

δ-Divisor Graphs

*M.N.Al-Harere and **M.A.Seoud *Department of Applied Science, University of Technology, Baghdad, Iraq. **Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

> Received Date: 2 / 5 / 2016 Accepted Date: 22 / 8 / 2016

الخلاصة

في هذا البحث ، قدمنا نتائج لنوع من بطاقات الرسومات البيانية ، والتي أطلقنا عليها رسم بياني δ-divisor وهو عبارة عن رسم بياني مقسم معدّل.

الكلمات الفتاحية

بطاقات الرسومات البيانية، رسم بياني δ-divisor ، رسم بياني مقسّم معدّل.

Abstract

In this paper, we introduce results for a kind of labelings of graphs, which we named it the δ -divisor graph which is a modified divisor graph.

Keywords

labelings of graphs, δ -divisor graph, modified divisor graph

1. Introduction

G. Santhosh and G. Singh [1,4] called a graph G(V,E) with vertex set Vand edge set E a divisor graph if Vis labeled by a set of integers and for each edge uv∈E either the label assigned to u divides the label assigned to v or vice versa. Here, we studythe notion "divisor graph" in the sense thatits vertices can be labeled with distinct integers 1,2,...,|V| such that for each edge uv∈E either the label assigned to u divides the label assigned to v or vice versa and we named it δ -divisor graph. A graph which is not a δ -divisor is called a non- δ -divisor graph.

We introduce a method to calculate the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices. We prove the following graphs are non-δ-divisor graphs: the $(S_{n_1}, S_{n_1}, S_{n_1})$ is a non- δ -graph if and only $\inf d_l > \left| \frac{n}{3} \right| - 1 \text{ or } n_l - \left| \frac{\left| \frac{n}{3} \right| - 1}{2} \right| + n_k + 3 > \left| \frac{n}{2} \right|, \text{ where } n = n_1 + n_2 + n_3 + n_4 +$

, where $n=n_1+n_2+n_3+5$, n_1, n_k, n_1 are the number of the pendant vertices of the star S_{n_i} ,i=1,2,3 where the degrees of their central vertices ared_i,d_k,d_l respectively, $d_i \ge d_k \ge d_l$.(G= $\langle S_{n_1} \rangle$ $,S_{n_{2}},...,S_{n_{t}}\rangle$ is the graph obtained by joining the central vertices of each $starS_{n_{m-1}}$ and the $starS_m$ to a new vertex x_{m-1} , where $2 \le m \le t$); P_n except P_1 , P_2 , P_3 , P_4 and P_6 ; G=w S_m , $m>1, w \ge 4$ (the union of w stars each of m vertices); and hence every graph can be embedded as an induced subgraph of a δ -divisor graph.

Any notion or definition which is not found here could be found in [1], [2].

1.1. Definition [2]

x be a non-negative real num-

ber . The Gauss function $\pi(x)$ is defined to be the number of primes not exceeding x. i.e., $\pi(x) = |\{p: pisprime, p \le x\}|$.

1.2. Lemma [5]

The number of vertices of degree 1 in the maximal divisor graph is

 $\pi(n) - \pi(\frac{n}{2})$, where π is the Gauss's function.

2 δ-divisor graphs

2.1. Definition

A graph G(V,E) with vertex set V is said to be δ-divisor if its vertices can be labeled with distinct integers 1,2,...,|V| such that for each edge uv∈E either the label assigned to u divides the label assigned to v or vice versa. A graph which is not δ -divisor is called a non- δ -divisor graph.

2.2. Definition

A maximal δ -divisor graph of n vertices is a δ -divisor graph such that adding any new edge yields a non - δ -divisor graph.

2.3. Method

A method to calculate the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices:

Explanation of method: Let the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices be M(n). There are two kinds of vertices of degree 2:

Kind1. Let p_i be the prime less than or equal to $\left|\frac{n}{2}\right|$, i = 1,2,...,k, where

$$k = \pi\left(\left|\frac{n}{2}\right|\right), p_j < p_{j+1}, j = 1, 2, ..., k-1. \text{ If } 3p_i > n...(1)$$

, then the vertex which is labeled by p_i has degree 2, because p_i is joined only with 1 and $2p_i$. Let $p_{k\text{-}u_1}$, $0 \le u_1 \le k$, be the smallest prime number satisfying (1), then the number of vertices of degree 2 in this case isu₁+1.

Kind 2. Let
$$p_i \le \left\lfloor \frac{n}{2} \right\rfloor$$
, such that $\left\lfloor \frac{n}{2} \right\rfloor < p_i^2 \le n$, $i = 1, 2, ..., k (2)$.

