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Forecasting 
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Abstract 

 series forecasting is essential in various domains,  

finance and meteorology. Traditional models  ARIMA struggle 

with nonlinear and chaotic data,    models 

improve nonlinearity handling but  sequential awareness. 

Transformer-based deep  models have shown superior 

performance in  complex temporal . This 

paper compares traditional, machine , and deep learning 

models using  chaotic data (Lorenz system) and real-

world  data. Results indicate that  

Transformers outperform other models, achieving   

RMSE and MAE while  robustness against noise. 

Findings highlight  Transformers as a promising   
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for nonlinear time series forecasting by integrating  

estimation and long-  dependency modeling.  

Keywords: Time series forecasting, Bayesian Transformers, deep  

learning, nonlinear systems, machine learning, uncertainty 

estimation, meteorology, chaos theory. 

1. Introduction 

 series forecasting is essential in various scientific and 

industrial ,  

including , climate modeling, and healthcare. Accurate 

predictions based on  

 data are crucial for -making, yet many real-world 

time series exhibit  and chaotic behaviors,  the 

effectiveness of traditional methods (Box et al., 2015). Statistical 

 such as ARIMA and Exponential  are 

widely used due to their  but struggle with capturing 

complex  dependencies in volatile trends. Machine 

 methods like Random Forest  Support Vector 

Regression improve nonlinearity  but lack sequential 

 (Breiman, 2001; Vapnik, 1995). Deep learning models, 

particularly LSTM and GRU,  shown superior performance in 

 nonlinear time series by capturing -term 

dependencies  (Hochreiter & Schmidhuber, 1997; Cho et al., 

2014). Transformer-based , originally developed for 

natural  processing, further enhance  by 
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leveraging self-attention mechanisms for  long-range 

dependency modeling (Vaswani et al., 2017). 

 paper compares ARIMA, Random Forest, LSTM, GRU, and 

-based models using  chaotic time series 

(Lorenz system) and real-  meteorological data. The 

evaluation  on prediction accuracy, robustness to , 

and computational efficiency to identify the  effective 

approach for nonlinear . The findings contribute to the 

literature by  the advantages and limitations of  

learning for real-world time series forecasting,  a 

benchmark for researchers and . 

2. Methodology 

2.1 Data Sources 

This paper  forecasting models using two datasets: a 

simulated  dataset from the Lorenz system  a real-world 

meteorological dataset. These datasets provide a  and 

real-world  to compare traditional and deep learning 

approaches.  Lorenz system, introduced by  (1963), is a 

chaotic dynamical system defined by three  nonlinear 

differential : 

𝑑𝑥

𝑑𝑡
=  𝜎(𝑦 − 𝑥) , 

𝑑𝑦

𝑑𝑡
=  𝑥(𝜌 − 𝑧) − 𝑦 , 

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 − 𝛽𝑧 

where  parameter values are 𝜎 = 10 , 𝜌 = 28 , 𝛽 = 8/3. 

The dataset is generated using numerical  over 10,000 

time steps with a step size of 0.01, producing a three-dimensional 

time series (x,y,z). One  (e.g., x) is used for forecasting, 
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providing a benchmark for evaluating model robustness in 

handling  dynamics. 

For real-world , we use a meteorological dataset from 

 such as NCEP or NOAA, containing  

measurements of temperature, pressure, , and wind 

speed. Unlike the Lorenz , meteorological data incorporates 

external  influences, making pattern  more 

complex. The dataset spans multiple  with hourly sampling, 

and missing  are handled via interpolation. By leveraging 

 a synthetic chaotic system and real-world  

data, this paper ensures a  evaluation of forecasting 

models, assessing their  to generalize across different 

 time series. 

2.2. Data Preprocessing 

 is essential for ensuring data consistency, reducing 

noise, and optimizing input features for model . A 

standardized preprocessing pipeline is applied to both the Lorenz 

system dataset  the real-world meteorological dataset to 

enhance model performance and generalizability. Time  data 

often have varying magnitudes, which can impact model 

convergence. To address , min-max normalization scales all 

features to [0,1] using: 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (1) 

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values in the 

dataset. This ensures equal contribution of all features to the 

learning process. For the Lorenz dataset, no missing values exist 
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as it is numerically generated. However, for the meteorological 

dataset, missing values may occur due to sensor malfunctions. 

