

Kirkuk University Journal for Agricultural Sciences ISSN:2958-6585

Silva Marian

https://doi.org/10.58928/ku24.15118

https://kujas.uokirkuk.edu.iq

RESEARCH ARTICLE

Effect of spraying with full green fertilizer, GA₃ and NAA on some vegetative and rooting growth characteristics of almond seedlings (*Prunus amigdalus*).

Hawa A. Saleh ¹ Sulaiman M.Kako¹ Najeeba W.Mohammed¹

¹Hort. Dept., College of Agricultural Engineering Sciences/ Dohuk University, Dohuk, IRAQ.

*Corresponding Author: Najeeba.mohammed@uod.ac.

Received: 03/01/2024 Revised: 10/02/2024 Accepted: 17/02/2024 Published: 01/03/2024

ABSTRACT

This study was conducted in the University of Duhok's nursery of the horticulture department, College of Agriculture Engineering Sciences, in the Kurdistan region of Iraq, during the growing season (2022–2023). One-year-old almond seedlings were obtained from the college nursery. And sprayed two times: the first was on 1st April and the second was on 1st May. Randomized complete block design (RCBD) as factorial experiment was used, including three factors (Full green fertilizer (0, 4, 8) gm. L⁻¹, GA3 (0, 50, 100) mg. L⁻¹, and NAA (0, 750, 1250) mg. L⁻¹ (3*3*3*3*3), with three seedlings for each experiment unit. SAS program Results performed statistical analysis were compared according to Duncan's multiple range tests at 5%. Results showed that full green significantly increased (stem length (90.11cm), shoot number (9.22), leave area (47.48 cm2), shoot dry weight (5.58gm)) at 8 mg/L⁻¹, GA3 significantly affected on (stem length (89.11cm), leave area (47.08cm2), shoot fresh weight (9.05gm), shoot dry weight (5.92gm), root fresh weight (6.50gm), and root dry weight (3.85gm)) at 100mg/L⁻¹, and NAA increased stem length (90.85cm) and shoot fresh weight (8.73gm) at 1250mg/L⁻¹, while shoot number (9.59) and leave area (46.12cm2) at 750mg/L⁻¹ NAA.

Keywords: Full green Fertilizer, Plant growth regulators GA3, NAA, Almond seedlings.

Copyright © 2024. This is an open-access article distributed under the Creative Commons Attribution License.

INTRODUCTION

Almonds are one of the world's oldest commercial nut crops; they originated in West and Middle Asia and have since expanded to the Middle East, China, the Mediterranean region, and America [1]. One of the oldest tree nut varieties, almonds (*Prunus amygdalus*) are produced in greater quantities in Iran [2]. Then in any other country in the world. The fertilizer led to the improvement of vegetative growth characteristics. Since all fertilizers have a variety of roles in the life of plants, giving them the nutrients they need to grow in an equilibrium shape can help to improve vegetative growth and tree production [3]. In addition to their ability to accelerate plant growth, plant growth regulators are known to improve the source-sink relationship and promote the translocation of photoassimilates, which helps better retention of flowers and fruits. Growth regulators and promoters, such as GA3 and NAA, are responsible for initiating cell division in the cambium and stimulating vegetative growth. The primary function of auxin growth regulators is to regulate the development and expansion of roots. They are well known for their capacity to promote cell enlargement and fruit growth in peaches and citrus [4]. Auxins also modify the ripening process of fruit and inhibit the typical cell wall deterioration that occurs during cold storage [5]. Through their influence on photosynthetic enzymes, leaf-area index, light interception, and improved nutrient use efficiency, they are known to increase the photosynthetic efficiency of plants. They also play a significant role in modulating various processes throughout plant development. Gibberellic acid (GA3)-induced integrated mechanisms increase sink strength and redistribute photosynthesis to improve source potential [6]. Furthermore, GA increases phloem loading by influencing hormone concentration, apoplast pH, and cell turgor [7]. [8]. investigated how the fig cultivar 'Poona' reacted to varying GA3 concentrations and time intervals. Fig plants treated with three sprays of GA3 at a concentration of 60 mg L⁻¹, spaced 15 days apart, beginning from bud initiation, showed a notable increase in shoot length and the quantity of functional leaves. Stem elongation and protein synthesis are regulated by gibberellic acid (GA3). The Gibberella fujikuroi, which causes stem elongation, recovers GA3 as a metabolic byproduct. It is an extremely strong hormone that governs plant development and is found naturally in plants. [9]. showed that plant height, fresh and dry weights of leaves and roots were increasing highly significantly with 3 g/l of potassium nitrate, supplemented by 2 g/l urea and 5 g/l ammonium sulfate, respectively, at both seasons on date palm. Balance fertilization of NPK showed that had significant affected on leave area, diameter, height, and lateral branches of apple cultivars [10]. [11]. found that GA3 affected on chlorophyll content on anna apple tree. [12]. GA3 was most effective on stem height, leaf area, stem diameter, root fresh weight, root dry weight, shoot fresh and dry weights of both almond species. [13] indicated that spraying of GA3 and NAA on seedling sour orange with treatment singular and together caused a significant increasing in the rate of length, diameter, leaf area, and chlorophyll. [14]. NAA and GA3 treatments recorded significantly maximum length of seedling, diameter, leaf area, chlorophyll content, fresh weight of seedling and dry weight of custard apple seedling.

