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RESEARCH ARTICLE

A New Algorithm for Finding Initial Basic Feasible
Solution of Spherical Fuzzy Transportation
Problem with Applications

K. Hemalatha , Venkateswarlu B *

Department of Mathematics, Vellore Institute of Technology, Vellore, India

ABSTRACT

In operation research, a specific area being analyzed in great depth is the transportation problem (TP). The key
objective of this problem is to find the lowest total transportation costs for commodities to meet consumer requirements
at destinations incorporating resources acquired at their points of origin. In this work, the spherical fuzzy transportation
problem (SFTP) determines the lowest cost of carrying items from origin to destination. Most of the time, accurate
data has been used, but these variables are actually inaccurate and ambiguous. According to the literature, several
generalizations and expansions of fuzzy sets have been proposed and investigated. One of the most recent innovations
in fuzzy sets is the spherical fuzzy sets (SFSs), which characterize not only membership and non-membership degrees
but also neutral degrees. In this study, a novel approach is developed to derive the initial basic feasible solution (IBFS)
for each of all three forms of the SFTP, and then obtain an optimal answer by applying the modified distribution (MODI)
technique. For such frameworks, the proposed approach is illustrated by numerical examples. The conclusion and future
scope are given at the end.

Keywords: Initial basic feasible solution, MODI method, Spherical fuzzy sets, Spherical fuzzy transportation problem,
Transportation problem

Introduction

Many real-world applications involve
transportation-related issues. The objective of a
transportation issue, which is a specific sort of linear
programming problem (LPP), is to ascertain the best
cost-effective and time-efficient method of delivering
a commodity from a collection of sources to a set
of desired locations.1 Fig. 1 shows the network
of transportation problems. A product’s price is
closely correlated with its transportation costs; that
is, it will rise or fall in tandem with changes in
transportation costs. For the same reason, a suitable
way of delivering the product from different sources
to different locations needs to be identified.2 It has
long been believed that the transversal expenditures

associated with supply and demand should be
expressed in exact quantities. However, these values
are usually uncertain or nonspecific. The fuzzy set
(FS) theory, which Zadeh3 created, reflects uncertain
information by its membership level and can be
used to manage data uncertainty in decision-making
situations more effectively. A membership value and
a non-membership value constitute the intuitionistic
fuzzy set (IFS), which was first described by
Atanassov.4 As a result, experts have attempted
to solve a variety of transportation-related issues in
the fuzzy environment.

Fuzzy transportation problems were initially
proposed by Chanas et al.5 Since then, multiple
researchers have examined transportation problems
in different fuzzy circumstances, such as triangular
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Fig. 1. Simplified form of the transportation problem.

intuitionistic fuzzy,6 fully intuitionistic multi-
objective fractional,7 fuzzy assignment,8 fuzzy
arithmetic data envelopment analysis,9 interval-
valued Intuitionistic fuzzy,10 goal programming,11

efficient fuzzy goal programming,12 zero-point
maximum allocation,13 max-min average,14 fuzzy
zero-suffix,15 irregular fuzzy variables,16 modified
Vogel’s approximation,17 stochastic fuzzy,18 close
interval approximation,19 trisectional fuzzy,20

pareto-optimal,21 type-2 fuzzy-random,22 swarm
optimization,23 fuzzy harmonic mean,24 fuzzy del-
phi25 and so on. Although IFSs have vast applications
in many fields, they cannot provide all the informa-
tion.26 An instance when the total of membership and
non-membership surpasses one might occur. An addi-
tional development of fuzzy concepts is pythagorean
fuzzy sets (PyFS), which were suggested by Yager27

as an effective extension of IFS. Both the membership
level and the non-membership level, whose sum
of squares is less than or equal to one, are further
characteristics of PFS.28 PFS was later employed by
other researchers to solve linear programming and
multi-criteria decision-making challenges. Kumar
et al.29 provided two techniques for finding IBFS of
pythagorean fuzzy transportation issues.