It is clear that the degree of the vertices labeled by p_i^2 is 2, since p_i^2 is joined with 1 and p_i ($2p_i^2 > n$). Let u_2 be the number of the prime numbers which are satisfying (2), $0 \le u_2 \le k$, therefore

$$(n)=u_1+u_2+1.$$

2.4. Example

G(V,E),|V|=n=10

Prime numbers are 2,3,5,7

Kind 1: $\pi\left(\left|\frac{10}{2}\right|\right)=3, p_i \le \left|\frac{10}{2}\right|$, i. e. $p_i \le 5$, thenthe prime satisfying condition (1) is $p_3=5$, then $p_3=p_{3-0}$, therefore $u_1=0$.

Then the number of vertices of degree 2 in this case is $u_1+1=1$

Kind 2: If $5 < p_i^2 \le 10$, the only prime satisfying condition(2) is 3, so $u_2=1$. Therefore $M(n)=u_1+u_2+1=0+1+1=2$.

Fig. (1): Maximal δ-divisor graph of order 10

2.5.Remark

If G(V,E) is a connected graph of n vertices and degree $(v) < \pi(n) - \pi(\left|\frac{n}{2}\right|)$,

for every $v \in V$, then G is a non- δ -divisor graph.

Proof.By hypothesis, there is no vertex $v \in G$ such that degree $(v) \ge \pi(n) - \pi\left(\left|\frac{n}{2}\right|\right)$, so there is at least one isolated vertex whose label is a prime number, since all $\pi(n) - \pi\left(\left|\frac{n}{2}\right|\right)$, vertices of prime labels can be joined with only the vertex of label one. Thus, we get the result.

2.6. Theorem

The path P_n with n vertices is a non- δ -divisor graph except P_1 , P_2 , P_3 , P_4 and P_6 .

proof.

- (i) It is clear that P_1 , P_2 , P_3 , P_4 and P_6 are δ -divisor graphs.
- (ii) For all P_n ; n=5, or 10 or $n \ge 7$, it is clear that P_5 and P_1 0 are a non- δ -divisor graphs. For all P_n ; $n \ge 7$ except n=10, $\pi(n) \pi\left(\left\lfloor\frac{n}{2}\right\rfloor\right) \ge 2$, there are at least two vertices prime numbered labels such that their labels greater than $\left\lfloor\frac{n}{2}\right\rfloor$ and less than or equal to n. So we must put these vertices as pendant vertices and join them with a vertex of label one and this is impossible. Thus, we get the result.

2.7.Theorem G=w S_m is a non- δ -divisor graph, w \geq 4,m>1.

Proof. Let v_i , i=1,...,w be the central vertices of the stars. The labeling of the centers of the stars must be labeled from 1 to w, since the vertex labeled1 can be joined with any other vertex, and the vertex labeled2 can be joined with $\left\lfloor \frac{n}{2} \right\rfloor$ -1 vertices, where n=w(m+1), the re-

maining vertices labeled 3,...,n are joined with less than $\left|\frac{n}{2}\right|$ -1 vertices. Now suppose that 1,2,...,r-1 be the labels of the centers of the stars S_m^i , i=1,2,...,r-1, and let s be the label of the center of the starS $_m^r$, where $n \ge s > r$ and r \leq w, s > w. The number of vertices that can be joined with the vertex labeledr is greater than or equal to the number of vertices that can be joined with the vertex labeled s since:

1) $|M_1| \ge |M_2|$, where M_1 is a set of the multiples of r other than r from r to sand M₂ is a set of the δ -divisor s of s other than s from r to s. i.e.

$$\begin{aligned} &M_1 = \left\{ jr : 2 \le j \le \left\lfloor \frac{s}{r} \right\rfloor \right\} \text{ and} \\ &M_2 = \left\{ \frac{s}{k} : \frac{s}{k} \text{ is an integer and } 2 \le k \le \left\lfloor \frac{s}{r} \right\rfloor \right\} \end{aligned}$$

2) From s+1 to n, the number of the multiples of r is greater than or equal to the number of the multiples of s, since the nearest multiple of s is 2s and in this range there is at least one multiple of r. Therefore, we must label the center of the star S_m by label r. We continue with the same manner to other labels. So that let $f(v_i)=i$, i=1,...,w.

Case 1. If w is even, then w/2 of the central vertices are labeled by even numbers, so all vertices of these stars must have even labels, and the number of these vertices is, where n is the number of vertices of G, $n = \left| \frac{n}{2} \right|$ wm + w. The other adjacent vertices with v_i would be labeled by odd numbers, but this means that one vertex of these vertices would be labeled by (2m+1)(w-1) > n, this is impossible.

2.8. Definition

Consider t of stars namely $S_{n_1}, S_{n_2}, ..., S_{n_{f-1}}$

 $G=\langle S_{n_1}, S_{n_2}, ..., S_{n_r} \rangle$ is the graph obtained by joining the central vertices of each S_{m-1} and S_m to a new vertex x_{m-1} where $2 \le m \le t$.