[15]. It was found that GA3 has a significant effect on vegetative growth of almond transplants, such as diameter, number of shoots, leaf area, and chlorophyll content.

Material and Methods

This study was carried out during the growing season (2022-2023) in the nursery of the horticulture department, College of Agriculture Engineering Sciences, University of Duhok, Kurdistan region, Iraq. One-year-old almond seedlings are taken from the college nursery, planted in plastic pots (26cm diameter) with a capacity of 10kg of soil. Randomized complete block design (RCBD) as factorial experiment was used, including three factors (Full green fertilizer (NPK) (0, 4, 8) gm. L⁻¹, GA3 (0, 500, 1000) mg. L⁻¹, and NAA (0, 750, 1250) mg. L⁻¹ with three levels (3*3*3*3) with three seedlings for each experiment unit. Statistical analysis was performed using the SAS program [16]. According to Duncan's multiple range tests, results were compared at 5% [17].

In the end of the study, the measurements were measured:

- 1. Stem length (cm) by tap
- 2. Stem diameter (mm) by digital Verner device
- 3. Leave area (cm²) by image program
- 4. Number of branches
- 5. Total chlorophyll content by SPAD- 502 device
- 6. Shoot fresh weight (gm)
- 7. Shoot dry weight (gm)
- 8. Root fresh weight (gm)
- 9. Root dry weight (gm)

Results

Table (1) showed that spraying full green fertilizer had a significant effect on length (90.11 cm) at 8 gm/l-1 compared with the control, while GA3 had no significant effect on length. However, spraying seedlings with NAA increased their length (90.85 cm) at 1250mg/l-1 compared to other levels.

The triple interaction gave significant differences in the data. The longest seedling (98.33 cm) was in 4gm/l-1 full green with 50 gm/l-1 GA3 from untreated seedlings of NAA, compared with other treatments.

Table 1: Effect of full green fertilizer, Ga3, and NAA on stem length (cm) of almond

						seedlings.
Full green	GA3 _	NAA (mg/l ⁻¹)			Full green F. *	Full green
fertilizer (gm/l ⁻¹)	(mg/l^{-1})	0	750	1250	GA3	F.
	0	88.67c-i	82.00i-1	90.67b-g	87.11c	
0	50	77.001	93.67a-d	78.00kl	82.89d	86.07b
	100	85.67e-j	83.67g-l	95.33abc	88.22bc	
	0	84.33f-k	90.00b-h	86.00e-j	86.78c	
4	50	98.33a	84.00f-k	91.33a-f	91.22ab	89.22a
	100	95.33abc	79.67jkl	94.00a-d	89.67abc	
	0	85.67e-j	82.67h-l	96.00abc	88.11bc	
8	50	90.00b-h	96.33ab	92.00a-e	92.78a	90.11a
	100	87.67d-i	86.33e-j	94.33a-d	89.44abc	
Me	an of NAA	88.07b	86.48b	90.85a		
Full green	0	83.78d	86.44cd	88.00bc	Mean of GA	
F. *	4	92.67ba	84.56cd	90.44ab	101	lean of GAS
NAA	8	87.78bc	88.44bc	94.11a		
C A 2 *	0	86.22d-f	84.89ef	90.89abc	0	87.33a
GA3 * NAA	50	88.44b-e	91.33ab	87.11c-f	50	88.96a
	100	89.56bcd	83.22f	94.56a	100	89.11a

In Table 2, it was found that each single factor (full green fertiliser, GA3, and NAA) had no significant effect on stem diameter. Triple interaction between (full green fertilizer*GA3*NAA) gave a significant decrease in stem diameter, the best diameter (5.81 mm) at untreated seedlings of full green, GA3 with 1250 mg/l⁻¹ NAA.

