

piecewise 3-monotone approximation for 3-monotone functions in L_P-spaces for P<1

Eman Samir Bhaya and Shehab Ahmed Abdalredha University of Babylon, College of Education for Pure Sciences, Mathematics Department.

> Received Date: 4 / 6 / 2015 Accepted Date: 11 / 7 / 2016

الخلاصة

P<1 عندما $L_{\rm p}$ عندما P<1 عندما $L_{\rm p}$

الكلمات المفتاحية

درجة التقريب، فضاءات Lp.

Abstract

In this paper we estimate the degree of 3-monotone shape preserving approximation on L_P -spaces for <1.

Keywords

The degree of monotone, L P-spaces.

1. Introduction

In [1] K.A.Kopotun, studied approximation of k-monotone functions, in [2] E. S. Bhaya,andR. R. Mohsin, studied approximation of 3-monotone functions by 3-monotone functions in L_p -spaces, and in [3] E.S. Bhaya, and M. S. Al-Muhjastudiedk-monotone approximation in L_p -spaces, in [4] G.A.Dzyubenko,K. A. Kopotun, and A.V.Prymark, studied Three-monotone spline approximation, in [5] A.Bondarenko, D.Leviatan, and A.Prymark, studiedpointwise estimates for 3-monotone approximation.

In this paper we introduce shape preserving approximation theorems for 3-monotone functions in L_p -spaces for <1.

2. The auxiliary results:

Let us introduce some auxiliary lemmas that we need in our work.

2.1. Lemma

$$\begin{split} & \text{suppose f,s} {\in} \Delta^2_{[a,b]} {\cap} L_p \text{ [a,b] for <1 . Then either s' (b-)} {\leq} f[a,b] \text{ or s' (a+)} {\geq} f[a,b] \text{ , satisfying} \\ & \|f\text{-l}\|_{L_p \text{ [a,b]}} {\leq} c \text{ (p) } \|f\text{-s}\|_{L_p \text{ [a,b]}}, \end{split}$$

wheref define on[a,b] and l is linear Lagrange interpolation f at a and b

Proof:

Suppose that $s'(b-) \le f[a,b]$, and $s'(a+) \ge f[a,b]$ is symmetrical. If $x_1 = \sup\{f'(x) \le f[a,b], \forall x \in (a,b)\}$, such that $s'(x) \le s'(b-) \le f[a,b]$, and $x_1 \le x \le b$.

$$||f-l||_{L_{p}[a,b]} = l(x_{1}) - f(x_{1})$$

= $\int_{b_{x_{1}}} (f'(x) - l'(x)) dx$

$$\leq \int_{X_1}^{b} (f'(x)-s'(x)) dx$$

$$\leq f(b) - s(b) - (f(x_1) - s(x_1))$$

$$\leq c(p) \|f-s\|_{L_p[a,b]}$$

2.2. Lemma [6]:

Suppose that f is defined on $[a_1,b_1]$, and that s is a piecewise polynomial of degree $\le k-1$, which knot a and b, $a_1 \le a \le b \le b_1$, such that s' $(a+) \le f[a,b] \le s'(b-)$. If, $s \in \Delta[a,b]^2$, then there exist a piecewise polynomial $s_1 \in \Delta[a_1,b_1]2$ of degree $\le k-1$, with knot a and b, satisfying $(1)s'(a+) \le s_1'(a+)$, $s'(b-) \le s_1'(b-).(2)s_1(a) = f(a)$, $s_1(b) = f(b)$

2.3. Lemma:

Let f define on $[a_0,b_0]$ and let $s \in \Delta_{[a,b]}^2 \cap L_{p}[a,b]$ for P<1, of degree $\leq k$ -1 at knots a and b, $a_0 \leq a \leq b \leq b_0$, $s'(a+) \leq f[a,b] \leq s'(b-)$. If f, and s are convex polynomials on $[a_0,b_0]$, then there is s' be convex a piecewise polynomial on $[a_0,b_0]$ of degree $\leq k$ -1, at same knots, satisfying

(1)
$$s'(a+) \le s_1'(a+), s_1'(b-) \le s'(b-)$$

$$(2)s_{1}(a) = f(a), s_{1}(b) = f(b)$$

$$(3) \mathbb{I} f\text{-}s_1 \mathbb{I}_{L_p\left[a,b\right]} \leq c \; (p) \; \mathbb{I} f\text{-}s \mathbb{I}_{L_p\left[a,b\right]}$$

$$(4) \| f \text{-} s_{_1} \| \text{ LP } [a_{_0},b_{_0}] \leq c \ (p) \ \| f \text{-} s \|_{L_p} \, [a_{_0},b_{_0}]$$

Note if $[a,b]=[a_0,b_0]$, such that s, s_1 are convex a piecewise polynomials on $[a_0,b_0]$ of degree $\leq k-1$.

