVI-Rain and NDMI-Rain) in the study area from 2013 to 2024. Its 
mathematical formula is as follows (From Equation 4 to 6): 

 𝐺𝐺∗ =
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1
∑ 𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (4) 

 𝑍𝑍(𝐺𝐺∗) =
∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗−𝒳𝒳∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑗𝑗=1

𝑠𝑠
��𝑛𝑛∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

2𝑛𝑛
𝑗𝑗=1 −�∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛
𝑗𝑗=1 �

2
�

𝑛𝑛−1

  (5) 

 𝑆𝑆 = �∑ 𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑅𝑅
− 𝒳𝒳2  (6) 

where G* is the clustering index of pixel i, Wi,j is the weight matrix between pixel i and j (calculated based on the Euclidean 
distance between pixel), x,j is the attribute value of a pixel, n is the total number of pixel, χ is the mean of all pixel’s attributes 
within the study area, and S denotes the standard deviation of all pixel’s attribute values. In our model, each pixel's attribute 
value was considered the PCC value of NDVI-Rain and NDMI-Rain. 

2.3.2 Model validation 
The geostatistical model is validated in two ways. The first is a field visit that includes photographing and interviewing the 

landowners. The questions are typically answered with short responses, such as "When was the last planting season?" and "Is 
groundwater used for irrigation?" (refer to Table 3). The second method to achieve this is to analyze the time series of rainfall 
and vegetation index using the BEAST (Bayesian Estimator of Abrupt Change, Seasonality, and Trend) model. 

Table 3: Ground truth sample questions 

E =xxxxxx   
N=xxxxxxx   UTM Zone:38N ID=1 

 Additional comment 

What is the source of irrigation? ********* ********** 

Cultivation season (winter, summer, mixed)? ********* ********** 

Do you use groundwater for crop cultivation? ********* ********** 

During the past ten years, has the planting season been regular? ********* ********** 

What year was the last planting season? ********* ********** 

Which year was the most abundant in water resources? ********* ********** 
What year is considered the driest? ********* ********** 

 

BEAST decomposes the time series into its trend, seasonal, and remainder components. However, the model structure, or 
the number and timing of breakpoints, is estimated through Bayesian modeling to reduce uncertainty, overfit, and model 
misspecification. This model was formulated by John  Zhao  et al. [47]. The BEAST model was used with remote sensing data 
for time series analysis  [48-52]. Many other studies in various fields, for example, in ecology [53], environmental engineering  
[54], in biomedical engineering [55], geography [56], and watershed hydrology [57]. The power of the BEAST model is in 
revealing the local trend between periods, giving the added benefit of a reasonable interpretation of vegetation-rain change in 
the study area. BEAST formulated are: 

 𝑌𝑌𝑡𝑡 = 𝑇𝑇(𝑡𝑡𝑖𝑖;𝛩𝛩𝑇𝑇) + 𝑆𝑆(𝑡𝑡𝑖𝑖;𝛩𝛩𝑠𝑠) + 𝜀𝜀𝑖𝑖   (7) 

where Y is the observed data at time t (t = 1, …n), i is the index of the time dimension, T is the trend component, and it is a 
piecewise linear model with m breakpoints and m + 1 linear models, where abrupt changes are found at the breakpoints τi (i = 
1, …m), and gradual changes are given by the: 

 𝑇𝑇 = 𝛼𝛼, +𝛽𝛽𝑖𝑖t  (8) 

S is the seasonal component that fits with a harmonic model with ρ breakpoints and ρ + 1 harmonic models, where seasonal 
changes are found at the breakpoints ξj (j = 1, … ρ). Harmonic models account for periodicity using K harmonic terms (sinusoids 
with different characteristics):  

 𝑆𝑆𝑖𝑖 = ∑ 𝜑𝜑𝑗𝑗.𝑘𝑘 sin �2𝜋𝜋𝑘𝑘𝑡𝑡
𝑓𝑓

+ 𝛿𝛿𝑗𝑗,𝑘𝑘�𝑘𝑘
𝑘𝑘=1  (9a) 
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for ξj-1 ≤ t < ξj and where φ is the amplitude, f is the frequency, and δ is the phase of the sine wave. The Equation 9 has been 
modified to be compatible with BEAST for handling non-linear time series such as the Rainfall and NDVI time series: 

