

Co Compressible Acts

Asaad Mohammad Ali Al-Hussainy and Worrod Sabah Malek Department of Mathematics, University of Babylon, Iraq.

> Received Date: 4 / 4 / 2016 Accepted Date: 22 / 8 / 2016

الخلاصة

الهدف الرئيسي من البحث، وسعنا مفهوم الموديو لات رديف المضغوطة، الموديو لات رديف المضغوطة حرجا، الى المؤثرات رديف المضغوطة، المؤثرات رديف المضغوطة حرجا، بالتتابع، كذلك اعطينا بعض الخواص الاساسية والبراهين والامثلة. في الختام، درسنا مفهوم المؤثرات رديف المسحوبة كأعمام لفهوم الموديولات رديف المسحوب، بالإضافة، قدمنا علاقته بالمؤثرات رديف المضغوطة.

الكلمات المفتاحية

الموديلات رديف المضغوطة، الموديلات رديف المضغوطة حرجاً، المؤثرات رديف المسحوبة، المؤثرات رديف المضغوطة.

Abstract

The goal of this paper, we expand the notion of co compressible modules, critically co compressible modules, to co compressible acts, critically co compressible acts, respectively, likewise we giveseveral of their basic properties, theorems and examples. Lastly, we studied the coretractable acts as a generalization of the concept of coretractable modules. Overtime, we introduce relation between it and co compressible acts.

Keywords

co compressible acts, critically co compressible acts, corational acts, fully corational acts, coretractable acts.

1. Introduction and Priliminaries:

Throughout this paper Swill denote a semigroup with multiplication. An element $x \in S$ is called a left identity (a right identity) of S, if $\forall y \in S: x \cdot y = y$

 $(y \cdot x = y)$. If x is both a left and a right identity of S, then x is called an identity of S [1]. A semigroup is a monoid; if it has an identity, for a semigroup Swe shall use the notion S¹ defined byS¹=S if it has an identity and $S^1=S \cup \{1\}$ otherwise [2]. An element $x \in S$ is called a left zero (a right zero)of S, if ∀ $y \in S: x \cdot y = x(y \cdot x = x)[1]$. A zero element is both a left and a right zero of S, for a semigroup S we shall define S⁰ byS⁰=S if it has a zero element, $S^0 = S \dot{\cup} 0$ otherwise [2].

A monoidSis said to be zero divisor free (ZDF) if for each a,b \in S,

 $a \neq 0 \neq b$ implies $a \cdot b \neq 0$ [3].

Let S be a monoid and $A\neq\emptyset$ be a set. If we have a mapping $\mu:A\times S\to A$ such that $(a,s)\mapsto as:=\mu(a,s)$ and the following properties hold:

(a) $a \cdot 1 = a.(b)$ a(st) = (as)t for all $a \in A$ and s, $t \in S$, we call A a right

S-act, or a right act over S and write A_S . A subact B of anS-actA_s is a non-empty subset of A such that bs ∈B for all b∈B,s∈Swhich is designateby $B_s \leq A_s$.

A subact B_s of A_s is called a proper subact (designateby $B_S < A_S$), if $B \neq A[4]$.

We call A_S a simple act if it has no proper subacts. We call A_s a θ -simple act

if A_{S} has no subacts other than A_{S} and one element subact. Let S be a monoid and A_S be

an S-act, then A_S is simple if and only if A_S = aS for each $0 \neq a \in A_s[5]$.

A proper subact B_s of an S-actAis called maximal if for each subact C_s of A_s with $B_s \subseteq C_s \subseteq A_s$ implies either $B_s = C_s$ or $A_s = C_s$ [5].

An element $\theta \in A_S$ is called a zero of A_S (a fixed element, a sink) if $\theta s = \theta$ for all $s \in S$.

If A_S and B_S are right S-acts, then a mapping $f:A_S \rightarrow B_S$ is called a homomorphism of right S-acts, if f(as)= f(a)s for all $a \in A$ and for all $s \in S$, the S-homomorphism $f: A_S \rightarrow A_S$ is called an endomorphism of A_S and the set of allendomorphism of A_S is designateby End(A_S), it is a monoid with the composition operation.