Proof:

If (b)-f(a)=s(b)-s(a), let $s_1(x) = s(x) + f(a)-s(a)$, for each $x \in [a_0,b_0]$. Then by Lemma 2.2 we get (1) and (2),then

$$\begin{split} &\|f\text{-}s_1\|_{L_p[a,b]} = &\|f\text{-}(s(x)+f(a)\text{-}s(a))\|_{L_p[a,b]} \\ &\leq c\ (p)\ \|f\text{-}s\|_{L_p[a,b]} \end{split}$$

And

$$\begin{split} &\|f - s_1\|_{L_p[a_0,b_0]} = \|f - (s(x) + f(a) - s(a))\|_{L_p[a_0,b_0]} \\ &\leq c(p)\|f - s\|_{L_p[a_0,b_0]} \end{split}$$

Suppose $f(b)-f(a) \le s(b)-s(a)$ and this case $f(b)-f(a) \ge s(b)-s(a)$ is symmetrical.

First defines₁ on the interval [a,b] and then extended to interval $[a_0,b_0]$ if $[a,b]=[a_0,b_0]$.

Assume $s \ddot{\ }(x) = s(x) - s \ddot{\ }(a+)$ (x-a), for each $x \in [a,b]$, and $f \ddot{\ }(x) = f(x) - s \ddot{\ }(a+)(x-a)$, for each $x \in [a,b]$, such that $\|f \ddot{\ } - s \ddot{\ }\|_{L_p[a,b]} = \|f - s\|_{L_p[a,b]}$, then by our hypothesis $f(b) - f(a) < s \ddot{\ }(b) - s \ddot{\ }(a)$, and $s \ddot{\ }(b) - s \ddot{\ }(a) > 0$. Thus set $s \ddot{\ }_1 (x) = f \ddot{\ }(a) + \lambda (s \ddot{\ }(x) - s \ddot{\ }(a))$, for each $x \in [a,b]$ and $\lambda = (f \ddot{\ }(b) - f \ddot{\ }(a))/(s \ddot{\ }(b) - (s(a \ddot{\ }))$ where $0 \le \lambda \le 1$, note that $S \ddot{\ } is$ non decreasing and $\|s \ddot{\ }(.) - s \ddot{\ }(a)\|_{L^p[a,b]} = s \ddot{\ }(b) - s \ddot{\ }(a)$, $s \ddot{\ }_1 (a) = f \ddot{\ }(a)$, $s \ddot{\ }_1 (b) = f \ddot{\ }(b)$, so that $s \ddot{\ }_1 is$ convex in [a,b]. Hence

$$\begin{split} \|f\text{-}s_1^-\|_{L_p[a,b]} &= \|f\text{-}s_1^-\|_{L_p[a,b]} \\ &= \|f\text{-}(.)\text{-}s\text{-}(.)\text{+}s\text{-}(a)\text{-}f\text{-}(a)\text{+}s\text{-}(.)\text{-}s\text{-}(a)\text{+}f\text{-}(a)\text{-}s\text{-}_1} \\ (.)\|_{L_{p_{[a,b]}}} \\ &\leq &c(p) \|f\text{-}s\text{-}s\text{-}\|_{L^{p_{[a,b]}}} + \|s\text{-}(.)\text{-}s\text{-}(a)\text{+}f\text{-}(a)\text{-}f\text{-}(a)\text{-}\lambda(s\text{-}(.)\text{-}s\text{-}(a))\|_{L^{p_{[a,b]}}} \end{split}$$

$$\leq c(p)(\|f\ \dot{\ }\ s\ \ddot{\ }\|_{L^p[a,b]} + \|s\ \ddot{\ }(.) - s\ \ddot{\ }(a) - \lambda(s\ \ddot{\ }(b) - s\ \ddot{\ }(a))_{|L^p[a,b]})$$

$$\leq \!\! c(p) (\|f\tilde{} - s\tilde{} - \|_{_{L^{p}[a,b]}} + \!\! (1 - \! \lambda) \|s\tilde{} - \!\! (b) - \!\! s\tilde{} - \!\! (a)\|_{_{L^{p}[a,b]}}$$

"(b)-(s(a")) (s"(b)-s(a))"
$$\|(_{_{LP[a,b]}})$$

$$\leq c(p) \|f\text{--}s\text{--}\|_{_{LP[a,b]}} + c(p) \|f\text{--}s\text{--}\|_{_{LP[a,b]}}$$

$$\leq \!\! c(p) \, \|f\text{--}s\text{--}\|_{_{LP\,[a,b]}} \big) \!\! = \!\! c(p) \|f\text{--}s\|_{_{LP\,[a,b]}}$$

Further, if $[a,b] \neq [a_0,b_0]$, then extendS₁ either to right or to left or both.