Table (2): Effect of full green fertilizer, Ga3, and NAA on stem diameter (mm) of almond seedlings.

Full green			NAA (ma/l-1	Full green			
fertilizer	GA3(mg/l ⁻¹)		NAA (mg/l ⁻¹	F. *	Full green		
(gm/l ⁻¹)	GA3(Ilig/1)	0	750	1250	GA3	F.	
	0	4.33c-f	5.70ab	5.81a	5.28a		
0	50	3.86def	4.51c-f	5.03abc	4.47bc	4.75a	
	100	4.39c-f	4.41c-f	4.72b-e	4.51bc		
	0	4.48c-f	3.62f	4.07c-f	4.06c		
4	50	4.99abc	4.19c-f	4.78b-e	4.65b	4.49a	
	100	5.03abc	4.45c-f	4.84a-d	4.77b		
	0	5.07abc	4.41c-f	4.66cde	4.71b		
8	50	4.70b-e	4.75b-e	4.42c-f	4.62b	4.61a	
	100	3.75ef	4.86a-d	4.82a-d	4.48c		
Mean	of NAA	4.51a	4.54a	4.80a			
Full green	0	4.19cd	4.87ab	5.19a	Mean o	C C A 2	
F.*	4	4.83ab	4.09d	4.56bcd	Mean	oi GAS	
NAA	8	4.51bcd	4.68abc	4.64bcd			
CA2*	0	4.62a	4.58a	4.85a	0	4.68a	
GA3 * NAA	50	4.52a	4.48a	4.75a	50	4.58a	
	100	4.39a	4.57a	4.80a	100	4.59a	

Table (3) illustrates that full green fertilizer meaningfully increased shoot number (9.22) at 8gm/l-1 compared to other treatments, while GA3 found no significant effect at three levels on a number of branches. In addition, NAA had a significant effect (9.59) at 750mg/l⁻¹. Triple interaction between three factors had no significant effect on number of branches, the highest value was (13.33) from the untreated plants) control of each treatment

Table (3): Effect of full green fertilizer, Ga3, and NAA on shoot number of almond seedlings.

Full green	a sa comb		NAA (mg/l ⁻¹)	Full green	Full green	
fertilizer(gm/l ⁻¹)	$GA3(mg/l^{-1})$	0	750	1250	F. * GA3	F.
	0	13.33a	9.67b-e	6.67efg	9.89ab	
0	50	6.67efg	11.33ab	9.33b-f	9.11abc	8.96a
	100	8.00c-g	8.00c-g	7.67d-g	7.89cd	
	0	7.67d-g	10.33bcd	10.33bcd	9.44abc	
4	50	6.33fg	11.00abc	6.33fg	7.89cd	8.04b
	100	6.33fg	7.67d-g	6.33fg	6.78d	
	0	9.33b-f	9.33b-f	6.00g	8.22cd	
8	50	10.33bcd	7.33d-g	8.67b-g	8.78bc	9.22a
	100	11.33ab	11.67ab	9.00b-g	10.67a	
Mean of	NAA	8.81a	9.59a	7.81b		
F 11 F *	0	9.33ab	9.67a	7.89bc	Mean of GA3	
Full green F. * NAA	4	6.78c	9.67a	7.67c	wiean (oi GAS
NAA	8	10.33a	9.44ab	7.89bc		
	0	10.11a	9.78a	7.67b	0	9.19a
GA3 * NAA	50	7.78b	9.89a	8.11b	50	8.59a
	100	8.56ab	9.11ab	7.67b	100	8.44a

Table (4) shows that the full green fertilizer significantly increased the leaf area (47.48cm2) at 8gm/l-1. Also, GA3 had a significant effect on the leaf area (47.08cm2) at 100mg/l-1. In addition, NAA also had a significant effect (46.12cm2) at 750 mg/l-1. The tri interaction gave a significant difference (50.50 cm2) from 8gm/l-1 full green fertilizer with 100mg/l-1 GA3 and 750mg/l-1 NAA compared to other data.