Neutral ratings, in addition to membership and
non-membership levels, are often recommended in
real-world situations. Fuzzy sets and IFS are not suit-
able for handling this type of unclear data. To get
over this problem, Cuong30 initially introduced the
innovative idea of the picture fuzzy set (PFS). When
a decision-maker is queried about a statement, the
positive level is 0.6, the neutral level is 0.2, and the
negative level is 0.1. A neutral function has been
added to the picture FS development process, which
provides a better solution to complicated situations.
Using techniques such as similarity and distance
metrics, among others, the idea of PFSs has been
implemented to simulate a range of realistic decision-
making issues.31

In actual life, some difficulties cannot be resolved
with PFS, such as when µPF + ηPF + νPF >1. PFS and
PyFS are directly generalized into spherical fuzzy

sets. An intriguing circumstance arose when the situ-
ation was beyond the capabilities of both PyFS and
PFS. Spherical fuzzy sets are useful when opinion
is not limited to yes or no but also includes some
abstinence or rejection. A representative instance of
a spherical fuzzy set is frequently encountered in
decision-making processes, such as those in which
four decision-makers evaluate candidates according
to four distinct categories. An additional instance
could involve the voting process, where four cate-
gories of voters exist: those who vote in favor, against,
do not vote, or abstain from voting. The spheri-
cal fuzzy set is therefore required to address this
circumstance.32 As a further development of PFS,
Ashraf et al.33 present the concept of SFSs based
on these situations. Membership degrees are improv-
ing the situation in SFS with the condition 0 <
µ2

sF
+ η2

sF
+ ν2

sF
< 1. They examined the fundamen-

tal spherical fuzzy set operations in their suggested
work and used those aggregating operators to cre-
ate multi-attribute decision-making challenges. By
employing spherical fuzzy prioritized weighted ag-
gregating operators, Akram et al.34 developed an
approach for resolving group decision-making with
multiple criteria challenges. Using the idea of a spher-
ical fuzzy difference, Garg and Sharaf35 presented a
new spherical aggregation algorithm. Spherical fuzzy
information-based outranking algorithms were com-
bined by Akram et al.36 for the digitization of the
transit system. In the sense that threshold values were
used to observe the outranking relationships among
the options before making the decision. A unique
method for selecting an advanced manufacturing
setup that integrates AHP and TOPSIS underneath
spherical fuzzy concepts was presented by Mathew
et al.37 To address various criterion group decision-
making difficulties, Donyatalab et al.38 expanded the
traditional linear assignment approach to a spherical
fuzzy linear assignment method. The physician se-
lection difficulty was addressed by Sarucan et al.39

using the spherical fuzzy TOPSIS approach. To aid
in decision-making, Ajay et al.40 established new ex-
ponential as well as Einstein exponential operational
laws for spherical fuzzy collections, along with the
matching aggregation operators. Similarity metrics
of spherical uncertain concepts were derived by Wei
et al.41 and utilized for pattern recognition and med-
ical diagnostics using the cosine function. A spherical
fuzzy transportation issue was studied by Kumar et al.
by employing three models.

As previously discussed, limited study has been
done on the spherical fuzzy transportation problem.
Additionally, to solve the spherical fuzzy transporta-
tion problem, the researchers employed software and
vogel’s approximation method (VAM). According to
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the literature review, there are no unique methods
for solving SFTP. This motivates the authors to devise
a novel method for deriving the IFBS of SFTP and
its optimal value without any mathematical tools.
The major purpose of this research is to reduce total
transportation expenses. The following is the paper’s
key contribution: Without utilizing any mathematical
tools,

(i) A novel algorithm for determining the IBFS of
three types (I, II, and III) is introduced.

(ii) Applied random values of the three types to the
suggested algorithm to validate it.

(iii) Both balanced and unbalanced issues are vali-
dated using the suggested technique.

The scheduled phases for this research are as
follows: The following section reports the prelimi-
nary findings and related mathematical operations;
Section 3 lays the groundwork for the SFTP’s math-
ematical structure. Section 4 offers an approach to
obtaining IBFS, and Practical instances are provided
in Section 5. Section 6 contains the findings and
discussion. And the conclusion and future study are
discussed in Section 7.

Preliminaries

The terminology and score function used in the
study are presented in this section. Ū denotes the
universal set throughout this study.