Let

$$s^{1}(x) = \begin{cases} s(x) + f(x) - s(a) & \text{for each } x \in [a_{0}, a) \\ s(x) + f(x) - s(b) & \text{for each } x \in (b, b_{0}] \end{cases}$$

Then see a piecewise polynomial $s_1 \in \Delta[a_0, b_0]^2$ of degree $\leq k-1$ at knots aand b.

Now

$$\begin{split} &\|f\text{-}s_1\|_{_{LP[b,b0]}} = \|f\text{-}s\ (x)\text{-}(f\ (b)\text{-}s\ (b))\|_{_{LP[b,b0]}})\\ \leq &c(p)\|f\text{-}s\|_{_{LP[b,b0]}}\\ &\text{and similarly}\\ &\|f\text{-}s_1\|_{_{LP[a0,a]}} = \|f\text{-}s(x)\text{-}(f(a)\text{-}s(a))\|_{_{LP[a0,a]}}\\ \leq &c(p)\|f\text{-}s\|_{_{LP[a0,a]}} \end{split}$$

Combined these with (3), we get (4)

2.4. Lemma:

$$\begin{split} & \text{Letf ,s} {\in} \Delta^2_{[a,b_0]} {\cap} L_p \ [a,b] \ , \ \text{for P} {<} 1 \ , \ a {<} b {<} b_0, \\ & \text{and s' (b-)-f[b,b_0]} {>} 0 \ . \ \text{Then} \\ & (s' (b-){-}f[b,b_0]) \ (b_0{-}b) \leq c(p) \ \|f{-}s\|_{LP \, [b,b_0]} \\ & \text{Symmetric, if f, s} {\in} \Delta^2_{[a_0,a]} {\cap} L_p \ [a,b] \ , \ \text{for P} {<} 1 \\ & \text{, a_0} {<} a {<} b \ , \ \text{and f[a_0,a]-s' (a+)} {\leq} c(p) \|f{-}s\|_{LP \, [a_0,a]} \end{split}$$

Proof:

The proofs of the first statement ,and the second are similar, let $x_0 = \sup\{x \in (b,b_0): f'(x) \le s'(b-)\}$, then

$$(s'(b-)-f[b,b_{0}])(b_{0}-b) = \int_{b}^{b_{0}} (s'(b-)-f[b,b_{0}])dx$$

$$= \int_{b}^{b_{0}} (s'(b-)-f'(x))dx$$

$$\leq \int_{b}^{x_{0}} (s'(b-)-f'(x))dx$$

$$\leq \int_{b}^{x_{0}} (s'(x)-f'(x))dx$$

$$= s(x_{0})-f(x_{0})-(s(b)-f(b))$$

$$\leq c(p)\|f-s\|_{L_{p}[b,b_{0}]}$$
wheres' be no decreasing such that f ?

wheres' be no decreasing such that $f'(x) \le s'(b-1) \le s'(x)$, for each $x \in (b,x_0)$.

2.5. Lemma [6]:

Let $a_1 < a < b < b_1$, and $f \in \Delta^2_{[a1,b1]}$, and suppose that $s \in \Delta^2_{[a1,b1]}$ is a piecewise polynomial of degree $\leq k-1$ with knots a and b, satisfying f(a)=s(a),f(b)=s(b). Then ,there is a polynomial $s_1 \in \Delta^2_{[a,b]}$ of degree $\leq k-1$, such that

(1)
$$s'(a+) \le s_1'(a+), s_1'(b-) \le s'(b-)$$
.

(2)
$$f[a,a_1] = k_a \le s_1'(a+), s_1'(b-) \le k_b = f[b,b_1].$$

(3)
$$s_1(a) = f(a)$$
, $s_1(b) = f(b)$.

2.6. Lemma:

Suppose $a_0 < a < b < b_0$, and let m=max $\{\frac{b-a}{b_0-b}, \frac{b-a}{a-a_0}\}$, and f is convex polynomial on $[a_0,b_0]$, and lets convex piecewise polynomial on $[a_0,b_0]$ of degree $\leq k-1$, at knots a and b, we take f(a)=s(a), and f(b)=s(b). Then there exist s_1 is convex polynomial on [a,b] of degree $\leq k-1$, satisfying

(1)
$$s'(a+) \le s_1'(a+), s_1'(b-) \le s'(b-)$$
.