Table (4) Effect of full green fertilizer, Ga3, and NAA on leaf area (cm²) of almond seedlings.

			seedings.			
Full green	GA3		NAA (mg/l ⁻¹)	Full green	Full green	
fertilizer (gm/l ⁻¹)	(mg/l^{-1})	0	750	1250	F. * GA3	F.
	0	43.84d-h	41.27hi	45.79b-g	43.63d	
0	50	46.21a-g	43.90d-h	41.31hi	43.81cd	44.32b
	100	43.93d-h	45.78b-g	46.82a-f	45.51bcd	
	0	43.46e-i	47.59a-e	45.87b-g	45.64bcd	
4	50	39.48ij	42.79f-i	37.01j	39.76e	43.83b
	100	47.00a-f	45.46c-h	45.78b-g	46.08bc	
	0	46.64a-g	49.68abc	47.07a-f	47.80ab	
8	50	44.50d-h	48.13a-d	42.29ghi	44.97cd	47.48a
	100	50.21ab	50.50a	48.27a-d	49.66a	
Mean o	f NAA	45.03ab	46.12a	44.47b		
Full green	0	44.66cd	43.65cd	44.64cd	Maan	of GA3
F. *	4	43.31d	45.28bcd	42.89d	Mean	oi GA3
NAA	8	47.12b	49.44a	45.88bc		
G A 2 V	0	44.65bc	46.18ab	46.24ab	0	45.69b
GA3 * NAA	50	43.40c	44.94abc	40.20d	50	42.85c
11/A/A	100	47.05ab	47.25a	46.96ab	100	47.08a

Table (5) illustrated that the full green fertilizer, GA3, and NAA gave significant decrease on total chlorophyll (45.86%), (45.65%), and (46.45%) respectively on untreated seedlings. Triple interaction found that the higher level (62.08%) was in $8gm/l^{-1}$ full green fertilizer and from untreated seedlings of GA3 and NAA.

Table (5) Effect of full green fertilizer, Ga3, and NAA on leaf chlorophyll content (SPAD unit) of almond seedlings.

Full green fertilizer	GA3(mg/l ⁻¹)		NAA(mg/l ⁻¹)	Full green F. *	Full green F.	
(gm/l ⁻¹)		0	750	1250	GA3	1.
	0	53.16b	40.30e-h	53.02b	48.83a	
0	50	54.27b	36.50hij	37.43hij	42.73cd	45.86a
	100	42.62d-g	51.42b	44.07de	46.03b	
	0	39.38f-i	38.88g-j	51.07b	43.11cd	
4	50	42.90d-g	49.93bc	37.18hij	43.34cd	41.05c
	100	35.30ij	34.69j	40.08e-h	36.69e	
	0	62.08a	37.71hij	35.28ij	45.02bc	
8	50	46.18cd	40.24e-h	52.83b	46.42b	44.30b
	100	42.20d-g	38.70g-j	43.47def	41.46d	
Mean	of NAA	46.45a	40.93c	43.83b		
Full green	0	50.02a	42.74bc	44.84b	Moon	of GA3
F. *	4	39.19d	41.17cd	42.78bc	wiean (oi GAS
NAA	8	50.15a	38.88d	43.86b		
C 1 2 4	0	51.54a	38.97e	46.45b	0	45.65a
GA3 * NAA	50	47.78b	42.22cd	42.48c	50	44.16b
11/1/1	100	40.04de	41.60cd	42.54c	100	41.39c

Table 6 shows that full green fertilizer significantly decreases shoot fresh weight, with the maximum value was (8.67g) from the control. Also, GA3 and NAA factors find the best shoot fresh weight, respectively, (9.05g and 8.73g) from 100mg/l⁻¹ GA3and 1250mg/l⁻¹ NAA.Triple interaction explained that 8gm/l⁻¹ full green fertilizer with 100mg/l⁻¹ GA3 with 750mg/l⁻¹ NAA gave the best differences between data, with a value of (10.84g), compared to other data.