An equivalence relation ρ on A_s is called a congruence on A_s , if apa implies (as) ρ (a's) for $a,a' \in A_S, s \in S.$

Let S pbe a congruenceonA_S, define a right multiplication on the factor set A_s $\rho = \{[a] \rho, a \in A \}$ by elements of S by: [a] $_{0}$ s=[as] for every s \in S, which is called a factor act of A_S by $\rho[4]$. Any homomorphism $f:A_S \rightarrow B_S$, the kernel congruence on A_S is defined by apa', if and only if f(a) = f(a').

If Bis a subact of A, the Rees congruence ρ_B is defined by: $a\rho_B$ (a) if eithera, a \in Bor a=a . We denote the resulting factor act by A_s/B_s .

We say A_S is faithful, if $s,t \in S$, as=atfor all $a \in A$, it follows that s=t.

A right S-actA is called quasi-projective if for any right S-actB and any S-homomorphismsf and g from A_s to B_s with f being surjective, there exists an S-homomorphism $h: A_S \rightarrow A_S$ such that f = gh [6].

IfA_ssatisfies the ascending chain condition

for subacts, it is called, Noetherian [7]. In [8], Alex and James defined that As is Noetherian if every congruence on A_s is finitely generated, and we say that a monoid S is Noetherian if it is Noetherian as anS-actover itself.

A subact B_s is large (or essential) in A_s if for any P_S and any S-homomorphism $f: A_S \rightarrow P_S$ whose restriction to B_s is one-to-one, then f is itself one-to-one [9].

A nonzero subact B of Asis intersection large if for all nonzero subacts Xof A, $X \cap B \neq \theta$. This will be designately $B_s \subseteq A_s$ [9]. Feller and Gantos in [10] proved that every large subact of A_S is intersection large.

The singular congruence ψ_A on S-actA_S is a right congruence on A_s defined by $\psi = \psi(A_s)$ = $\{(a,b)\in A_S\times A_S\mid aD=bD \text{ for some intersec-}$ tion large ideal D of S). When $\psi=i_{A_S}$, we say that A_s is non-singular [11].

A right S-act A is called retractable if for any subact B_s of A_s , $Hom(A_s, B_s) \neq \emptyset$. It is clear that for a right S-act A to be retractable it is enough that $Hom(A_S, aS) \neq \emptyset$ for each $a \in A_s[12]$.

A subact B_s of A_s is called small (designate $B_s \ll A_s$) by if it satisfies one of the conditions: (1) for each S- homomorphism $f:C_S \to A_S$, if $\pi_B \circ f$ is epimorphism then f is epimorphism where $\pi_B:A_S \rightarrow A_S/B_S$ is the natural epimorphism. Or (2) A_S=B_SUC_S implies $C_S = A_S$ for each subact C_S of A_S .

An S-act A is called hollow if every subact of A_S is small.

The purpose of this work is to introduce and investigate the concept of co compressible acts as a converted concept of co compressible modules [13]. Related properties and results are investigated. An affirmative answer to analogues problem, named Zelmanowitz problem, in the case of modules is given.

2. CO-Compressible Acts 2.1. Definition.

LetA_S be an S-act over a monoidS. A_S is co compressible if for each nonuniversal congruence ρ on A, Hom_S (A/ ρ ,A) has at least one surjective element. That is, A_S is co compressible if and only if for all congruence $\rho \neq A \times A$ on A_s , there exists an epimorphism $\alpha: A_s/\rho \rightarrow A_s$.

2.2. Remark.

If A_S is a co compressible S-act which is not simple, then A_s must have a zero element.

Proof:

Let B_s be a proper subact of A_s , then A_s/B_s has a zero element. If $\alpha: A_s/B_s \to A_s$ is an epimorphism, then $\alpha(0')$ is a zero element of A_s .

2.3. Remark.

If A_{S} is not simple and has no zero we say A_S co compressible if A_S^0 is co compressible.

2.4. Definition.

A_s is critically co compressible if it is co compressible and for proper subact B_s, Hom_s (B,A) has no surjective element. That is A_s critically co compressible if and only if A_s is co compressible and

 $\nexists \alpha: B_s \rightarrow A_s, \forall B_s \leq A_s$, where α is epimorphism.

2.5. Examples.

- 1. If A_s is a simple act, then A_s is co compressible (trivially).
- 2. If $S=(N,\cdot)$ is a monoid where N is the set of natural numbers and (·)is the usual multiplication, then S_sis not co compressible.