(2)
$$f[a,a_1] = k_a \le s_1'(a+), s_1'(b-) \le k_b = f[b,b_1].$$

(3)
$$s_1(a) = f(a)$$
, $s_1(b) = f(b)$.

$$(4) \ \| f\text{-}s_1 \ \|_{LP[a,b]} \leq c(p,\!m) \| f\text{-}s \|_{LP[a0,b0]}$$

Proof:

Suppose that f(a)=f(b). If S be constant on interval [a,b], put $s_1(x)=s(x)$, for each $x \in [a,b]$. Otherwise let s(b)=s(a) and sisconvex, such that $s^{(a)}(b-)>0>s'(a+)$. let

$$\lambda = \min \left\{ \frac{k_b}{s'(b-)}, \frac{k_a}{s'(a+)} \right\} \ge 0.$$

If $\lambda \ge 0$, then put $s_1(x) = s(x)$, for each $x \in [a,b]$. Otherwise <0, suppose that $\lambda = \frac{k_b}{s'(b-)} < 0$. Then assume $s_1(x) = s(a) + \lambda(s(x) - s(a))$, for each $x \in [a,b]$, since s_1 is convex polynomial on [a,b] of degree $\le k-1$. We get (1), (2) and (3) from Lemma 2.5.

Let
$$x_1 = \sup\{s'(x) \le 0 : x \in (a,b)\}$$
, and $0 = s(b) - s(a) = \int_a^b S'(x) dx$, so that $\|s - s_1(a)\|_{L_p[a,b]} = \int_{x_1}^a s'(x) dx = \int_{x_1}^b s'(x) dx \le (b - a)s'(b - a)$ Then by Lemma 2.4.,

$$\begin{split} \|s - s_1\|_{LP[a,b]} = &\|s(x) - s(a) - \lambda(s(x) - s(a))\|_{LP[a,b]} \\ = &(1 - \lambda) \|s - s(a)\|_{LP[a,b]} \le (1 - \lambda)s' \ (b -)(b - a) \\ = &(1 - \lambda)s' \ (b -)(b_0 - b) \\ \le & c \ (p,m) \|f - s\|_{LP[b,b^0]} \\ \text{Hence} \\ \|f - s_1\|_{LP[a,b]} = &\|f - s + s - s_1\|_{LP[a,b]} \le C \ (p) \ (\|f - s\|_{LP[a,b]} + \|f - s_1\|_{LP[a,b]}) \\ \le & c(p) \|f - S\|_{LP[a,b]} \end{split}$$

The proof of Lemma 2.6 is complete ■

2.7. Lemma [6]:

Let $a < b < b_1$, $\widetilde{m} = \frac{b-a}{b_1-b}$, and $f \in \Delta^2_{[a,b_1]}$, and suppose that $s \in \Delta^2_{[a,b_1]}$ is a piecewise polynomial of degree $\leq k-1$ with knot b, satisfying f(a)=s(a) and f(b)=s(b). Then ,there is a polynomial $s_1 \in \Delta^2_{[a,b]}$ of degree $\leq k-1$, such that

$$(1) s_1'(b-) \le s'(b-),$$

$$(2) s_1'(b_1) \le k_b = f[b_1,b_1],$$

(3)
$$s_1(a) = f(a), s_1(b) = f(b),$$

Symmetrically, let $a_1 \le a \le b$, and $f \in \Delta^2_{[a1,b]}$, and suppose that $s \in \Delta^2_{[a1,b]}$ is a piecewise polynomial of degree $\le k-1$ with knot a, satisfying f(a)=s(a) and f(b)=s(b). Then, there is a polynomial $s_1 \in \Delta^2_{[a,b]}$ of degree $\le k-1$, such that

(1)
$$s_1$$
, $(a+) \le s$, $(a+)$,

(2)
$$f[a,a_1]=k_a \le s_1'(a+),$$

(3)
$$s_1(a) = f(a), s_1(b) = f(b),$$

2.8. Lemma:

Suppose $a < b < b_0$, and f be convex polynomial on $[a,b_0]$ of degree $\leq k-1$, and assume S be convex a piecewise polynomial on $[a,b_0]$ of degree $\leq k-1$ at the knot b ,put f(a)=s(a), f(b)=s(b). Then ,there exist s_1 convex polynomial on [a,b], of degree $\leq k-1$, satisfying

$$(1)s_{1}'(b_{1}) \leq s'(b_{1}),$$

$$s_1'(b-) \le k_b = f[b,b_0],$$

$$s_1(a)=f(a), s_1(b)=f(b),$$

(2)
$$\|f-s_1\|_{L^{p}[a,b]} \le c(p,m) \|f-s\|_{L^{p}[a,b_0]}$$

, suppose $a_0 < a < b$, $\widehat{m} = \frac{b-a}{a-a_0}$, and f convex polynomial on $[a_0,b]$ of degree $\leq k-1$ at knot a, we put f(a) = s(a), f(b) = s(b). Then, there exist s, convex polynomial on [a,b] of degree \leq k-1, satisfying

$$(1) s_1'(a+) \le s'(a+),$$

$$f[a,a_1] = k_a \le s_1'(a+),$$

$$s_1(a) = f(a), s_1(b) = f(b),$$

$$(2) \|f\text{-}s_1\|_{LP\,[a,b]} \leq c(p,m\, \hat{\,\,\,}) \|f\text{-}s\|_{LP\,[a0,b]}$$

Proof:

We prove the first case and the second case is symmetric.