Table (7) illustrated that full green fertilizer significantly increased shoot dry weight (5.58g) at 8gm/l⁻¹, while, GA3 meaningfully increased shoot dry weight (5.92g) at 100mg/l⁻¹, otherwise, NAA has no significant effect on shoot dry weight. Triple interaction on almond seedlings found the best shoot dry weight (8.05g) from 8gm/l⁻¹ full green fertilizer with 100mg/l⁻¹ GA3 via 750mg/l⁻¹ NAA compared to other data.

Table (6) Effect of full green fertilizer, Ga3, and NAA on shoot fresh weight (gm) of almond seedlings.

Full Green	GA3	6	NAA(mg/l ⁻¹)		Full Green F. ×	
fertilizer (gm/l ⁻¹)	(mg/l ⁻¹)	0	750	1250	GA3	Full Green F.
	0	7.88e-h	7.66fgh	9.21cd	8.25bc	
0	50	8.75cde	7.27gh	10.42ab	8.81b	8.67a
	100	8.23d-g	8.36def	10.23ab	8.94ab	
	0	6.95h	9.54bc	8.39def	8.29bc	
4	50	7.71e-h	7.91e-h	7.13h	7.58c	8.10b
	100	8.25d-g	9.18cd	7.85e-h	8.43bc	
	0	9.66bc	7.44fgh	8.35def	8.48bc	
8	50	7.70e-h	7.89e-h	7.53fgh	7.71c	8.66a
	100	9.08cd	10.84a	9.45bc	9.79a	
F 11 G	0	8.29bc	7.77c	9.95a		
Full Green F. * NAA	4	7.64c	8.88b	7.79c	Mean of GA3	
1. 1000	8	8.81b	8.73b	8.44bc		
C 4.2*	0	8.16bc	8.22bc	8.65abc	8.34b	
GA3* NAA	50	8.05c	7.69c	8.36bc	8.03c	
111111	100	8.52abc	9.46a	9.18ab	9.05a	
Mean of	NAA	8.25b	8.46ab	8.73a	_	

Table (7) Effect of full green fertilizer, Ga3, and NAA on shoot dry weight (gm) of almond seedlings.

Full green	0		$NAA(mg/l^{-1})$		Full green F.×	
fertilizer (gm/l ⁻¹)	$GA3(mg/l^{-1})$	0	750	1250	GA3	Full green F.
	0	4.82f-j	4.74g-j	5.37d-j	4.98bc	
0	50	5.72d-g	4.05j	7.69ab	5.82ab	5.53a
	100	5.15e-j	5.17e-j	7.07abc	5.80ab	
	0	4.30hij	6.54bcd	5.48d-i	5.44bc	
4	50	5.12e-j	5.16e-j	4.07j	4.78bc	5.15b
	100	4.89f-j	6.10c-f	4.70g-j	5.23bc	
	0	6.62bcd	4.16ij	5.56d-h	5.45bc	
8	50	4.59g-j	4.74g-j	4.36hij	4.56c	5.58a
	100	5.87c-g	8.05a	6.27cde	6.73a	
F 11	0	5.23bc	4.65c	6.71a		
Full green F. * NAA	4	4.77c	5.93ab	4.75c	Mean of GA3	
1. 14111	8	5.69bc	5.65bc	5.40bc		
C 4.2	0	5.25abc	5.15bc	5.47abc	5.29b	
GA3 *NAA	50	5.14bc	4.65c	5.37abc	5.06b	
1 11 11 1	100	5.30abc	6.44a	6.02ab	5.92a	
Mean	of NAA	5.23a	5.41a	5.62a	_	

Table (8) show us the root fresh weight increased (6.37g) from untreated plant of full green fertilizer, while GA3 significantly differ (6.50g) in 100mg/l⁻¹ from other level, otherwise, NAA had no significant effect on root fresh weight. Triple interaction (full green F.*GA3*NAA) factors produced best weight (7.40g) by 8gm/l⁻¹ full green and control of each GA3 and NAA treatment.

Table (9) illustrated that full green significantly decreased at root dry weight (3.93g) from control, also, GA3 increased

Table (8) Effect of full green fertilizer, Ga3, and NAA on root fresh weight (gm) of almond seedlings.