These are handled using: Linear interpolation for short gaps. Mean 

imputation for longer missing segments. Forward/backward filling 

for maintaining temporal consistency in periodic data. Additional 

temporal features are extracted to improve predictive performance: 

Time-based features (hour, day, seasonality). Lagged features 

(𝑋𝑡−1, 𝑋𝑡−2 , …) to capture autocorrelation. Moving averages (e.g., 

7-day, 30-day windows) to represent trends. Each dataset is split 

into: Training set (70%) for model learning. Validation set (15%) for 

hyperparameter tuning. Testing set (15%) for final evaluation. 

Chronological ordering is maintained to prevent data leakage. This 

preprocessing approach ensures robust model comparisons and 

enhances forecasting accuracy. 

2.3. Model Architectures 

This paper compares traditional statistical methods, machine 

learning algorithms, and deep learning architectures to assess 

their effectiveness in forecasting nonlinear time series. Each model 

is chosen for its ability to handle sequential data, capture  

dependencies, and accommodate nonlinearity. 

Traditional models rely on  formulations and assume 

stationarity and linearity. The following methods serve as 

baselines: AutoRegressive  Moving Average (ARIMA): A 

widely used  combining autoregression (AR),  

(I), and moving averages (MA). It is  as: 

𝒚𝒕 = 𝒄 + ∑ ∅𝒊𝒚𝒕−𝒊
𝒑
𝒊=𝟏 + ∑ 𝜽𝒋𝝐𝒕−𝒋

𝒒
𝒋=𝟏 + 𝝐𝒕   (2) 
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where p is the  of lagged observations, d is the differencing 

order, q is  moving average  size, and 𝝐𝒕_t represents 

white noise. While effective for  data, ARIMA  

with highly chaotic or nonlinear series. Exponential  

(ES): Forecasts values by  exponentially decreasing 

weights to past , making it useful for capturing  

and seasonality. However, it lacks the ability to  long-range 

dependencies . 

2.4. Machine Learning-Based Models 

Unlike statistical models, machine learning approaches learn 

patterns from data without assuming linearity. Random Forest 

(RF): An ensemble learning algorithm that builds multiple decision 

trees and averages their predictions: 

ŷ =  
1

𝑛
∑ 𝑇𝑖(𝑋)𝑛

𝑖=1        (3) 

where 𝑇𝑖(𝑋) represents individual tree predictions. RF captures 

nonlinear relationships but does not inherently model temporal 

dependencies, requiring feature engineering. Support Vector 

Regression (SVR): A kernel-based regression technique that 

optimizes: 

𝐦𝐢𝐧 ||𝒘||𝟐 + 𝒄 ∑ 𝐦𝐚𝐱 (𝟎, |𝒚𝒊
𝒏
𝒊=𝟏 − 𝒇(𝑿𝒊)| − 𝝐)   (4) 

where C controls regularization. SVR works well for small datasets 

but lacks scalability for large time series Vapnik, V. (1995). 

Deep learning models improve forecasting by learning complex 

temporal dependencies: Long Short-Term Memory (LSTM): An 
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Recurrent Neural Network( RNN) variant using forget, input, and 

output gates to control information flow, mitigating vanishing 

gradient issues. Despite capturing long-term dependencies, 

LSTMs require high computational resources. Gated Recurrent 

Units (GRUs): A simplified LSTM alternative that replaces the 

memory cell with update and reset gates, maintaining similar 

performance with fewer parameters, improving computational 

efficiency. Transformers: Utilize self-attention to model long-range 

dependencies without recurrence (Cho et al., 2014): 

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑸, 𝑲, 𝑽) = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 (
𝑸𝑲𝑻

√𝒅𝒌
)𝑽    (5) 

where Q,K,V are query, key, and value matrices. Transformers 

process sequences in parallel, enhancing efficiency for large 

datasets. Temporal Fusion Transformer (TFT): A variant designed 

for time series forecasting, integrating static and temporal features 

with multi-head attention for improved interpretability. Bayesian 

Transformers: Introduce uncertainty quantification by applying 

probability distributions over model weights, enhancing prediction 

confidence, particularly in chaotic time series. These models vary 

in their ability to handle nonlinearity, capture long-range 

dependencies, and balance computational efficiency. 

Table 1: Comparison of Forecasting Model Characteristics 

Model Type Handles 

Nonlinearity

? 

Captures 

Long-Term 

Dependencie

s? 