By Lemma 2.7., we get (1).

And prove (2) by Lemma 2.6,

$$\|f\text{-}s_{_{1}}\|_{_{LP[a,b]}} = \|f\text{-}s(a)\text{-}\lambda(s(x)\text{-}s(a))\|_{_{LP\,[a,b]}}$$

$$\leq c(p) \; \|f\text{-}s\|_{_{LP\,[a,b]}} + c(p) \|s\text{-}f(a)\|_{_{LP\,[a,b]}}$$

$$\leq c(p,m)\|f-s\|_{LP[a,b0]}$$

2.9. Proposition [7]:

Let $k \ge 1$ and $r \ge 1$, be integers such that either $r \ge 2$ or $2 \le k + r \le 3$. Then for each f $f \in L_{P[-1,1]}^{(r)} \cap \Delta_{[-1,1]}^2$ there exist piecewise polynomials s_1 , $s_2 \in \Delta^2_{[-1,1]} \cap_{LP[-1,1]}$ of degree $\leq k$ + r-1 such that s, has n equidistant knots, and satisfies

$$||f - s_1||_{L_{P[-1,1]}} \le \frac{c(p,k,r)}{n^r} \omega_k(f^{(r)}, \frac{1}{n}; [-1,1])(1)$$

ands, has knots on the Chebyshev partition, and satisfies

$$||f - s_2||_{L_{P[-1,1]}} \le \frac{c(p,k,r)}{n^r} \omega_k^{\varphi}(f^{(r)}, \frac{1}{n}; [-1,1])(2)$$

Moreover, s, and s, interpolate f at the respective knots.

As a direct consequent of Lemma 11 in [2], p.167, we get the following:

2.10. Lemma:

Assume B>1 and = $\max_{0 < i < j \le n} \frac{(j-i)(x_{i+1}-x_i)}{x_j-x_i}$. hen for each step-function Then $g(x) = \sum_{j=1}^{n-1} \alpha_j (x - x_j)_+^0$, for each $x \in [a,b]$, where $\alpha_i \ge 0$, there is a polygonal-line $p(x) = \sum_{j=1}^{n-1} \frac{\beta_j}{(x_{j+1} - x_j)} (x - x_j)_+$. Satisfying

$$\left|\beta_{j}\right| < \frac{\alpha_{j}}{R}, j = 1, 2, 3, \dots, n - 1,$$
 (3)

And

$$\|g(x)-p(x)\|_{LP[a,b]} \le 8 \mu A B (4)$$

where

$$A = \max_{\mathsf{T}} (j=1,2,\ldots,n-1)\alpha_i$$
.

The following auxiliary Lemma is an improvement of Lemma introduced by D.Leviatan, and A.V.Prymark [Lemma 12, p.167], and it can be proved in the same way and get.

2.11. Lemma:

Given the partition $x_0 < x_1 < x_2 < ... < x_n$, and the sequence $\delta_1, \delta_2, \dots, \delta_{n-1}$ are nonnegative-

numbers, such that $\delta_j \leq \frac{1}{\left(x_{j+1} - x_{j-1}\right)^2} \Omega, \quad 1 \leq j \leq \text{n-1,with}\Omega \text{ is}$ a positive-constant. Then there is a piecewise polynomial q of degree ≤ 3 , at the knots $x_{1}, x_{2}, \dots, x_{n-1}$, such that $q \in L^{(1)}_{p_{[a,b]}}$,

$$q"(x_j^+)-q"(x_j^-) = -\delta_j$$
, $j=1,2,3,...,n-1(5)$

$$q \in \Delta x^{3}_{(j-1),x_{j}} \cap_{L_{P}}(x_{j}-1,x_{j}), j=1,2,3,...,n(6)$$

$$\|q\|_{LP[a,b]} \le c(p,m,\mu)\Omega(7)$$

where $c(p,m,\mu)$ is constant depending on m

and
$$\mu$$
, $\mu = \max_{0 < i < j \le n} \frac{(j-i)(x_{i+1}-x_i)}{x_j-x_i}$
and $= \max_{1 \le j \le n-1} \left\{ \frac{x_{j+1}-x_j}{x_j-x_{j-1}}, \frac{x_{j}-x_{j-1}}{x_{j+1}-x_j} \right\}$

and =
$$\max_{1 \le j \le n-1} \left\{ \frac{x_{j+1} - x_j}{x_j - x_{j-1}}, \frac{x_j - x_{j-1}}{x_{j+1} - x_j} \right\}$$