Full green	C A 2(/I-1)	$NAA(mg/l^{-1})$			Full green F. ×	E 11 E
fertilizer (mg/l ⁻¹)	$GA3(mg/l^{-1})$	0	750	1250	GA3	Full green F.
	0	6.32d-g	6.04e-j	6.56c-f	6.30abc	
0	50	6.28d-g	5.57g-j	7.10abc	6.32abc	6.37a
	100	6.22d-h	6.17d-i	7.05abc	6.48ab	
	0	5.41ij	6.23d-h	5.50hij	5.71cd	
4	50	5.46hij	5.88e-j	5.35j	5.57d	5.82b
	100	6.05e-j	6.64b-e	5.84f-j	6.17bcd	
	0	7.40a	5.64g-j	5.51hij	6.18bcd	
8	50	5.52hij	6.15d-i	5.47hij	5.71cd	6.24a
	100	6.81a-d	7.28ab	6.41c-f	6.83a	
F 11	0	6.27bcd	5.93cde	6.90a		
Full green F. * NAA	4	5.64e	6.25bcd	5.56e	Mean of GA3	
1. 14111	8	6.57ab	6.36bc	5.80de		
CA2	0	6.38abc	5.97bc	5.86bc	6.07b	
GA3 *NAA	50	5.75c	5.87bc	5.97bc	5.86b	
1 11 21 2	100	6.36abc	6.70a	6.43ab	6.50a	
Mean	of NAA	6.16a	6.18a	6.09a	_	

(3.85g) at 100mg/l⁻¹, otherwise, NAA does not significant difference. We found best results of root dry weight per almond seedling and significant differences during the triple interaction, the maximum value obtained (4.98g) from 8gm/l⁻¹ full green and control each of GA3 and NAA.

Table (9) Effect of full green fertilizer, Ga3, and NAA on root dry weight (gm) of almond seedlings.

Full green			NAA(mg/l ⁻¹)		_ Full green F. ×	
fertilizer (gm/l ⁻¹)	GA3(mg/l ⁻¹)	0	750	1250	GA3	Full green F.
	0	4.06b-f	3.84c-h	4.82ab	4.24a	
0	50	3.78c-i	3.17f-j	4.26a-d	3.74abc	3.93a
	100	3.56d-j	3.60d-j	4.28a-d	3.81ab	
	0	2.86j	3.88c-h	3.34e-j	3.36bc	
4	50	3.72c-j	3.50d-j	3.01hij	3.41bc	3.52b
	100	3.88c-h	4.23a-e	3.22f-j	3.78ab	
	0	4.98a	3.45d-j	3.26f-j	3.90ab	
8	50	3.11g-j	3.32f-j	2.91ij	3.11c	3.66b
	100	3.93c-g	4.53abc	3.42d-j	3.96ab	
T 11	0	3.80b	3.53bc	4.45a		
Full green F. * NAA	4	3.49bc	3.87b	3.19c	Mean of GA3	
I. MAA	8	4.00ab	3.76b	3.20c		
G 4 2	0	3.96ab	3.72ab	3.81ab	3.83a	
GA3 *NAA	50	3.54ab	3.33b	3.39b	3.42b	
11111	100	3.79ab	4.12a	3.64ab	3.85a	
Mean	of NAA	3.76a	3.72a	3.61a	_	

Discussion

The significant increasing of some studied parameters as a result to increase the levels of full green as in (length of stem, no. of branches, leave area, and shoot dry weight) Fertilizers have a significant impact on almond seedlings because they contain three essential elements for plant growth: potassium, which is important for stem and root growth and is involved in plant metabolism and protein synthesis, phosphorus, which is important for photosynthetic processes, respiration, energy storage, and cell division, and nitrogen, which promotes leaf growth, chlorophyll component, and vegetative growth and green coloration of foliage [18] [19]. According to [20]. The primary macronutrients in inorganic fertilizers are nitrogen, phosphorus, and potassium. These nutrients impact the vegetative and reproductive phases of plant growth. Similar results were also reported by [21] on peach tree, [22] and [23] on almond transplant. At the same time, most parameters showed significant differences in 100 mg/l-1 GA3, as in (length of stem, leaf area, shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight). The reason might be attributed to the seedling's overall growth and increased rate of photosynthesis, which resulted in the seedling's overall assimilation and redistribution of photosynthesis. Enhanced growth may be caused by GA3's rise in leaf length and width. Greater cell division and elongation finally increased vegetative growth. Similar results were reported by [24] in custard apple, [25] on almond transplant. Also, NAA meaningfully increased some characteristics, such as the stem length, shoot fresh weight, number of branches, and leaf area, respectively, in 1250 and 750 mg/l⁻¹. NAA can also promote protein synthesis and RNA synthesis [26]; [27] and stimulate carbohydrate and nitrogenous material hydrolysis and translocation at the seedling, resulting in increased cell division and improved rooting.