 𝑆𝑆𝑖𝑖 = ∑ �𝛾𝛾𝑗𝑗.𝑘𝑘 sin �2𝜋𝜋𝑘𝑘𝑡𝑡
𝑓𝑓
� + 𝜃𝜃𝑗𝑗.𝑘𝑘 cos �2𝜋𝜋𝑘𝑘𝑡𝑡

𝑓𝑓
��𝑘𝑘

𝑘𝑘=1  (9b) 

where the linear coefficients of the regression model are γj,k = φj,kcosδj,k and θj,k = φj,ksinδj,k. Note that K is a user-defined 
constant (it does not vary across j segments). 𝜀𝜀𝑖𝑖  is the remainder component. The trend component linear model: ΘT represents 
the parameters related to the trend, and ΘS represents the parameters related to seasonality. It is expressed in the following 
Equations: 

 𝛩𝛩𝑇𝑇 = {𝑚𝑚} ∪ {𝜏𝜏𝑁𝑁}𝑖𝑖=1,…..𝑚𝑚 ∪ {𝛼𝛼,𝛽𝛽𝑖𝑖}𝑖𝑖=0,….𝑚𝑚 (10) 

 𝛩𝛩𝑠𝑠 = {𝑝𝑝} ∪ {𝜉𝜉}𝑗𝑗=1,.𝑝𝑝  ∪ {𝑘𝑘}𝑗𝑗=0,..𝑝𝑝 ∪ {𝛾𝛾𝑗𝑗,𝑘𝑘 ,𝜃𝜃𝑗𝑗,𝑘𝑘}𝑗𝑗=0,.𝑝𝑝;𝑘𝑘=1.,𝑘𝑘𝑗𝑗     (11) 

Reformulating Equation7 as a simple linear regression: 

 𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑀𝑀(𝑡𝑡𝑖𝑖)𝛽𝛽𝑚𝑚 + 𝜀𝜀𝑖𝑖   (12) 

where 𝑋𝑋𝑀𝑀  is the design matrix with the form dependent on M, and M is where M is the model structure from Equations 10 and 
Equation 11: 

 𝑁𝑁 = {𝑚𝑚} ∪ {𝜏𝜏𝑁𝑁}𝑖𝑖=1,…..𝑚𝑚 ∪ {𝑝𝑝} ∪ {𝜉𝜉}𝑗𝑗=1,….𝑝𝑝  ∪ {𝑘𝑘}𝑗𝑗=0,….𝑝𝑝  (13) 

And  𝛽𝛽𝑚𝑚 are the corresponding coefficients from Equations 10 and 12: 

 𝛽𝛽𝑀𝑀 = {𝛼𝛼,𝛽𝛽𝑖𝑖}𝑖𝑖=0,….𝑚𝑚 ∪ {𝛾𝛾𝑗𝑗,𝑘𝑘  ,𝜃𝜃𝑗𝑗,𝑘𝑘}𝑗𝑗=0,….𝑝𝑝;𝑘𝑘=1.,….𝑘𝑘𝑗𝑗  (14) 

After preparing the necessary data and libraries, this model was implemented using the Google Colab platform. The library 
that contains the code for this model is Rbeast [58]. The full description of the BEAST model can be found in  [47]. 

3. Results and discussion 

3.1 Geostatistical model development 
Approximately 5,500,000 pixels representing agricultural areas were extracted for the study area. Each pixel extracted from 

the LULC contains three values. The first and second values represent the NDVI and NDMI extracted from Landsat 8, and the 
third value represents the rainfall extracted from CHIRPS. The five million pixels were analyzed using the Getis-Ord Gi* 
statistical index. They were clustered based on their PPC values, with low correlation clusters in blue and high correlation clusters 
in red. The confidence levels were also indicated, with 99%, 95%, and 90% confidence levels displayed for each color gradient, 
see Figure 3 (a and b). Only each pixel value with a high correlation at a 99% confidence level was extracted, ignoring the other 
pixels with a lower confidence level.  

The extension of the PCC-NDVI-Rain and PCC-NDMI-Rain regions is nearly identical. We observe that the L-L NDVI-
Rain-NDMI region is close to the main rivers (Graff and Euphrates) with a confidence level of 99%. These regions exhibit a low 
correlation between moisture content and vegetation cover with the amount of rainfall. The L-L NDVI-Rain-NDMI region 
encompasses approximately 1600000 pixels and covers an area of 147890 hectares. According to our model, this area heavily 
depends on river water as a source of irrigation. The mean value of PCC is about 0.12 between rainfall and the NDMI and 0.24 
between rainfall and NDVI in the L-L NDVI-Rain-NDMI region at a confidence level of 99%, see Figure 4a. 