2.12. Lemma [8]:

$$\begin{split} \text{Letf} \in L_p \ [a,b], \ 0 < P < \infty \ . \ \text{Then there exist} \\ q_{k\text{-}1} a \ \text{polynomial of degree} \le k\text{-}1 \ , \ \text{such that} \\ \|f\text{-}q_{k\text{-}1}\|_{L_p} \ [a,b] \le c \ \omega_k \ (f,b\text{-}a,[a,b])_p \ . \end{split}$$

2.13. Lemma [8]:

Let Pbe a piecewise polynomial of degree < k .such that

$$\|P_{k}^{\;(s)}\,\|_{LP\,[a,b]} \leq c\,\,k^{s}\,\,\|P_{k}^{}\,\|_{LP\,[a,b]}^{}$$

where c is a constant and s is the order of derivative.

3. The main result

In this section we introduce our main theorems.

3.1. Theorem:

Let $\in \Delta^2_{[a,b]} \cap L_p[a,b]$, for P < 1, with the partition $x_{-1} = a = x_0 < x_1 < x_2 < \dots < x_n = b = x_{n+1}$, and $k \ge 2$. Then for all convex piecewise polynomial S on interval [a,b] of degree $\le k-1$, at the knots x_j and $j = 1,2,3,\dots,n-1$, there exist s_1 is a convex a piecewise polynomial on interval [a,b] of degree $\le k-1$ at the knots x_j and $j = 1,2,3,\dots,n-1$, satisfying

(1)
$$f(x_i) = s_1(x_i)$$
, and $j = 0, 1, ..., n$ [1]

$$(2) \; \|f\text{-}s_1^-\|_{_{LP[x_j\text{-}1,x_j]}} \! \leq \! c(p,\!m) \; \|f\text{-}s\|_{_{LP[x_j\text{-}2,x_j^{+}1]}}$$

wherec(p,m) be constant depended on p and m , and m = $\max_{1 \le j \le n-1} \left\{ \frac{x_{j+1} - x_j}{x_j - x_{j-1}}, \frac{x_j - x_{j-1}}{x_{j+1} - x_j} \right\}$

Proof:

Let

 $l_u(.)=L(.;x_{u-1},x_u)$, u=0,1,...,n+1. Assume $A \subset \{1,2,3,...,n\}$ is the set of each, such that $s'(x_{i-1}+) \le l_i' \le s'(x_i-)$. For each $\notin A$, satisfying

$$\begin{split} s_{_{1}}\left(x\right) &= l_{_{i}}\left(x\right), \, x \in [x_{_{i-1}}, x_{_{i}}]. \text{ By using Lemma 2.8.} \\ &\|f - s_{_{1}}\|_{Lp[x_{i} - 1, x_{i}]} \leq c \, \left(p\right) \, \|f - s\|_{Lp\left[x_{i} - 2, x_{i} + 1\right]} \, \left(8\right) \end{split}$$

So as to define s_1 on interval $[x_{i-1},x_i]$, $i \in A$, we first suppose 1 < i < n, and use the interval $[x_{i-2},x_{i+1}]$. first Lemma 2.3 and use Lemma 2.6, at $a=x_{i-1}$ and $b=x_i$. We achieve the existence a convex polynomial s_1 on $[x_{i-1},x_i]$, then

$$\begin{aligned} & \| f\text{-}s_1 \|_{L_{P[xi-1,xi]}} \leq c \ (p) \ \| f\text{-}s \|_{L^{P}[xi-2,xi+1]} \ (9) \\ & \text{and} \ f(x_{_{i\text{-}1}}) = s_{_1} \ (x_{_{i\text{-}1}}), f \ (x_{_i}) = s_{_1} (x_{_i}) \end{aligned}$$

Finally, we dealwith the possible that either i=1 or i= n , and 1,n \in A . To this suppose 1 \in A, and the second case n \in A is symmetrically, since s'(a+) \leq f [a,x₁] \leq s'(x₁₋) . Then by using Lemma 2.3 we have a piecewise polynomial