Picture fuzzy set (PFS)26

A PFS PF is defined by

PF =
{
〈u0, µPF (u0) , ηPF (u0) , νPF (u0)〉 : u0 ∈ Ū

}
where µPF (u0) ∈ [0,1] is the level of membership in
truth, ηPF (u0) ∈ [0,1] is the level of membership in
neutral and νPF (u0) ∈ [0,1] is the level of membership
in false provided that

0 ≤ µPF (u0)+ ηPF (u0)+ νPF (u0) ≤ 1.

Spherical fuzzy set (SFS)34

A SFS SF is defined by

SF =
{
〈u0, µsF (u0) , ηsF (u0) , νsF (u0)〉 : u0 ∈ Ū

}
where µsF (u0) ∈ [0,1] is the level of membership in
truth, ηsF (u0) ∈ [0,1] is the level of membership in
neutral and νsF (u0) ∈ [0,1] is the level of membership
in false provided that

0 ≤ µ2
sF

(u0)+ η2
sF

(u0)+ ν2
sF

(u0) ≤ 1.

Arithmetic operations34

Let AsF = (µsF1
, ηsF1

, νsF1
) and BsF = (µsF2

, ηsF2
, νsF2

)
be two SFSs. The following Eqs. (1) to (4) describes
the fundamental operations of SFSs.

AsF ⊕ BsF =

{(
µ2

sF1
+ µ2

sF2
− µ2

sF1
µ2

sF2

) 1
2
, ηsF1

ηsF2
,

((
1− µ2

sF2

)
ν2

sF1
+

(
1− µ2

sF1

)
ν2

sF2
− ν2

sF1
ν2

sF2

) 1
2
}

(1)

AsF ⊗ BsF =

{
µsF1

µsF2
,
(
η2

sF1
+ η2

sF2
− η2

sF1
η2

sF2

) 1
2
,

((
1− η2

sF2

)
ν2

sF1
+

(
1− η2

sF1

)
ν2

sF2
− ν2

sF1
ν2

sF2

) 1
2
}

(2)

λ · AsF =

{(
1−

(
1− µ2

AsF1

)λ) 1
2

, ηλsF1
,

((
1− µ2

AsF1

)λ
−

(
1− µ2

AsF1
− ν2

AsF1

)λ) 1
2
}

(3)

AλsF
=

{
µλsF1

,

(
1−

(
1− η2

AsF1

)λ) 1
2

,

((
1− η2

AsF1

)λ
−

(
1− η2

AsF1
− ν2

AsF1

)λ) 1
2
}
, λ > 0 (4)

Score and accuracy functions35

Let SF be the SFS. The definitions of the accuracy
and score functions are as follows:

Score(SF ) = (µsF − ηsF )2
− (νsF − ηsF )2,

S(SF ) ∈ [−1,1] (5)

Accuracy (SF ) = µ2
sF
+ η2

sF
+ ν2

sF
, Acc. (SF ) ∈ [0, 1]

A relationship of order between two SFSs SF1 and
SF2 is stated as

SF1< SF2 iff Score (SF1 ) < Score (SF2 ) or
Score (SF1 ) = Score (SF2 ) and Accuracy (SF1)
< Accuracy (SF2)

Assume, that A = (0.46, 0.48, 0.36) and B = (0.57,
0.35, 0.36) be two spherical fuzzy numbers.35 Using
the score and accuracy function in (5), If Score (A) =
–0.014 and Score (B) = 0.0483 then Accuracy (A) <
Accuracy (B).
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Table 1. Spherical fuzzy transportation setting.

Destinations

D1 D2 . . .. Dn Supply

So
ur

ce
s

S1 cSF
11 cSF

12 . . .. cSF
1n aSF

1

S2 cSF
21 cSF

22 . . .. cSF
2n aSF

2
... ·

...
...

...
...

...
...

...
...

...
...