Proof:

Let $S=(N, \cdot)$, and the subact of S_s are B=2N, according to (Remark 2.3), let $f:S/B \rightarrow S^0$ and $a \in Im(f)$, then $a = f(x^-)$ for some $x \in S / B$, this implies

 $2a=f(x \overline{2})=f(0)$. If $b \in Im(f)$ and $b \neq a$, then $b=f(y^{-})\rightarrow 2b=f(y^{-}2)=f(0)$. HenceIm(f) has at most one element. Hence $Hom(S/B,S^0)=\{0\}$ and $\not\equiv$ epimorphism from S/B onto S⁰. *

2.6. Remarks.

Analogous to the casein modules, it easy to prove the following statements for acts. (See [14])

- 1. B_s is a maximal subact of A_s if and only if $^{A_{S}}/_{B_{c}}$ is θ -simple.
- 2. If $\alpha: A_s \rightarrow B_s$ is an epimorphism and $C_s \leq B_s then\alpha(\alpha^{-1}(C_s)) = C_s$.
- 3. If B_s is a proper subact of a finitely generated S-act A_s then B_s is contained in a maximal subact of A_s.
- 4. Let S be a monoid and A_sbe a Noetherian S-act then A_s is finitely generated.
- 5. Iff: $A_s \rightarrow B_s$ is a right S-act homomorphism then $A_s/(Ker(f)) \cong Im(f)$.
- 6. Let B_s , $C_s \le A_s$, then $((B_s \cup C_s))/C_s \cong BS$ $/(B_s \cap C_s)$.

2.7. Proposition.

simple, then A_s has no maximal nonzero subact.

Proof:

Assume that A S is a co compressible S-act, and assume that 0\neq B_s is a maximal subact of A_s then A_s / B_s is a θ -simple act (by Remarks 2.6 (1)). If α : $^{8}A_{S}$ $_{B_{S}} \rightarrow A_{S}$ is an S-epimorphism, then α^{-1} (B_S)is a subact of $^{A_S}\!\!/_{B_S}$, and hence, either α^{-1} (B_S)= $^{A_S}/_{B_S}$, which implies B_S= α (A_S/ B_s)= A_s (since α is onto) (by Remarks 2.6 (2)), not possible or α^{-1} (B_s)=0, that is B_s= $\alpha(0)$ = (0) contradicts the assumption, therefore A_s has no maximal subact. (*)

2.8. Corollary.

Any finitely generated co compressible act is simple.

Proof:

If A_s is not simple, then it has a proper subact say B_s and (by Remarks2.6 (3)), B_s is contained in a maximal subact which contradicts Proposition 2.7. Therefore A_s is simple. ③

2.9. Corollary.

Any Noetherian co compressible act is simple.

Proof:

Since A_s is Noetherian then A_s is finitely generated (by Remarks2.6 (4)), henceA_s is simple act (by Corollary 2.8).

2.10. Proposition.

A homomorphic image of a co compressible S-act is co compressible.

Proof:

Assume that $f: A_s \rightarrow A_s$ is an epimorphism If $\boldsymbol{A}_{\scriptscriptstyle S}$ is co compressible S-act which is not $\,$ and $\boldsymbol{A}_{\scriptscriptstyle S}$ is a co compressible S-act, let $\,\delta$ be a

congruence on A_s define a relation ρ on A_s by ρ , either equal to A_s , then

 $(a,b) \in \rho \leftrightarrow (f(a),f(b)) \in \delta$, then ρ is a congruence on A_S , hence there exists $\alpha:^{A_S}/\rho \rightarrow A_S$ epimorphism (since A_s is co compressible) which induces a β : $^{AS}/\delta \rightarrow A_S/\rho$ in this way, by δf (a) $\mapsto \rho a$. β is well defined since if

 $\delta f(a) = \delta f(a') \text{ then}(a,a') \in \rho$, that is $\rho a = \rho a'$. That is β is an epimorphism. Now the composition $f \circ \alpha \circ \beta$ is an epimorphism of A_S / δ onto A_S . Therefore As is co compressible.

At the following we give more conditions, with which a co compressible act become simple.

2.11. Proposition.

Let A_S be a co compressible actsatisfying one of the following statements:

- 1. A_s is finite.
- 2. There are only finite subacts in A_s.
- 3. A_shas a finite nontrivial factor, i.e. \exists a congruence ρ on A_ssuch that A_s/ ρ is finite.
 - 4. There is a simple factor of A_s . Then, A_S is simple act.