 $\ddot{s}_1 \in \Delta^2_{[a,x_2]}$, which f interpolate with a and x_1 . Since $\ddot{s}_1'(x_1-) \leq s'(x_1-)$, then

$$\|f\ddot{-}\dot{s}_1\|_{L_p[a,x_2]} \le c \ (p) \|f-s\|_{L_p[a,x_2]} \ (10)$$

We now using Lemma 2.8 and get $s_1 \in \Delta^2$ [a,x1] of degree \leq k-1, which f interpolate with aand x_1 , since $\ddot{s}_1'(x_1-) \leq s'(x_1-)$, then

$$\|f-s_1\|_{L_p[a,x_1]} \le c (p) \|f-s\|_{L_p[a,x_2]} (11)$$

so ,s_1is a convex and piecewise polynomial –function of degree \leq k-1 , and s₁ (x₁)= $f(x_1)$, i= 0,1,2,...,n , and from (1)-(3) include

$$\|f\text{-}s_1\|_{L_{P[xj\text{-}1,xj]}} \leq c(p,\!m) \; \|f\text{-}s\|_{L^{P[xj\text{-}2,xj\text{+}1]}} \blacksquare$$

3.2. Theorem:

Let F be a 3-monotone function in $L_P[a,b]$, satisfying f(x)=F'(x), for each $x\in(a,b)$, and take k>2, $x(-1)=a=x_0< x_1<\cdots< x_n=b=x_{n+1}$ be partition for the interval [a,b]. Also let s be convex a piecewise polynomial on [a,b] of degree $\leq k-1$, at knots x_j , $j=1,2,\ldots,n-1$, then, there is a piecewise polynomial 3-monotone P in $L_P[a,b]$

of degree \leq k at the same knots, satisfying $\|F\text{-}P\|_{L^{p[a,b]}} \leq c \ (p,\!m) \|f\text{-}s\|_{L^{p}\left[x(i\text{-}2),xi\text{+}1\right]}$ wherec(p,m)is constant depended on p and m ,and m= $\max_{1 \le j \le n-1} \left\{ \frac{x_{j+1} - x_j}{x_j - x_{j-1}}, \frac{x_j - x_{j-1}}{x_{j+1} - x_j} \right\}$

Proof:

By using Theorem 3.1, and using Theorem 2.3, we have

$$\begin{split} \|F\text{-}P\|_{L_{P}[a,b]} &\leq \|F\text{-}P\|_{L^{P}\left[a,b\right]} + \|f\text{-}s_{_{1}}\|_{L^{P}\left[x_{j}\text{-}1,x_{j}\right]} \leq c\ (p) \\ \|f\text{-}s\|_{L^{P}\left[x_{i}\text{-}1,x_{i}\right]} + c(p)\|f\text{-}s\|_{L^{P}\left[x_{j}\text{-}2,x_{j}+1\right]} \\ &\leq c(p,m)\|f\text{-}s\|_{L^{P}\left[x_{i}\text{-}2,x_{i}+1\right]} \blacksquare \end{split}$$

3.3. Theorem:

Given the integers k > 1 and k > 0, such that either r > 3, or $3 < k+r \le 4$, and $(k,r) \ne (4,0)$. Then for all $\in L_{P_{[-1,1]}}^{(r)} \cap \Delta_{[-1,1]}^3$, there exist 3-monotone a piecewise polynomials S₁ and S_1 on [-1,1] of degree $\leq k + r-1$, such that $||F - S_1||_{L_{P[-1,1]}} \le \frac{c(p,k,r)}{n^r} \omega_k(F^{(r)}, \frac{1}{n}; [-1,1])(12)$

Where S₁ has n equal –distant knots.

And such that

$$||F - S_2||_{L_{P[-1,1]}} \le \frac{c(p,k,r)}{n^r} \omega_k^{\varphi}(F^{(r)}, \frac{1}{n}; [-1,1])(13)$$

Where S_2 has n knot on chebyshev partition.

Proof:

We prove the first case and the second case is symmetrically.

Byusing Theorem 3.2

$$\begin{split} \|F\text{-P}\|_{L_{p}}[a,b] &\leq c(p,m) \| \text{ f-s}\|_{L_{p}} \left[x_{_{i\text{-}2}},\!x_{_{i+1}}\right] \\ \text{and also we have }, \end{split}$$

$$||f - s_1||_{L_{P[-1,1]}} \le \frac{c(p,k,r)}{n^r} \omega_k(f^{(r)}, \frac{1}{n}; [-1,1])$$

$$\begin{split} & \|F - S_1\|_{L_{P[-1,1]}} \leq c(p,m) \|f - s\|_{L_{P}[x_{l-2},x_{l+1}]} + \frac{c(p,k,r)}{n^r} \omega_k(f^{(r)},\frac{1}{n};[-1,1]) \\ & \leq \frac{c(p,k,r)}{n^r} \omega_k(F^{(r)},\frac{1}{n};[-1,1]) \blacksquare \end{split}$$