In contrast, the results indicate that the H-H NDVI-Rain-NDMI region is located farthest from the main rivers in the study 
area, covering approximately 19000000 pixels and an area estimated at 171900 hectares (see Figure 3c). The mean value of PCC 
is about 0.46 between rainfall and the NDMI and 0.52 between rainfall and NDVI in the H-H NDVI-Rain-NDMI region at a 
confidence level of 99% (see Figure 4b). Notably, the H-H NDVI-Rain-NDMI region covers a larger area than the L-L NDVI-
Rain-NDMI region, with an increase of 7.5%. As previously assumed, vegetation cover and moisture content in the H-H NDVI-
Rain-NDMI region are linked to water availability due to abundant rainfall. In contrast, the H-L NDVI-Rain-NDMI region results 
from the data collection lag time.  

The H-L NDVI-Rain-NDMI region is mainly located between the L-L NDVI-Rain-NDMI region and the H-H NDVI-Rain-
NDMI region (Figure 3c), covering 980000 pixels and about 87800 hectares. The mean value of PCC is about 0.41 between 
rainfall and the NDVI and 0.21 between rainfall and NDMI in the H-L NDVI-Rain-NDMI region at a confidence level of 99%, 
see Figure 4c. The H-L NDVI-Rain-NDMI region represents 21% of the total agricultural land. In comparison, the L-L NDVI-
Rain-NDMI and H-H NDVI-Rain-NDMI regions represent 37% and 42% of the total agricultural land, respectively. 
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Figure 3: a and b  Spatial distribution of PCC NDMI-Rainfall and PCC NDVI-Rainfall, respectively. c- show the H-L, H-H,  

        and L-L regions 

 
Figure 4: Frequency distribution chart a.L-L region, b.H-H region, and c-H-L region 

3.2 Geostatistical model validation 

3.2.1 Field verification 
The field visit was conducted to verify the geostatistical developer model, which included interviewing the landowners and 

asking them questions. The questions were short answers arranged according to Table 2. We conducted around 20 interviews 
and collected 152 ground truth samples from various locations within the study area. All the landowners confirmed that rivers 
are the only source of irrigation and that wells are not used for crop irrigation. Wells were used daily to water some trees and 
quench their animals in areas facing severe water shortages, which they noticed in H-H NDVI-Rain-NDMI regions(refer to 
Figure 5a.4 and for more details, see Supplementary Materials No. 1). They also agreed that 2021-2022 was a dry year. 
Additionally, we observed a significant decrease in the water level in the irrigation canals, with the water barely reaching the 
bottom of the control gates. This can be seen in Figure 5a.2, b.1, and Supplementary Materials No. 1, which includes Image IDs 
34, 44, 45, 56, 57, 68, 6981, 78, 93, and 121. These gates regulate water transfer from the L-L NDVI-Rain-NDMI regions to H-
H NDVI-Rain-NDMI regions. This confirms that our model effectively identified and isolated areas affected by rainfall and the 
river. It is worth noting that all ground truth samples were collected in September and the beginning of October, before the rainy 
season, confirming that H-H NDVI-Rain-NDMI regions rely on the irrigation canals' water level during the rainy season. We 
also observed that landowners in L-L NDVI-Rain-NDMI regions and H-L NDVI-Rain-NDMI regions utilize pumps to lift water 
from the irrigation channels to their lands during irrigation. These pumps are either electric or use kerosene (see Figure 5 c.2,d. 
one and Supplementary Materials No. Image ID 5, 22, 110 and 116). It was also noted that most of the land in the H-H NDVI-
Rain-NDMI regions was abandoned by farmers, as the farming process was no longer economically viable (see Supplementary 
Materials No. Image ID 16-21,64-73,94-94,105,135,149,150 and 151). This led to the growth of harmful plants see Figure 5 
a.1,c.1, and c4. Finally, during our field visit, we noticed that the H-L NDVI-Rain-NDMI regions are cultivated in only one 
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season. These areas are cultivated in the winter season, specifically in November, with wheat and barley crops (see Image ID 6-
10, 26-29, 36-49, 58-61, 83-85, 89-92 and 117-120 in Supporting Material No.1 where farmers prepare the land in October for 
the winter planting season). They are harvested in May and reach their maximum greenness in March. 