Proof:

- 1. and 2. imply that A_S has a maximal subact, consequently A_S is simple (by Proposition 2.7).
- 3. If ρ is a congruence on A_S such that A_S/ ρ is finite factor of A_S since A_S is co compressible thenthere exists $f: {}^{A_S}/_{\rho} \longrightarrow A_S$. Then A_S must be finite too, so A_s is simple by means of (1.)
- 4. Let ρ be a congruence on A_Ssuch that A S/pis simple since A_Sis co compressible act then, $\exists f: A_s/\rho \rightarrow A_s$ epimorphism. Assume that B_s is a subact of A_s , then $f^1 B_s$ is a subact of A_s

 $B_s = f AS/\rho = A_s$, not possible, or $f^{-1}B_s = 1$, then $B_s = f(\overline{0}) = 0$. Therefore A_s is simple.

2.12. Definition.

 A_s is epiform if for each $\rho \neq A \times A$ congruence on A_s then each homomorphism $\alpha: A_s \rightarrow A_s / \rho$ is an epimorphism.

2.13. Proposition.

Let A_S be a co compressible act, and B_S be a subact of A_s, then the following statements are equivalent:

- 1. A_s is critically co compressible
- 2. A_s is epiform.

Proof:

 $1. \Rightarrow 2.$

Let $\alpha: A_S \to A_S / \rho$ be a nonzero homomorphism, let $ker(\alpha)=\delta$, if $Im(\alpha)=B_s/\rho'$, ρ $= \rho \cap (B_s \times B_s)$, which is a congruence on B_s then $^{A_S}/\delta \cong ^{B_S}/\rho'$ (by Remarks 2.6 (5)). Since A_S is co compressible then there exists $\beta: {}^{A_S}/_{S} \xrightarrow{epi.} A_S$,

Consider $B_S \stackrel{\pi}{\to} {}^{B_S}/_{\acute{O}} \cong {}^{A_S}/_{\acute{O}} \stackrel{\beta}{\to} A_S$, here π is the natural mapping. Hence $B_S \rightarrow A_S$ is an epimorphism a contradiction to critically co compressible so $Im(\alpha)=A_s/\rho$ and α is an epimorphism.

 $2. \Rightarrow 1.$

Assume that, A_S is co compressible, if $\alpha: B_s \to A_s$ is an epimorphism then,

 $A_s \cong^{B_S}/\ker(\alpha)$. Let $\phi: A_s \to B_s/\ker(\alpha)$ be an isomorphism.Let

 $\phi': A_s \rightarrow A / \delta where \delta = \ker(\alpha) \cup \{(a,a): a \in A_s\},\$ such that $\varphi'(a) = \varphi(a)$, for each $a \in A_S$ then φ

is not epimorphism a contradiction with epiform.(*)

2.14. Definition.

A subact B_s is called corational inA_s, if be proved, Hom(A_{s}^{BS}/ρ)=0 for each ρ congruence on B_{s} .

2.15. Definition.

Let A_S be an S-act, we say that A_S is fully corational if every proper subact of A_S is corational.

The following proposition gives the relevance between epiform act and corational act,

2.16.Proposition.

Let A_{S} be an S-act. Then A_{S} is fully corational act if and only, if A_s is epiform.

Proof:

Assume that $0 \neq \alpha: A_S \rightarrow A_S / (\rho)$ is not an epimorphism

(a)= α (a) for each $\alpha \in A_s$.

Then B_S is not corational hence A_S is not fully corational.

Let $\alpha: A_S \rightarrow B_S/\rho, \alpha \neq 0$ then $\alpha': A_S \rightarrow A_S/\rho$ define by

 $\alpha(a)=\alpha(a)$, it is not epimorphism.

2.17. Definition.

Let A_s be an act, we call A_sa copolyform act if for any small subact B_s of A_s, $\text{Hom}(A_s, {}^B \text{S/p}) = 0$ for all congruence ρ on B_s .

It is clear that if A_S is copolyform and hollow, then it is fully corational, and thus (by Proposition 2.16) epiform.

In the following lemma, the converse will

2.18. Lemma.

If the S-act A is epiform, then it is hollow.