2.9.Lemma

The graph $\langle S_{n_1}^{}^{}, S_{n_2}^{}, S_{n_3}^{} \rangle$ is a $\delta\text{-divisor graph}$ if $n_l \le \left| \frac{|\frac{n}{3}|-1}{2} \right|$, where $n=n_1+n_2+n_3+5$, n_j , n_k , n_l are the number of the pendant vertices of the star S_{n} , i=1,2,3 where the degrees of their central vertices are d_i, d_k, d_l respectively, $d_i \ge d_k \ge d_l$.

Proof. Let c_i be the central vertex of S_{n_i} fori = 1,2,3. Now c_1 and c_2 are adjacent tox₁, c_2 and c_3 are adjacent to x_2 . Let $d_i = deg c_i$, i=1,2,3, where deg $c_i = n_i +1, i=1,3$ and deg $c_2 = n_2 +2$. Let d_i , d_i be the maximum and the minimum numbers of the set $\{d_i, i=1,2,3\}$ respectively, and the third bed_k. Let n_i , n_k , n_l be the number of pendant vertices of the stars where the degrees of their central vertices are d_i,d_k, d_l respectively.

We will label the central vertices of degrees d_i , d_k , d_l by the labels 1,2,3 respectively, (since any label which is greater than 3 can be joined with a number of vertices less than or equal to the number of vertices which can be joined with the vertex labeled 3).

If n l is less than or equal to the number of the odd multiples of 3, other than 3 which is equal to $\left|\frac{\left|\frac{n}{3}\right|-1}{2}\right|$, then we assign the odd multiples of 3, other than 3 to the pendant vertices of S_{n_1} , and the even labels to the pendant vertices of S_{n_k} and the vertices x_1 and x_2 ,the remaining labels are assigned to the vertices of S_{n_i} . Hence, the graph is a δ -divisor graph.

2.10. Example

In Fig.(2)we give labeling for:

Fig. (2): (S_8, S_{13}, S_8)

2.11. Theorem

The graphs

- (i) $G=\langle S_{n_1}, S_{n_2} \rangle$ is a δ -divisor graph if and only if $n_1 \neq n_2$.
- (ii) G= $\langle S_{n_1}, S_{n_2} \rangle$, $S_{n_2} \rangle$ is a non- δ -divisor graph if and only if $d_1 > \left| \frac{n}{3} \right| 1$ or

 $n_1 - \left\lfloor \frac{n_3}{3} \right\rfloor - 1 + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, where $n = n_1 + n_2 + n_3 + 5$, n_j , n_k , n_l are the number of the pendant vertices of the star S_{n_i} , i = 1, 2, 3 where the degrees of their central vertices are d_j , d_k , d_l respectively, $d_i \ge d_k \ge d_l$.

Proof.(i) If $n_1 > n_2$, let $v_1^{(i)}$, $v_2^{(i)}$,..., $v_n^{(i)}$ be the pendant vertices of the starS $_{n_i}$ and let c_i be the central vertex of S_{n_i} for i=1,2. Now c_i and c_i are adjacent tox, where x is the label of a vertex join the centers vertices of $S_{n_1}^{(i)}$ and $S_{n_2}^{(i)}$. We define the labeling function $S_{n_1}^{(i)}$ and $S_{n_2}^{(i)}$. We define the labeling function $S_{n_1}^{(i)}$ and $S_{n_2}^{(i)}$ are the vertices $v_1^{(i)}$, $v_2^{(i)}$,..., $v_{n_1}^{(i)}$ are assigned to the vertices $v_1^{(i)}$, $v_2^{(i)}$,..., $v_{n_1}^{(i)}$.

Conversely, If $n_1 = n_2$, we have two vertices of degree n_1+1 , but we have only one label "1" divides n_1+1 numbers, since the number of vertices of this graph is

$$2n_1 + 3$$
 and $|A_i| - 2 \le |A_2| - 2 = (\left\lfloor \frac{2n_1 + 3}{2} \right\rfloor - 1)$

 $< n_1+1$, where $A_i = \{k:k|i \text{ or } i|k:k \le 2n_1+3\}$, $i \ge 2$. So the graph is a non- δ -divisor graph.

(ii) Let c_i be the central vertex of S_{n_i} for i=1,2,3. Now c_1 and c_2 are adjacent to x_1 , c_2 and c_3 are adjacent to x_2 . Let d_i =deg c_i , i=1,2,3, where deg c_i = n_i +1, i=1,3 and deg c_2 = n_2 +2. Let d_j , d_l be the maximum and the minimum numbers of the set $\{d_i,i$ =1,2,3 $\}$ respectively, and the third bed $_k$. Let n_j , n_k , n_l be the number of pendant vertices of the stars where the degrees of their central vertices are d_j , d_k , d_l respectively.