 
Figure 5: Ground truth samples 

3.2.2 Time sires analysis 
During the time series 2013-2024, the study area experienced significant fluctuations in rainfall amounts. The maximum 

recorded rainfall was 79 mm in 2019, while the minimum was 30 mm in 2021. The monthly average rainfall was approximately 
25-30 mm during the rainy season, see Figure 6. The BEAST model's results include detecting seasonal and trend change points. 
Each change point identified over time in the season or trend was assigned a rank based on the Probability of Change Point (PCP) 
and the Probability of Change Point in this trend (PCPT). Refer to Table 4 for details. 
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Figure 6: Monthly rainfall during the time series 2013-2024 

The BEAST model's findings revealed ten seasonal change points during the rainy season, with PCP values ranging from 
0.98 to 0.70. The highest PCP value from the previous season was recorded in October 2018 at 0.98. Additionally, between 2017 
and 2018, there was a noticeable increase in rainfall amounts in 2018 compared to 2017, with a PCP of 0.97. The Trend 
Component (TC) in rainfall between the 2017, 2018 and 2019 seasons showed an upward trajectory, as the PCPT was estimated 
to be very high at 0.98 see Table 3 and Figure 7a. From October 2013 to 2014, no significant changes were observed in the rainy 
season. The first change was recorded in January 2015, with a PCP of 0.87. The TC of rainfall remained stable without significant 
increases until January 2017, with PCP values recorded at 0.82 and a notably low value of 0.019 for 2016. This indicates no 
change in the amount of rainfall during 2016. Throughout these years, the PCPT was around 0.44. A similar pattern emerged in 
April 2019 when the trend began to decline, with the PCPT value to approximately 0.60, confirming the decrease in rainfall for 
that year. This decline persisted until October 2022, when the region observed increased rainfall amounts following that period 
see Figure 6 and Figure 7a. To summarize the above, we notice that from 2013 to 2014, there was a steady TC in rainfall amounts, 
with a slight increase in the 2015-2016 season. Then, we notice a decline in the TC of rainfall amounts in the 2017-2018 season, 
followed by a significant increase in the TC of rainfall amounts in the 2018-2019 season. This TC increased for just one season, 
but then there was a significant decline in rainfall amounts in the 2019-2020 season. This substantial decline continues until 
2022, followed by a slight increase in 2023. This increase continues until 2024.   

The H-H region experienced fluctuations in seasonal values of NDVI over the time series from 2013 to 2024. During this 
period, nine seasonal change points were recorded, confirmed by PCP values ranging from 0.999 to 0.925. The highest ranking 
occurred in January 2019, while the lowest was in October 2016. In April 2020, the PCP value was 0.71, lower than other PCP 
values in the H-H region but still considered high. Five trend change points were identified in the H-H region, with PCPT values 
between 1 and 0.95. The highest trend change point, recorded in October 2018, had a PCPT value of 1. Trend change points 
followed this in September 2021, January 2023, September 2014, and October 2019, with PCPT values of 0.999, 0.996, 0.967, 
and 0.953, respectively. The positive TC observed in October 2018 marked the beginning of increased water abundance due to 
heavy rainfall. They exhibited the highest slope in TC throughout the 2013-2024 time series. In contrast, the negative TC from 
September 2021 to January 2023 reflected a significant decline, characterized by sharp fluctuations in the NDVI value. These 
fluctuations were closely related to occurrences of abundant rainfall see Table 3 and Figure 7b. 

 
Figure 7: Time Series decomposition and changepoint for a-rainfall, b-H-H region, c-L-L region, and d-H-L region 
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Table 4: Shows that the BEAST model's results include detecting seasonal and trend change points for rainfall, H-H, L-L, and H-L regions 