Conclusion

This conclusion explained according to the results that were obtained from the study that was conducted: the best level of full green 8gm/l⁻¹ was the effect concentration on (stem length, no. of branches, leave area, and shoot dry weight), while, GA3 in 100mg/l⁻¹ concentration obtained the best results on (stem length, leave area, shoot fresh weight, shoot dry weight, root fresh weight, root dry weight), more ever, but NAA at 750mg/l⁻¹ effect on no. of branches and leave area, also, NAA at 1250mg/l⁻¹ effect on almond seedlings in stem length and shoot fresh weight parameters. However, triple interaction significantly affects all parameters excellently.

References

- [1] Ladizinsky, G. (1999). On the origin of almond. Genetic Resources and Crop Evolution 46:143–147
- [2] Husen A. and Pal M. (2007). Metabolic changes during adventitious root primordial development in Tectona grandis Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment New Forests, 33 (3): 309-323.
- [3] Agusti, M., V. Almela, I. Andreu, M. Juan and L. Zacarias (1999). Synthetic auxin 3,5,6-TPA promotes fruit development and climacteric in *Prunus persica* L. Batsch. *Journal of Horticultural Science and Biotechnology*, 74: 556-660.
- [4] Figueroa, C. R., M. C. Opazo, P. Vera, O. Arriagada, M. M. Diaz and A. Moya-Leon (2012). Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (*Fragria chiloensis*) fruit. *Food Chemistry*, 132: 2014-2022.
- [5] Khan, N. A., Singh, S., Nazar, R. and Lone, P.M. (2007). The source–sink relationship in mustard. Asian Aust. J. Plant Sci. Biotechnol, 1, 10–18.
- [6] Zamski, E. and Schaffer, A.A. (1996). Photoassimilate Distribution in Plants and Crops: Source–Sink Relationships, CRC Press, Boca Raton.
- [7] Kurubar, A. R., Allolli T.B.; Naik M.K. and Angadi S. G. (2017). Effects of gibberellic acid on growth, yield and fruit quality of fig (*Ficus carica* L), Acta Hort. 1173. 31.
- [8] Eman M.M. Zayed1; Rasmia, S.S. Darwesh1; Amal F.M. Zein El-Din1 and Hala. M.A. Farrag1 (2014). Impact of different sources of nitrogen fertilizers on performance growth of date palm (*Phoenix dactylifera L. cv. Bartomouda*). Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, Vol. 22, No (2), 371-380
- [9] Naaman, Z. S. (2022). Effect of cultivar, autumn budding dates and balanced fertilizer on bud take and growth characteristics of apple (*Malus domestica* Borkh.). M.Sc Thesis, Akre Technical College, Duhok Polytechnic University.
- [10] Judi, A. T. (2014). Effect of foliar spray of GA3, growmore and medicated water by magnetic on anna apple leaves content of chlorophyll and N, P, K. Forrat Journal for agricultural sciences. Vol. 6(2), 43-35
- [11] Mostafa Mobli, Bahram Baninasab (2008). Effects of plant growth regulators on growth and carbohydrate accumulation in shoots and roots of two almond rootstock seedlings. Cirad/EDP Sciences. vol. 63, No. (6), 363–370
- [12] A.M.S.Al-Hmedawi A.A.A.Al-Asedy S.H.H.Al-Sagheer (2009). Effect of spraying with GA3, NAA, Fe and Zn on seedling growth sour Orange (*Citrus aurantimum L.*). Forrat agricultural sciences. 1(2), 38-43
- [13] H. M. Raut and A. V. Kotecha (2020). Effect of GA3, NAA and biofertilizers on seedling growth of custard apple (*Annona squamosa* L.) cv. Local. International Journal of Chemical Studies. Vol. 8(1): 134-138
- [14] Mayi, A. A. (2016). Effect of Iron, KNO3, GA3 and Humic acid on Growth and Leaf Nutrients of Almond (*Prunus amygdalus L.*) Transplants 1-Vegetative Growth. Journal of University of Zakho, Vol. 4(A), No.2, 194-199
- [15] SAS Institute, Inc (2002). Statistical Analysis System. Ver. 9.0. SAS institute Inc., Cary, NC. USA. 603442664.
- [16] Duncan, D. B. (1955). Multiple Range and Multiple F. tests. Biometrics, 11:1-42.