Computation

al Efficiency 

ARIMA Statistic ✗ ✗ High 
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al 

Random 

Forest 

Machine 

Learning 

✓ ✗ Medium 

SVR Machine 

Learning 

✓ ✗ Low 

LSTM Deep 

Learning 

✓ ✓ Medium 

GRU Deep 

Learning 

✓ ✓ High 

Transform

er 

Deep 

Learning 

✓ ✓✓ High 

Bayesian 

Transform

er 

Deep 

Learning 

✓✓ ✓✓ Medium 

Table 1 compares forecasting models based on their ability to 

handle nonlinearity, capture long-term dependencies, and 

computational efficiency. Traditional models, such as ARIMA and 

ETS, are efficient but struggle with nonlinear data. Machine 

learning models, like Random Forest and SVR, improve on 

nonlinearity but fail to capture temporal dependencies. Deep 

learning models, including LSTM and GRU, effectively model 

sequential patterns but require high computational resources. 

Transformer-based models, particularly Bayesian Transformers, 

provide superior performance by efficiently capturing long-range 

dependencies and incorporating uncertainty estimation, making 

them the most suitable choice for nonlinear time series forecasting. 
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2.5 Training Configuration 

The training configuration is standardized to ensure fair 

comparisons across forecasting models. Hyperparameters are 

optimized for each model. ARIMA: Parameters (p, d, q) are 

selected using the Akaike Information Criterion (AIC). Random 

Forest: Configured with 100 trees and a maximum depth of 10. 

Support Vector Regression (SVR): Uses a radial basis function 

kernel with a regularization parameter of 1.0. LSTM and GRU: 

Configured with 128 hidden units, a batch size of 32, and a 

learning rate of 0.001. Transformer and Bayesian Transformer: 

Utilize eight attention heads, 256 hidden units, and a dropout rate 

of 0.1. Hyperparameter tuning for deep learning models is 

performed using Bayesian optimization. Training is standardized 

with the Adam optimizer and an initial learning rate of 0.001, with a 

learning rate scheduler for gradual reduction. Models are trained 

for 100 epochs, implementing early stopping to prevent overfitting. 

Regression-based models, including LSTM, GRU, Transformer, 

and Bayesian Transformer, minimize prediction errors using the 

mean squared error (MSE) loss function: 

L =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1        (6) 

where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and n is the 

number of observations. Bayesian Transformers incorporate an 

uncertainty-aware loss function to enhance forecasting reliability in 

chaotic time series. Maintaining a consistent training setup 

ensures robust model evaluation across different configurations. 
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2.6 Evaluation Metrics 

To evaluate forecasting models, multiple metrics assess prediction 

accuracy, robustness, and model quality. Root Mean Squared 

Error (RMSE): Measures the standard deviation of residuals 

between actual and predicted values: 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1       (7) 

Lower RMSE values indicate better accuracy. 

Mean Absolute Error (MAE): Computes the average magnitude of 

prediction errors: 

MAE =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1       (8) 

MAE is less sensitive to large errors compared to RMSE. 

R-squared (R²) Score: Measures how well predictions explain 

variance in actual values: 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

       (9) 

Higher 𝑅2 values indicate a better model fit. 

Widely Applicable Information Criterion (WAIC): Evaluates 

probabilistic models by balancing model fit and complexity: 

𝑊 𝐴𝐼𝐶 =  −2 ∑ (log (𝑦𝑖
𝑛
𝑖=1 |𝜃) −  𝑉𝑎𝑟(log 𝑝(𝑦𝑖|𝜃)))  (10) 

Lower WAIC values indicate better generalization. 
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Robustness to Noise: Assessed by introducing artificial noise into 

datasets and measuring the impact on prediction accuracy. These 

metrics provide a comprehensive evaluation of forecasting models, 

ensuring fair comparisons in nonlinear time series prediction. 

2.7 Experimental Setup 

The  setup ensures a fair and reproducible 

comparison of  models. Datasets  split into training 

(70%), validation (15%), and testing (15%) , maintaining 

chronological  to preserve temporal dependencies in both the 

 system and meteorological . Each model is trained 

using predefined  and loss functions. Deep 

 models utilize batch processing and  stopping to 

optimize efficiency  prevent overfitting, while multiple training 

runs account  optimization variability.  models, such 

as ARIMA and Exponential Smoothing,  optimized via grid 

search,  machine learning models, including Random 

 and Support Vector Regression,  cross-validation. 

Robustness  is conducted by introducing artificial  

(0% to 20% variance) and analyzing its effect on  and WAIC 

scores. Benchmarking  deep learning models against 

traditional  to assess statistical significance. 

 is ensured through standardized , 

fixed random seeds, and open-source , providing a 

reliable assessment of  model effectiveness in 

nonlinear time  prediction. 