Rain full H H Region 

S.C.P T.C.P S.C.P S.C.P 

Rank Time PCP Rank Time PCPT Rank Time PCPT Rank Time PCPT 

1 Oct-18 0.985 1 Jan-18 0.830 1 Jan-19 0.999 1 Oct-18 1.000 

2 Jan-18 0.973 2 Oct-20 0.652 2 Sep-21 0.998 2 Sep-21 0.999 

3 Jan-20 0.883 3 Apr-19 0.601 3 Sep-13 0.986 3 Jan-23 0.996 

4 Jan-15 0.878 4 Apr-22 0.466 4 Jan-23 0.984 4 Sep-14 0.967 
5 Oct-13 0.875 5 Apr-16 0.441 5 Oct-23 0.976 5 Oct-19 0.953 
6 Oct-23 0.841 6 Sep-15 0.312 6 Jan-18 0.959 6 Apr-13 0.883 

7 Jan-17 0.823 7 Jan-15 0.204 7 Sep-14 0.958 7 Jan-18 0.351 

8 Jan-21 0.726 8 Oct-13 0.183 8 Jan-16 0.928 8 Jan-22 0.297 

9 Mar-22 0.710 9 Jan-20 0.111 9 Oct-16 0.925 9 Jan-16 0.130 

10 Jan-16 0.019    10 Apr-20 0.718 10 Oct-16 0.107 

L L Region H L Region 

S.C.P S.C.P S.C.P S.C.P 

Rank Time PCP Rank Time PCPT Rank Time PCP Rank Time PCPT 
1 Sep-18 0.826 1 Oct-18 0.972 1 Sep-21 0.926 1 Apr-18 1.000 

2 Jan-23 0.304 2 Jan-23 0.793 2 Mar-20 0.917 2 Jan-23 0.981 

3 Jan-22 0.266 3 Jan-22 0.606 3 Apr-18 0.897 3 Sep-21 0.970 

4 Apr19 0.123 4 Oct-13 0.441 4 Oct-22 0.812 4 Oct-13 0.933 

5 Jan-14 0.118 5 Jun-14 0.373 5 Mar-19 0.573 5 Sep-14 0.799 

6 Oct-20 0.059 6 Oct-19 0.341 6 Oct-20 0.518 6 Jan-24 0.650 

7 Jan-16 0.056 7 Oct-20 0.241 7 Oct-16 0.515 7 Jan-16 0.641 

8 Apr-17 0.039 8 Oct-16 0.168 8 Jan-13 0.181 8 Oct-19 0.581 

9 Mar-15 0.017 9 Jan-24 0.151 9 Jan-24 0.113 9 Oct-20 0.554 
   

10 Jan-16 0.110 10 Sep-17 0.031 10 Oct-15 0.467 
 
Note: S.C.P (Seasonal  Change Points), T.C.P(Trend Change Points), PCPT(Probability of Change Point), and PCPT 

(Probability of Change Point in this trend). 
 
The L-L region exhibited stability, with nine seasonal change points identified. These seasonal change points were minimal, 

with the highest occurring in September 2018, when the PCP value was 0.826. In October 2018, the positive TC sharply 
increased, reaching a PCPT value of 0.972. However, a significant negative TC was observed in January 2022, with the PCPT 
value dropping to 0.60. In addition to the changes noted in the previous paragraph, the L-L region recorded eight seasonal and 
nine trend change points. The probability associated with these changes was weak, with PCP values ranging from 0.266 to 0.017 
and PCPT values between 0.606 and 0.110. This suggests that the NDVI values remained stable and did not directly correlate 
with rainfall amounts, see Table 3 and Figure 7c. 

The H L region recorded ten seasonal change points, comprising four highly probable and six low probable occurrences. 
The most significant change point was observed in September 2021, followed by March 2020, April 2018, and October 2022, 
with PCP values of 0.926, 0.917, 0.897, and 0.812, respectively. The remaining seasonal change points were associated with 
lower probability, showing PCP values of 0.537, 0.518, 0.515, 0.181, 0.0131, and 0.031, occurring in March 2019, October 2020, 
October 2016, January 2013, January 2024, and September 2017, respectively. Additionally, this region experienced ten trend 
change points, with the highest ranking in October 2018, with the PCPT value reaching 1. The other nine trend change points 
had values ranging from 0.90 to 0.46, occurring in January 2023, September 2023, October 2013, September 2014, January 2024, 
January 2016, October 2019, October 2020, and October 2015, with PCPT values of 0.981, 0.970, 0.933, 0.799, 0.650, 0.641, 
0.581, 0.554, and 0.467, respectively. The trend change point in April 2018 was a positive TC, while the trend change point in 
September 2021 was negative. The trend changes coincided with variations in rainfall, suggesting a connection between the H L 
region and the rainy season. 