Proof:

Assume that A_s is epiform, and let B_s , C_s be two proper subacts of A_s such that $B_s \cup C_s = A_s$ then ${}^{A_S}/B_S \cong {}^{C_S}/(B_S \cap C_S)$ (by Remarks 2.6 (6)).

$$A_S \stackrel{\rho_B}{\rightarrow} {}^{A_S}/{}_{B_S} \stackrel{\theta}{\rightarrow} {}^{C_S}/{}_{(B_S \cap C_S)} \stackrel{i}{\rightarrow} {}^{A_S}/{}_{(B_S \cap C_S)}$$

since io $\theta \circ \rho_B \neq 0$, the composition io $\theta \circ \rho_B$ is not epimorphism; this contradicts the assumption that A_s is epiform, therefore A_s is hollow.

2.19. Proposition.

Any critically co compressible act A_s is hollow, and hence indecomposable.

Proof:

It is clear that A_s is epiform through (Prop-Let $\alpha: A_s \rightarrow \text{Im}(\alpha) = \frac{B_s}{\rho}, B_s < A_s, \alpha \neq 0$ where α osition 2.13) and through (Lemma 2.18) it follows that As is hollow, and hence indecomposable*

> In the rest of this section, two results about co compressible and critically co compressible acts will be added. For the first result the following two statements are needed,

2.20. Lemma.

A faithful simple finite S-act is nonsingular.

Proof:

Assume that A_sis faithful simple (and fi-

nite)S-act over a monoid S. Let

 $\psi_{As} = \{(a,b) \in A \times A \mid as = bs \ \forall s \text{ in some in-}$ tersection large ideal in S}.Let(a,b) $\in \psi_{A_S}$, then there exists an intersection large ideal of S such that aI = bI (where $I \neq 0$ since it is intersection large ideal), since A Sis faithful then there exists $x \in A_s$, $x \neq 0$ and $xI \neq 0$. But xI is a subact of the simple act A_S , so $xI=A_S=xS$. But A_s is finite, impliesI=S.Now a=a·1=b·1=b, that is $\psi_{A_S}=i_{A_S}$, then A_S is nonsingular. \circledast

2.21.Lemma.

If A_S if an act and B_S is finite subact of A_S , then $A_S/(A_S\backslash B_S)S$ is finite. Since $(A_S\backslash B_S)$ $S\supseteq A_s \setminus B_s$ it follows that $|(A_s \setminus B_s)S| \ge |A_s \setminus B_s|$ $|\rightarrow|A_S|/(A_S\backslash B_S)S|=|A_S\backslash (A_S\backslash B_S)S|.$ Hence $|A_{S}\setminus(A_{S}\setminus B_{S})S| \leq |A_{S}\setminus(A_{S}\setminus B_{S}) = |B_{S}|$.

2.22.Theorem.

A faithful co compressible act A_s over a monoid S is nonsingular in each of the following cases:

- 1. A_sis finite;
- 2. Sis finite;
- 3. There are only finite numbers of right ideals in S,
- 4. There are only finite numbers of right essential ideals in S,
 - 5. S is a right Artinian;
- 6. The intersection of all essential right ideals is nontrivial.

Proof:

1. Since A_s is finite and co compressible implies A_s is simple (by Proposition 2.11), hence (by lemma 2.20), A_sis nonsingular.

2. Let $0 \neq a \in A_S$ such that $aS \neq 0$ (A_S faithful).

LetM= $A_S \setminus aS$, andN=MS, then A/N is a finite factor of A_s (by Lemma 2.21). Since A_s is co compressible, it is simple. Now, As is simple and S is finite imply that A_Sis finite, then by (1.) it is nonsingular.

3. if S has a finite number of ideal, then it has a minimal ideal, say I, let

 $0\neq a\in A_S$ such that $aI\neq 0$ (A_S is faithful), let $M=A_S\setminus aI$, and N=MS, then N is a maximal subact of A_S, for if L is a subact of A_Scontaining N, then it must contain an element if aI (and hence all of al, since it is minimal), that is L=A. Then A / N is a simple factor of A_s , hence Asitself is simple. Since Asis simple implies A_S=aS for each 0≠a inA_S hence S is simple (since if S has a proper ideal I, then aI is a proper subact of A_s).

Now, if(a,b) $\in \psi_{A_S}$, then aS=bS (S is the only intersection large ideal of S), then a=b, that is $\psi_{A_S} = i_{A_S}$ and A_S is nonsingular.

- 4. If S has a finite number of intersection large ideals, then it possess a minimal one, then we complete the proof as in (3.).
- 5. If S is Artinian, then it has a minimal ideal, then we proceed as in (3.).
- 6. In this case also we have a minimal intersection large ideal then as (4.)the proof is completed.