S m cSF
m1 cSF

m2 . . .. cSF
mn aSF

m

Demand bSF
1 bSF

2 . . .. bSF
n

Mathematical structure of spherical fuzzy
transportation problem

Consider “m” providers and “n” spots. The distri-
bution network tries to reduce the expense of moving
things from those providers to the spots; meanwhile,
the accessibility and demand for items are specified
using a few presumptions and constraints. The math-
ematical expressions for a spherical fuzzy TP are as
follows in Eqs. (6) to (9) and Table 1:

i - entire source index for m
j - entire destination index for n
xi j - amount of goods transported in units from the

point of origin to the destination

Minimize z̄SF =

m∑
i=1

n∑
j=1

c̄SF
i j .xi j (6)

Subject to constraints,

n∑
j=1

xi j = āSF
i , i = 1 to m, (7)

m∑
i=1

xi j = b̄SF
j , j = 1 to n, (8)

xi j ≥ 0 for each i, j (9)

where,
c̄SF

i j - spherical fuzzy expense of moving one unit of
a given good supplier i to recipient j,

āSF
i - spherical fuzzy units of supply to be carried

between n places,
b̄SF

j - spherical fuzzy number of demand units needed
at endpoints.

Proposed algorithm for solving spherical fuzzy
transportation problem

The following is a description of the suggested al-
gorithm’s steps.

Step 1: Under the Spherical fuzzy environment,
choose the transportation problem.
Step 2: Spherical fuzzy values should be converted
into crisp values using the recommended scoring
function in Eq. (5).
Step 3: Determine whether the problem at hand is
balanced or not after crisping them.

(i) If the given problem is balanced, proceed to
step 5.

(ii) If the given problem is unbalanced, proceed
to step 4.

Step 4: Add a dummy row or column to balance
total demand and supply.
Step 5: Select the highest cost from the cost table.
Step 6: To every value in the cost table, add the
maximum cost value.
Step 7: Calculate the penalty by subtracting the
smallest from the next smallest in each row and
column.
Step 8: To the corresponding row penalty, add the
corresponding supply value, and to the correspond-
ing column penalty, add the corresponding demand
value.
Step 9: Among the rows and columns, find the
maximum penalty. Select anyone if it appears more
than once.
Step 10: Choose the lowest cost value in the rele-
vant row or column of the maximum penalty.
Step 11: Allocate as much as possible among the
supply and demand for the chosen cell.
Step 12: When there is no demand or supply to
assign, delete the entire row or column.
Step 13: Steps 5–12 must be repeated until all units
of supply and demand are met.
Step 14: After determining IBFS, adopt the MODI
approach to get an optimal solution.

Numerical examples

This section presents the suggested algorithm using
six problems representing three different models.
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Existing data

Example 1: To determine the minimal transportation
expense, the costs in Table 2 of SFTP for model I are
stated in spherical fuzzy, while the supply and demand
are expressed in crisp.

Step 1: Under the Spherical fuzzy environment, choose
the transportation problem.
Step 2: Spherical fuzzy values should be converted into
crisp values using the recommended ranking function
that was represented in Eq. (1).
Step 3: For Table 3, as the chosen problem is balanced,
there is no need for an additional dummy row or
column.
Step 4: Select the highest cost from the cost table from
Table 3.

Step 5: To every value in the cost table, add the maxi-
mum cost value. Table 4 illustrates this.
Step 6: Calculate the penalty by subtracting the small-
est from the next smallest in each row and column
shown in Table 5.
Step 7: To the corresponding row penalty, add the
corresponding supply value, and to the corresponding
column penalty, add the corresponding demand value.
Actual penalties are displayed in Table 6.
Step 8: Among the rows and columns, find the maxi-
mum penalty in Table 6.
Step 9: Choose the lowest cost value in the relevant row
or column of the maximum penalty.
Step 10: Allocate as much as possible among the supply
and demand for the chosen cell in Table 7.
Step 11: When there is no demand or supply to assign,
delete the entire row or column. The adjusted matrix
of transportation costs is shown in Table 8.

Table 2. Data for SFTP of model I.

A1 A2 A3 A4 Availability

Television (0.9,0.1,0.1) (0.6,0.4,0.4) (0.91,.03,.02) (0.99,.05,.02) 26
Air Cooler (0.89,.08,.03) (0.74,.16,.1) (0.5,0.5,0.5) (0.7,0.3,0.3) 24
Geyser (0.99,.05,.02) (0.73,.15,.08) (0.73,.12,.08) (0.68,.26,.06) 30
Requirement 17 23 28 12 80

Table 3. Defuzzified values.