To summarize, the H-H region experienced significant fluctuations in NDVI values that were closely aligned with changes 
in rainfall amounts in the study area. In contrast, the L-L region exhibited stable NDVI values without fluctuations during the 
time series from 2013 to 2024. The H-L region also experienced fluctuations, but they were less pronounced than those in the 
H-H region. 
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3.3 Discussion 
The geostatistical developer model has identified an agricultural region that relies heavily on the Gharraf River, with farming 

extending approximately 10 to 20 kilometers on either side of the river. This area encompasses about 190000 hectares. In contrast, 
smaller regions that depend on the Euphrates River support continuous agriculture. However, they are significantly less 
extensive, covering an area of about 53,000 hectares, as illustrated in Figure 3c. The agricultural lands surrounding the Gharraf 
River, classified as the (L-L) region, are notably more extensive than those primarily dependent on the Euphrates River. This 
difference can be attributed to the varying characteristics of the Euphrates River during the rainy season, as observed by Ali and 
Jabbar [59-60]. Most agricultural areas near the Euphrates River fall within the (H-L) region. This observation further reinforces 
the effectiveness of our model in identifying agricultural areas that rely on rivers. 

Comparing the H-H region and the (L-L) region, the (H-H) region is approximately 7% larger in area than the L-L region. 
The (H-H) region is sensitive to water availability due to the abundance of rain and is vulnerable to meteorological drought. 
Hassan et al. [61], confirmed this result in their research, confirming that 80% of agricultural areas are threatened by 
desertification. 

A time series analysis of rainfall in the study area revealed a significant decrease. Kazim et al. [62], also reported similar 
findings in their research. The years experiencing the most substantial deficits were the 2016-2017 and 2021-2022 seasons. 
Several researchers confirm these observations, indicating that meteorological droughts occurred across Iraq during the 2016-
2017 and 2021-2022 periods [5,63-64]. This evidence supports the conclusion that the study area is affected by global climate 
change. 

Applying the BEAST model to analyze time series data provided a more comprehensive understanding of rainfall patterns 
in the Dhi Qar region. We identified two significantly wetter seasons compared to previous years. The first season was from 
2018-2019, marked by an increase in TC, while the second occurred following a severe dry period in 2021, specifically during 
the 2022-2023 season. A notable similarity between these two seasons is their onset; both began with a change in TC in October. 
This finding aligns with the work of Adnan [23], who confirmed that wet seasonal characteristics are linked to their October 
start, (see Figure 7a). This analysis enhances the credibility and effectiveness of the BEAST model in detecting changes in 
seasonal and trend components. Consequently, integrating field visits with time series analysis using the BEAST model 
strengthens our geostatistical model for identifying and isolating regions affected by the river (L-L region), areas vulnerable to 
meteorological drought (H-H region), and regions that exhibit commonality with lag time (H-L region). H-L regions are areas 
that are cultivated only in the winter season.  

4. Conclusion 
The geostatistical model effectively differentiates agricultural lands in Dhi Qar Governorate that rely on rivers for permanent 

irrigation from those cultivated seasonally or depend on rainfall for their water supply. Our model revealed that agricultural lands 
dependent on the Gharraf River extend 10 to 20 kilometers on both sides. In contrast, the areas reliant on the Euphrates River 
extend shorter distances. Additionally, the agricultural lands that depend on rainfall are extensive, reaching the edges of the study 
area. Based on our findings, we concluded that 42% of the agricultural land in the study area is vulnerable to meteorological 
drought. Furthermore, 37% of these lands rely on rivers for irrigation and are cultivated for multiple seasons. In comparison, 
21% are cultivated for only one season each year. We also reached the following secondary conclusions:  
• Although irrigation canals extend from the main rivers, they are outdated and inefficient in delivering water to distant 

locations. This issue has been exacerbated by unsustainable water usage and inadequate water management. 
• Most agricultural lands near the Euphrates River are only cultivated in the winter when there is abundant water from heavy 

rains. This is due to the characteristics of the Euphrates River water, which experiences high salinity in both the dry and 
summer seasons. 

• The BEAST model has demonstrated its effectiveness in time series analysis by accurately identifying seasonal, trend, and 
cyclic component changes. Combining the BEAST model with a geostatistical approach yielded promising results in 
spatiotemporal analysis. 
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