- [17] Chude, V.O., W.B. Malgwi, I.V. Amapu and O.A. Ano (2004). Manual on Soil Fertilit Assessment, Federal Fertilizer Department (FFD), Abuja, Ni-geria.
- [18] Remison, S.U. (2005). Basic Principles of Crop Physiology. Sadoh Press Nig, Benin City, pp.1-170.
- [19] Patil, N.M. (2010). Biofertilizer Effect on Growth, Protein and Carbohydrate Content in Stevia Rebaudiana Var Bertoni. Recent Research in Science and Technology, 2(10): 42-44.
- [20] Jassim, M.A.A. (2010). Effect of organic fertilizer urea and Sulphur on vegetative growth and concentration of some nutrient of young Peach trees cv. Dixired. Tikrit University Journal of Agricultural Sciences, 2 (10): 76-86.
- [21] Focho, D.A., E. Bechem, E. Andrew, F.A. Genla, F.B. Ambo and N.R. Ndah (2011). Effects of organic and inorganic fertilizers on early growth characteristics of Khaya ivorensis Chev (Afri-can mahogany) in nursery African Journal of Plant Science, 5(12): 722-729.
- [22] Palepad, K. B., Bharad, S. G., Bansode, G. S. (2017). Effect of seed treatments on germination, seedling vigour and growth rate of custard apple (*Annona squamosa* L.). Journal of Pharmacognosy and Phytochemistry. 6(5):20-23.
- [23] Iqbal, M., Khan, J.M.M., Fatima, B., Asif, M. and Abbas, M. (2003). In vitro propagation of Hybrid Tea Roses. Pakistan Journal of Agricultural Sciences, 40: 155-163.
- [24] Imani, A., Hassani, D. (2005). Aspects of Almond Production and Breeding in Iran. The book Abstract of IV International symposium on Pistachios and Almonds.

تأثير الرش بسماد Full green و GA₃ في بعض صفات النمو الخضري و الجذري لشتلات اللوز البذربة.

نجيبة ويسي محمد 1 سليمان محمد ككو 1 حواء أديب صالح 1 أقسم البستنة ، كلية هندسة العلوم الزراعية ، جامعة دهوك ، دهوك ، العراق.

الخلاصة

أجريت هذه الدراسة في مشتل جامعة دهوك قسم البستنة كلية علوم الهندسة الزراعية في إقليم كريستان العراق خلال الموسم الزراعي (2022–2023). حصلنا شتلات اللوز البالغة من العمر عام واحد من مشتل الحرم الجامعي. وتم الرش مرتين: الرشة الأولى كانت في 1 نيسان والرشة الثانية في 1 ايار. تم استخدام تصميم القطاعات العشوائية الكاملة (RCBD) كتجربة عاملية، متضمنة ثلاثة عوامل (سماد (NPK) (NPK) ، 8) غم. لتر $^{-1}$ ، و(30 0) ملغم. لتر $^{-1}$ ، و(40 0) ملغم. لتر $^{-1}$ ، و(40 0) ملغم. لتر $^{-1}$ ، وفقا طبقاً لاختبارات دنكان المتعددة المدى بنسبة 5%، أظهرت النتائج أن سماد GA3 ويما ويما والمولق (40 الساق GA3) معنوياً. تأثر على (40 الساق GA3) معنوياً. تأثر على (40 الساق GA3) معنوياً. تأثر على (40 الساق GA3) مساحه الورقة 80.74سم2، الوزن الرطب للمجموع الخضري 50.9غم، الوزن الجاف للمجموع الخضري 50.9غم، الوزن الجاف للمجموع الخضري 100 مغم/لتر $^{-1}$ بينما بلغ عدد الفروع 9.09 مغروع ومساحة الأوراق 46.12 ملغم/لتر $^{-1}$ بينما بلغ عدد الفروع 9.09 ومساحة الأوراق 87.44 معنوياً ومساحة الأوراق 87.45 معنوياً وللمرات المعمرات الم

الكلمات المفتاحية: سماد Full green ومنظمات النمو GA3,NAA, شتلات اللوز البذرية.