For the second result, we recall the definition of quasi-projective act from section 1.

2.22.Proposition.

 $Let A_S$ is a critically co compressible act. A_S

is simple if and only if A_s is quasi-projective.

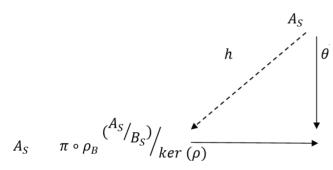
Proof:

 \Rightarrow

It is clear that every simple act A_S is quasiprojective.

 \Leftarrow

Let B_S be a proper subact of A_S since A_S is co compressible there exists $\rho: A_S / B_S \to A_S$, epimorphism hence $A_S \cong ((A_S / B_S / ker(\rho)))$. Consider the composition $A_S \stackrel{\rho_B}{\to} A_S / ker(\rho)$, since A_S is quasi-projective $\exists h: A_S \to A_S$ such that $(\pi \circ \rho_B \circ h) = \theta$ which is isomorphism



that is h is injective, hence $A_S \cong Im(h)$, then if Im(h)=As, then h itself is an isomorphism and hence $\pi \circ \rho_B$ is an isomorphism (not possible), or Im(h) is a proper subact of A_S which contradicts the assumption that A_S is critically co compressible therefore A_S has no proper subact, that is, A_S is simple. (*)

3. Coretractable Acts

3.1. Definition.

An S-act A is coretractable if there exists a nonzero homomorphism of every nonzero factor of A_S into A_S , i.e.

 $\exists f : A_S/\rho {\to} A_S \ , f \neq 0 \ \forall \ \rho \neq A {\times} A \ congruence$ on A_S .

3.2. Examples.

- (1) Let $S=(N,\cdot)$ be a semigroup with identity, then S_s is not coretractable. (see Examples 2.5 (2)).
- (2)If A_s is simple, then A_s is coretractable (trivially).

3.3.Remark.

Every co compressible act is coretractable act.

In the next lemma, a condition, makes the converse of Remark 3.3 is correct, is given,

3.4.Lemma.

Let an act A_S be a coretractable act, if each $0 \neq f \in End\ A_S$ is an epimorphism, then each nonzero element of Hom ${}^{A_S}/\!\rho, A_S$ is an epimorphism, for every congruence ρ of A_S . In particular A_S is co compressible.

Proof:

Let ρ be a congruence on A_s and $0\neq g:^{A_s}$ $/\rho \rightarrow A_s$, which exist since A_s is coretractable. A nonzero homomorphism considering $\upsilon: A_s \rightarrow A_s/\rho, g \circ \upsilon$

is epimorphism and obviouslyg is an epimorphism. In particular $A_{\rm S}$ is co comperessible. (*)

The next theorem is generalization to proposition 2.13.

3.5. Theorem.

Let A_S be a coretractable act, then A_S is critically co compressible if and only if A_S is

epiform.

Proof:

 \Rightarrow (by Theorem 2.13).

Since A_s is epiform implies each $f \in End_s$ (A) is an epimorphism since

 $f:A_S \rightarrow A_S$, and $\varphi:A_S \rightarrow A_S/i_{A_S}$ is an isomorphism $\varphi \circ f: A_S \rightarrow^{A_S} / i_{A_S}$) is an epimorphism, then f is epimorphism) (by Lemma 3.4), A_s is co compressible, (by Theorem 2.12), A_s is critically co compressible.

3.6. Lemma.

Let A_s be an act with zero, then the next cases are equivalent:

- 1. Every $0 \neq f \in \text{End}_s$ (A) is an epimorphism;
- 2. For each B_s proper subact A_s, for each h \in Hom (A s/ B_{s} , A_{s}) is an epimorphism;
- 3. For each $0 \neq B_s$ proper subact A_s , $\text{Hom}(A_S,B_S)=0.$

Proof:

- 1. \Rightarrow 2. The same proof of (Lemma 3.4).
- 2. \Rightarrow 1. Let 0≠f ∈ End (A_S) takeB_S= 0 and define.

 $h: {}^{A_S}/B_s \rightarrow A_s$, by $h([a]_B) = f(a)$ thenh is well defined and $h\neq 0$, through (2) h is an epimorphism, it follows that f is an epimorphism also.