A1 A2 A3 A4 Availability

Television 0.64 0.04 0.792 0.94 26
Air Cooler 0.73 0.40 0 0.16 24
Geyser 0.94 0.41 0.42 0.34 30
Requirement 17 23 28 12 80

Table 4. Added maximum cost value.

A1 A2 A3 A4 Availability

Television 1.58 0.98 1.732 1.88 26
Air Cooler 1.67 1.34 0.94 1.1 24
Geyser 1.88 1.35 1.36 1.28 30
Requirement 17 23 28 12

Table 5. Row and Column penalties.

A1 A2 A3 A4 Availability Row Penalty

Television 1.58 0.98 1.732 1.88 26 0.6
Air Cooler 1.67 1.34 0.94 1.1 24 0.16
Geyser 1.88 1.35 1.36 1.28 30 0.07
Requirement 17 23 28 12
Column Penalty 0.09 0.36 0.42 0.18

Table 6. Actual penalties.

A1 A2 A3 A4 Availability Row Penalty

Television 1.58 0.98 1.732 1.88 26 26.6
Air Cooler 1.67 1.34 0.94 1.1 24 24.16
Geyser 1.88 1.35 1.36 1.28 30 30.07
Requirement 17 23 28 12
Column Penalty 17.09 23.36 28.42 12.18
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Table 7. First allocation.

A1 A2 A3 A4 Availability Row Penalty

Television 1.58 0.98 1.732 1.88 26 26.6
Air Cooler 1.67 1.34 0.94 1.1 24 24.16
Geyser 1.88 1.35 1.36 1.2812 30 30.07
Requirement 17 23 28 12
Column Penalty 17.09 23.36 28.42 12.18

Table 8. Second allocation.

A1 A2 A3 Availability Row Penalty

Television 1.58 0.98 1.732 26 26.6
Air Cooler 1.67 1.34 0.9424 24 24.4
Geyser 1.88 1.35 1.36 18 18.01
Requirement 17 23 28
Column Penalty 17.09 23.36 28.42

Table 9. Third allocation.

A1 A2 A3 Availability Row Penalty

Television 1.58 0.9823 1.732 26 26.6
Geyser 1.88 1.35 1.36 18 18.01
Requirement 17 23 4
Column Penalty 17.3 23.37 4.372

Step 12: Repeat the previous steps until all allocations
are met. The processes are repeated and are displayed
in Tables 9 and 10.

The allocations made with the suggested approach
are displayed in Tables 7 to 10. Moreover, the alloca-
tions are shown as superscripts in Tables 7 to 10. The
optimal value becomes 21.76 after proceeding with
the modified distribution method.

Example 2: To determine the minimal transportation
expense, consider the SFTP Table 11 for model II, where
the supply and demand are represented in spherical fuzzy
form, but the expenses are expressed in crisp form.

Obtained IBFS using the proposed approach, and
the optimal solution becomes 0.7052.

Example 3: To determine the minimal transportation
expense, consider the SFTP Table 12 for model III, where
the costs, demand, and supply are all spherical fuzzy.

Obtained IBFS using the proposed approach, and
the optimal solution becomes 0.4307.

Random data

Example 4: To determine the minimal transportation
expense, consider the following random values from SFTP

Table 10. Final allocations.

A1 A3 Availability Row Penalty

Television 1.583 1.732 3 3.152
Geyser 1.8814 1.364 18 18.52
Requirement 17 4
Column Penalty 17.3 4.372

Table 11. Data for SFTP of model II.

L1 L2 L3 L4 Availability

Water Purifier 0.64 0.04 0.792 0.94 (0.9,0.1,0.1)
Dishwasher 0.73 0.4 0 0.16 (0.89,.08,.03)
Air Fryer 0.94 0.41 0.42 0.34 (0.99,.05,.02)
Requirement (0.9,0.1,0.1) (0.6,0.4,0.4) (0.91,.03,.02) (0.99,.05,.02)
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Table 12. Data for SFTP of model III.