3. Results and Discussion 
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The  focuses on the accuracy, robustness, and 

 efficiency of forecasting models in nonlinear time 

 prediction. Comparing statistical, machine learning, and 

 learning models provides insights into their ability to  

chaotic patterns and long-range dependencies. 

Table 2 presents the performance of each model using RMSE, 

MAE, and WAIC. Bayesian Transformers achieve the lowest 

RMSE and MAE, demonstrating superior accuracy. Traditional 

models, such as ARIMA and Exponential Smoothing, show higher 

error rates due to their linearity assumptions. Machine learning 

models like Random Forest and SVR offer moderate performance 

but lack sequential modeling capabilities. In contrast, Transformer-

based architectures significantly improve accuracy through self-

attention mechanisms. 

Table 2: Performance Comparison of Forecasting Models 

Model RMSE MAE WAIC 

ARIMA 0.52 0.41 -80 

Exponential Smoothing 0.49 0.38 -85 

Random Forest 0.36 0.30 -100 

Support Vector Regression (SVR) 0.33 0.28 -110 

LSTM 0.25 0.21 -125 

GRU 0.22 0.19 -130 

Transformer 0.18 0.16 -135 

Bayesian Transformer 0.15 0.14 -140 

A one-way ANOVA test was conducted to validate model 

performance differences. Table 3 confirms statistically significant 

variations in RMSE values. 
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Figure 1: Actual vs. Predicted Values for Each Model 

Figure 1 illustrates the actual vs. predicted values for different 

models, highlighting the predictive accuracy of Bayesian 

Transformers compared to other approaches. Traditional models 

such as ARIMA and Exponential Smoothing show noticeable 

deviations, while Transformer-based models demonstrate closer 

alignment with the actual values. 

Table 3: ANOVA Test Results for RMSE Differences 

Statistic Value 

F-value 139.27 

p-value 1.12e-12 

The p-value (1.12e-12) is below 0.05, confirming that at least one 

model performs significantly better than others. This justifies 

further comparisons. A paired T-test comparing Bayesian 

Transformer and Transformer indicates that Bayesian Transformer 

significantly outperforms Transformer with p = 0.002. 



131 

 

 

Table 4: Paired T-test Results between Bayesian Transformer and 

Transformer 

Statistic Value 

t-value -5.67 

p-value 0.002 

 

 

Figure 2: RMSE Comparison Across Models 

illustrates the relative performance of each model, highlighting the 

lower RMSE achieved by Bayesian Transformer. 

 

Figure 3: WAIC Comparison Across Models 
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compares model complexity and accuracy trade-offs, showing how 

Bayesian Transformer balances precision with computational 

efficiency. 

 

Figure 4: Effect of Noise on Bayesian Transformer Performance 

 While deep learning models require higher computational costs, 

their predictive performance justifies the trade-off. Bayesian 

Transformers enhance reliability by incorporating uncertainty 

estimation, making them valuable in applications requiring 

prediction confidence. This paper demonstrates the advantages of 

deep learning for nonlinear time series forecasting and provides a 

basis for future research in probabilistic forecasting methods. 

4. Conclusion 

This paper  traditional statistical models, machine 

learning , and deep learning  for nonlinear 

time series forecasting using both the  system and real-

world meteorological . Results show that traditional models, 

 as ARIMA and Exponential Smoothing,  with 

nonlinear dependencies,  to higher prediction errors. 
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Machine learning  offer moderate improvements but  to 

capture long-term dependencies effectively. 

Deep  models, particularly Transformer-based 

architectures,  superior forecasting accuracy  to 

their ability to learn complex temporal . Bayesian 

Transformers outperform all other models by integrating long-

range  modeling with uncertainty estimation, making 

them more robust to noise and chaotic . Evaluation 

metrics confirm that Bayesian Transformers achieve the lowest 

 and MAE while maintaining stability across different noise 

levels. 

Despite the  in deep learning-based forecasting, 

challenges  in computational efficiency and . 

Future research should explore hybrid  that integrate 

traditional  techniques with deep learning to enhance 

both  and efficiency. Additionally,  advancements in 

feature engineering and transfer  could improve 

adaptability across  real-world forecasting applications. 

This paper  empirical evidence supporting deep learning’s 

 for nonlinear time series prediction,  as a 

benchmark for future  and the development of more 

interpretable and reliable  models. 
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