- 1. \Rightarrow 3.Ifh \in Hom(A_S,B_S) and h \neq 0 then define $f:A_S \rightarrow A_S$ by f(a)=h(a) for each $a \in A_S$. In this case $Im(f) = Im(h) = B_s \neq A_s$ it follows that f is not epimorphism, a contradiction with(1) hence h=0.
- 3. \Rightarrow 1. Assume 0≠f ∈End_s (A) and f is $not \quad epimorphism \quad 0 {\neq} B_S {=} Im(f) {\neq} A_S \quad define$

 $h:A_S \rightarrow B_S$ by h(a)=f(a) then $h \in Hom(A_S,B_S)$ and $h\neq 0$ a contraction with (3) hence f is epimorphism. (*)

3.7. Note.

If A_s is an epiform, then the cases of (Lemma3.6) are satisfied, since each f: $A_s \rightarrow A_s$, can be written accordingly $f: A_S \rightarrow A_S / i_{A_S}$ and hence it is an epimorphism if A_S is epiform.

3.8. Theorem.

Let A_s be an act, the nextcases are equiva-

- 1. A_s is co compressible and every $0 \neq f \in$ End_{S} (A) is an epimorphism;
- 2. A_s is co compressible and End_s (A) is ZDF;
- 3. A_s is coretractable and every $0 \neq End_s$ (A) is an epimorphism;
 - 4. A_s is coretractable and End_s (A) is ZDF. Proof:
- 1. \Rightarrow 2. Since f \neq 0 and h \neq 0. f,h are epimorphisms

,then hofis epimorphism, hencehof $\neq 0$.

- 2. \Rightarrow 4.It is clear that, since every co compressible act is coretractable act.
- 4. \Rightarrow 3. Let f:A_S→A_S be not epimorphism, then $Im(f) \neq 0$ since A_S is coretractable there exists φ :^{AS}/Im(f) \rightarrow A_S, if π :A_S \rightarrow A_S/Im(f) is the natural epimorphism, then $\varphi \circ \pi = h \in End_S$ (A) it is clear that $h\neq 0$ (since π is onto and $\varphi \neq 0$), (hof) (a) = h (f(a)) = $\varphi \circ \pi(f(a)) = \varphi(0) =$ 0'. Now $h \circ f = 0$, a contradiction with End. (A) is ZDF.
 - $3. \Rightarrow 1.$ (by Lemma 3.4). (*)

References:

- [1] T. Harju, Lecture Notes on Semigroups, Department of Mathematics, University of Turku, Finland, (1996).
- [2] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Act and Categories, Walter de Gruyter, Berlin. New York, (2000).
- [3] U. Hebissch, Semirings Without Zero Divisors, Mathmatica Pannonica 1/1 73-94, (1990).
- [4] H. Oltmanns, Homological classification of monoids by projectivities of right acts, Ph.D. Thesis, University of Oldenburg (Germany), (2000).
- [5] M.S. Abbas and A. Shaymaa, Principally quasi injective system over monoid, Mustansiriyah University journal of advances in mathematics, Vo.10. 3152-3162, (2015).
- [6] J. Ahsan and L. Zhongkui, On relative quasiprojective acts over monoids, The Arabian journal for science and engineering, Vo.35, 225-233, (2010).
- [7] K. Ahmadi and A. Madanshekaf, Nakayama's Lemma for acts over monoids, Semigroup Forum, Vo.91 (2), 321-337, (2015).
- [8] A. Bailey and J. Renshaw, Covers of acts over monoids II, Semigroup Forum, Vo.87(1),1-18, (2012).
- [9] A. M. Lopez, Jr. and J. K. Luedeman, Quasiinjective S-systems and their S-endomorphism Semigroup, Czechoslovak Math. J., 29(104),97-104, (1979).
- [10] E. H. FELLER and R. L. Gantos of Milwaukee, Indecomposable and Injective S-systems with Zero, Math. Nachr, 38-48, (1967).
- [11] C. V. HINKLE, The Extended Centralizer Of An S-set, Pacific Journal of Mathematics, Vo. 53, No. 1.163-170, (1974).
- [12] [12]R. KHOSRAVI, On Retractable S-Acts, Journal of Mathematical Research with Applications, Vo.32. 392-398, (2012).
- [13] A.M.AL-Hosainy and H.A. kadhim, Co

compressible modules, International Research Journal of Scientific Findings .Vo1, (2014). [14] F. Kasch, Modules and Rings, Academic Press Inc. London, (1982).