B1 B2 B3 B4 Availability

Vacuum Cleaner (0.61,.46,.34) (0.74,.27,.28) (0.7,0.3,0.3) (0.62,.39,.39) (0.9,0.1,0.1)
Refrigerator (0.81,0.2,.23) (0.55,.47,.43) (0.5,0.5,0.5) (0.7,0.3,0.3) (0.89,.08,.03)
Chimney (0.99,.05,.02) (0.73,.15,.08) (0.73,.12,.08) (0.68,.26,.06) (0.99,.05,.02)
Requirement (0.9,0.1,0.1) (0.6,0.4,0.4) (0.91,.03,.02) (0.99,.05,.02)

Table 13. Random values for SFTP of model I.

1 2 3 4 Availability

M (0.7,0.3,0.3) (0.87,.34,.52) (0.5,0.1,0.3) (0.74,.16,0.1) 14
N (0.6,0.4,0.4) (0.49,.09,.18) (0.63,.21,.48) (0.5,0.5,0.5) 18
O (0.4,.09,.17) (0.8,0.2,0.6) (0.73,.15,.08) (0.68,.26,.06) 20
Requirement 10 16 19 17

of Table 13 for model I, where the costs are spherical
fuzzy and the demand and supply are crisp.

Obtained IBFS using the proposed approach, and
the optimal solution becomes 4.674.

Example 5: To determine the minimal transportation
expense, consider the following random values from SFTP
of Table 14 for model II in which the costs are expressed
in crisp form whereas the demand and supply are in
spherical fuzzy.

Obtained IBFS using the proposed approach, and
the optimal solution becomes 0.0926.

Example 6: To determine the minimal transportation
expense, consider the following random values from SFTP
of Table 15 for model III in which the costs, demand, and
supply are in spherical fuzzy.

Obtained IBFS using the proposed approach, and
the optimal solution becomes 0.1136.

Results and discussion

This paper presents a novel algorithm to determine
the IBFS of SFTP. It is evident from Table 16 and
Fig. 2 that the suggested IBFS method yields superior
outcomes. To verify the correctness of the proposed
technique, random problems are taken into account
for each of the three types, along with the existing
data. The three SFTP models in the available data are
balanced. On the other hand, the random data used
in this study are imbalanced problems from each
of the three models to test the suggested technique.
The suggested approach produces similar results
to the traditional approach for both balanced and
unbalanced issues. In most transportation situations,
vogel’s approximation method is considered
traditional and effective for cost optimization. In
this paper, based on a comparison investigation,
the suggested algorithm gives better results than
VAM and, in certain situations, produces the same
outcomes as VAM. There were no difficulties found
in the intended investigation when the suggested
method was demonstrated on the mathematical

Table 14. Random values for SFTP of model II.

Q1 Q2 Q3 Q4 Availability

V1 (0.7,0.3,0.3) (0.87,.34,.52) (0.5,0.1,0.3) (0.74,.16,0.1) (0.72,.25,.36)
V2 (0.6,0.4,0.4) (0.49,.09,.18) (0.63,.21,.48) (0.5,0.5,0.5) (0.62,.17,.25)
V3 (0.4,.09,.17) (0.8,0.2,0.6) (0.73,.15,.08) (0.68,.26,.06) (0.8,0.2,0.1)
Requirement (0.5,.32,.42) (0.89,.08,.03) (0.9,0.1,0.3) (0.6,.05,.02)

Table 15. Random values for SFTP of model III.

P1 P2 P3 P4 Availability

1 (0.6,0.4,0.5) (0.5,0.2,0.3) (0.8,0.4,0.4) (0.73,.15,.08) (0.83,.23,.33)
2 (0.9,0.3,0.5) (0.7,.27,.45) (0.89,.35,.49) (0.55,.47,.43) (0.9,0.3,0.5)
3 (0.78,.17,.34) (0.65,.04,.19) (0.68,.42,.44) (0.99,.05,.02) (0.8,0.1,0.3)
Requirement (0.53,.15,.26) (0.67,.09,.18) (0.92,.37,.56) (0.9,0.1,0.1)
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Table 16. Comparison of results with existing method.