3.4. Theorem:

Let S be a 3-monotone a piecewise polynomial in $L_p[a,b]$, P<1, of degree $\leq k$ and k > 3, at knots $x_1 = a = x_0 < x_1 < x_2 < \dots < x_n = b = x_{n+1}$. Then there exist a piecewise polynomial S₁ of degree $\leq k$ at the knots $x_1 = a = x_0 < x_1 < x_2 < \cdots <$ $x_n = b = x_{n+1}$, such that $S_1 \in \Delta^3_{[a,b]} \cap {}^{(2)}_{L_{P}[a,b]}$, for P < 1 And

$$\|S-S_1\|_{L_{p[a,b]}} \le c(p,k,m,\mu)\omega_{k+1} (S,(x_{j+1}-x_{j-1}); [x_{j-1},x_{j+1}] (14)$$

Where $c(p,k,m,\mu)$ is a constant depending on p,k,mand, and m=

$$\max_{1 \le j \le n-1} \left\{ \frac{x_{j+1} - x_j}{x_j - x_{j-1}}, \frac{x_j - x_{j-1}}{x_{j+1} - x_j} \right\}, \text{ and}$$

$$\mu = \max_{0 < i < j \le n} \frac{(j-i)(x_{i+1} - x_i)}{x_j - x_i} (15)$$

Proof:

Let $\delta_i = S''(x_i +) - S''(x_i -), j = 1, 2, ..., n-1$. Since S be a 3-monotone function in L P [a,b] for <1, on interval[x_0 , x_n] , $\delta_i \ge 0$, $1 \le i \le n\text{-}1$. By Lemma 2.12 there exist polynomial U k of degree $\leq k$, such that

$$\begin{split} \|S\text{-}U_{k}\|LP[xj\text{-}1,xj\text{+}1] &\leq c(p,k)\omega_{k\text{+}1}(S,(x_{j\text{+}1}\text{-}x_{j\text{-}1});[x_{j\text{-}1},x_{j\text{+}1}])_{LP} \\ \text{This transition by Lemma2.13,} \end{split}$$

$$||U_k'' - S''||_{L_p[x_{j-1}, x_{j+1}]} \le \frac{c(p, k)}{\left(x_{j+1} - x_j\right)^2} \omega_{k+1}(S, (x_{i+1} - x_{i-1}); [x_{i-1}, x_{i+1}])_{L_p}$$
Thus

Thus,

$$\delta_{j} \leq \frac{c(p,m,k)}{(x_{j+1}-x_{j})^{2}} \omega_{k+1}(S, (x_{i+1}-x_{i-1}); [x_{i-1}, x_{i+1}])$$
Let

$$\Omega = c(p,m,k)\omega_{k+1} (S,(x_{i+1}-x_{i-1}); [x_{i-1},x_{i+1}])$$

And by Lemma 2.11 to get the apiecewisepolynomial. The set $S_1(x)=S(x)+g(x)$, each $x \in [x_0, x_n]$. Clearly ,apiecewise-polynomial S_1 of degree $\leq k$ at knots $x_0, x_1, ..., x_n$, such that

$$S_1$$
" $(x_j-)=S_1$ " (x_j+) , $j=1,2,...,n-1$,(16)
so that $S_1 \in {}^{(2)}_{LP[a,b]}$. Also, since $S \in \Delta^3_{[x0,xn]} \cap L_P$

[a,b]for P<1, by (6) that S_1 " be nodecreasing in(x_{j-1}, x_j), $1 \le j \le n$. Combine with (16) ,and that S_1 " be non decreasing on(x_{j-1}, x_j), so as to S_1 is 3-monotone function on [a,b]. At last, (14)from (7). This completes the proof

References

- [1] K. A. Kapotun ,Approximation of k-monotone functions, J. Approx. Theory 94,481-493, (1998).
- [2] E. S. Bhaya,R. R. Mohsin, Approximation of 3-monotone functions by 3-monotone functions in lp-spaces,J. Kufa for Math. And computer vol.1,No.1,April,pp.54-64, (2010).
- [3] E.S. Bhaya ,M. S. Al-Muhja , k-monotone approximation in lp-spaces, J. Kufa for Math. And computer vol.1,No.1,April,pp.98-103, (2010).
- [4] G. A. Dzyubenko , K. A. Kopotun , A. V. Prymak , Three-monotone spline approximation , J. Approx. Theory 1622168-2183, (2010).
- [5] A. Bondarenko , D. Leviatan ,A. Prymak , Pointwise estimates for 3-monotone approximation , J. Approx. Theory 1641205-1232,(2012).
- [6] D.Leviatan, A.V.Prymak, On 3-monotone approximation by piecewise polynomials, J. Approx. Theory 133147-172, (2005).
- [7] R. A. DeVore, Y. K. Hu, D. Leviatan, convex polynomial and spline approximation in lp,0<p<∞, Constr. Approx12:409-422,(1996).
- [8] K. A.Kapotun ,Whitney Theorem of Interpolatory Type for k-Monotone Functions,Constr. Approx. 17: 307-317,(2001).