We will label the central vertices of degrees d_j , d_k , d_l by the labels 1,2,3 respectively, (since any label which is greater than 3 can be joined with a number of vertices less than or equal to the number of vertices which can be joined with the vertex labeled 3).

Now if $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$ or $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, then there are two conditions:

Condition 1. If $d_1 > \left\lfloor \frac{n}{3} \right\rfloor - 1$, $\left\lfloor \frac{n}{3} \right\rfloor - 1$ is the maximum number of labels which can be joined with the central vertex of S_{n_1} since label 1 is used to label the central vertex of S_{n_j} . Thus G is a non-usual δ -divisor graph.

Condition 2.If $n_l - \left\lfloor \frac{n}{3} \right\rfloor - 1 + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, $\left\lfloor \frac{n}{3} \right\rfloor - 1 = 1$ is the number of odd labels which can be igned with the central vertex of S_{n_l} . If $n_l - \left\lfloor \frac{n}{3} \right\rfloor - 1 = 1 = 1$ which is a contradiction, so $n_l - \left\lfloor \frac{n}{3} \right\rfloor - 1 = 1 = 1$ odd multiples of 3, other than 3 be assigned to the pendant vertices of S_{n_l} , then $n_l - \left\lfloor \frac{n}{3} \right\rfloor - 1 = 1$ is the minimum number of even labels which are assigned to the remaining pendant vertices of

 S_{n_l} . Therefore, we need $n_l - \left| \frac{\left| \frac{n}{3} \right| - 1}{2} \right| + n_k + 3$ even labels to label the vertices of the graph, since the vertices of S_{n_1} and the vertices x_1 and x_2 must be even labels, hence the result.

Conversely, let G be a non- δ -divisor graph, the vertices which are joined with the central vertex of S_{n_i} can be labeled by any labels. The central vertex of S_{n_k} and the vertices which are joined with it need at most n_k+3 even labels and $n_k+3 \le \left\lfloor \frac{n}{2} \right\rfloor$, so there is no problem to label all the vertices which are joined with the central vertex of S_{n_k} . Thus, we discuss the problem that could occur when we label the adjacent vertices of the central vertex of S_{n.}, which is labeled 3. Again if $n_l - \left| \frac{\left| \frac{n}{3} \right| - 1}{2} \right| \le 0$, then by Lemma 2.9 the graph is δ -divisor which is a contradiction. Let all odd multiples of 3, other than 3 be assigned to the pendant vertices of S_{n_l} , then we need $n_l - \left| \frac{\left| \frac{n}{3} \right| - 1}{2} \right|$ even labels to label the remaining pendant vertices of S_n, so there are two cases that depend ond:

Case 1. If $d_1 > \lfloor \frac{n}{3} \rfloor - 1$, hence the result. Case 2. If $d_1 \le \left\lfloor \frac{n}{3} \right\rfloor - 1$ so we have n_1 even labels, if $n_l - \left[\frac{|\frac{n}{3}| - 1}{2} \right] + n_k + 3$

 $n_l - \left| \frac{\binom{n}{3}-1}{2} \right| + n_k + 3 \le \left| \frac{n}{2} \right|$, then the graph is a δ-divisor graph, which is a contradiction, hence the result.□

2.12. Corollary

 $\langle S_{n_1}, S_{n_2}, S_3 \rangle$ is a non- δ -divisor graph if $(i)n_1 = n_2 = n_3$

 $(ii)d_i=d_k=d_1$, where d_i,d_k,d_1 are the degree of their central vertices respectively, $d_i \ge d_k \ge d_l$.

2.13. Theorem

Every graph G(n,q) can be embedded as an induced subgraph of a δ -divisor graph.

Proof .Let G(n,q) be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. We shall establish an embedding of G in H, where $V(H) = \{v_1, v_2, ...\}$ $v_{n}, v_{n+1}, \dots, v_{2}^{n-1}$. Let $f(v_{i+1})=2^{i}, i=0,1,...$,n-1, other vertices are labeled from the set $\{\{1,2,\ldots,2^{n-1}\}-2^i\}, i=0,1,\ldots,n-1 \text{ and join all }$ vertices of V(H)-V(G) with a vertex of label one. It is clear that H is a δ -divisor graph and E $(H)=q+2^{n-1}-n$.

2.14.Corollary

Every bipartite graph can be embedded into a bipartite δ -divisor graph.

as an example, see Fig (3)

Reference

- [1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18,#DS7, (2015)
- [2] F. Harary, Graph Theory, Addison-Wesely, Reading, Massachusetts,
- [3] G.H.Hardy, and E.M.Wright, An Introduction to the Theory of Numbers, 5 th ed., Clarendon Press., Oxford, (2002).
- [4] G. Santhosh and G. Singh, On divisor graphs, preprint.