Examples Types VAM Proposed IBFS Optimum

Existing data
1 I 21.76 21.76 21.76
2 II 0.7292 0.7146 0.7052
3 III 0.4308 0.4307 0.4307
Random data
4 I 5.99 5.32 4.674
5 II 0.1539 0.1539 0.0926
6 III 0.1168 0.1168 0.1136

0

5

10

15

20

25

I II III I II III

Existing data 1 2 3 Random data 4 5 6

VAM Proposed Optimum

Fig. 2. Comparison graph of the proposed and existing method.

instances of three distinct models. The purpose of
this study is to reduce total transportation costs in a
spherical fuzzy environment. Thus, achieved the ob-
jective of the transportation problem by the proposed
algorithm.

Conclusion

In today’s highly competitive market, institutions
are under increasing pressure to identify better means
for distributing commodities to clients. As a result,
various institutions strive to deliver goods to con-
sumers in the most cost-effective or time-efficient
manner, and the transportation model offers a strong
foundation to address this issue. This article uses
spherical fuzzy sets to quantify inaccurate, partial,
and vague information. This work has created a
novel algorithm for the IBFS of SFTP. Since SFSs
are more important in characterizing uncertain in-
formation. The score function has been utilized in
these models to transform the ambiguous data into
a clear transportation problem. The aforementioned
method was demonstrated in six numerical examples,
and the goals of the intended study were satisfied
while no weaknesses in the technique were found.

The effectiveness of the proposed algorithms was de-
termined by examining the existing methods. This
illustrates the usefulness and effectiveness of our
proposed algorithm. The suggested algorithm offers
a fresh approach to dealing with uncertainty in
real-world transportation issues. Assignment and bi-
objective transportation problems cannot be solved
with this proposed work. Fuzzy bi-objective trans-
portation problems will be solved by expanding this
work in the future.
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خوارزمية جديدة لإيجاد حل أولي أساسي وممكن لمشكلة النقل الكروي 

 مع تطبيقات ضبابيال

 

 ك. هيمالاتا، فينكاتيسوارلو. ب

 

 قسم الرياضيات، معهد فيلور للتكنولوجيا، فيلور، الهند.

 

، المجموعات الغامضة الكروية، مشكلة النقل الكروية الغامضة، MODIالحل الأساسي الأولي الممكن، طريقة  الكلمات المفتاحية:

 .مشكلة النقل

 ةالخلاص

الهدف الرئيسي لهذه المشكلة هو العثور على  (.TPفي بحوث العمليات، هناك منطقة معينة يتم تحليلها بعمق كبير وهي مشكلة النقل )

أقل تكاليف نقل إجمالية للسلع لتلبية متطلبات المستهلك في الوجهات التي تتضمن الموارد المكتسبة في نقاطها الأصلية. في هذا العمل، 

ظم الأحيان، يتم استخدام بيانات ( أقل تكلفة لنقل العناصر من الأصل إلى الوجهة. وفي معSFTPتحدد مشكلة النقل الضبابي الكروي )

العديد من التعميمات والتوسعات وحساب ، تم اقتراح لمصادردقيقة، ولكن هذه المتغيرات في الواقع غير دقيقة وغامضة. وفقا ل

تميز (، والتي SFSs) ضبابيةهي المجموعات الكروية اللضبابية . واحدة من أحدث الابتكارات في المجموعات الضبابيةللمجموعات ا

ليس فقط درجات العضوية وغير العضوية ولكن أيضًا الدرجات المحايدة. في هذه الدراسة، تم تطوير نهج جديد لاستخلاص الحل 

، ومن ثم الحصول على الإجابة المثلى من خلال تطبيق تقنية SFTP( لكل من الأشكال الثلاثة لـ IBFSالأساسي الأولي الممكن )

في النهاية تم إعطاء  لنسبة لمثل هذه الأطر، يتم توضيح النهج المقترح من خلال الأمثلة العددية.(. باMODIالتوزيع المعدل )

 المستقبلي.المقترحات للعمل الاستنتاج و
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