

Study the Effect of Flexural Strength on Dental Resins By 3D Printed Method: A Systematic Review

Ebaa Enad Hameed ⁽¹⁾* Ihab Nafea Yassen ⁽²⁾ Ammar Arab Beddai ⁽³⁾

^(1,2) Department of Prosthetic Dental Technology, College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq.

⁽³⁾ Middle Technical University, Baghdad, Iraq.

Keywords:

3d printed resin, flexural strength, denture base, stereolithography, digital light processing,

Article Info.:

Article History: Received: 7/4/2024 Received in revised form : 27/4/2024 Accepted: 29/4/2024 Final Proofreading: 29/4/2024 Available Online: 1/6/2025 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE

https://creativecommons.org/licenses/by/4.0/

Citation: Hameed EE, Yassen IN, Beddai AA. Study the Effect of Flexural Strength on Dental Resins By 3D Printed Method: A Systematic Review. Tikrit Journal for Dental Sciences. 2025; 13(1): 233-250. https://doi.org/10.25130/tjds.13.1.24 *Corresponding Author: Email: ecc0053@mtu.edu.iq

Postgraduate student in Prosthetic Dental Technology, Department of Prosthetic Dental Technology, College of Health and Medical Technology, Middle Technical University,

Abstract

Denture base materials are susceptible to compressive loads during usage, which might result in prosthesis breakage from repetitive masticatory pressures. To explain the various factors that influence the strength of (3D) printed resins. The aim of this research sought to investigate the various factors that affect the bending strength of three-dimensional (3D) resin prostheses. This research clarifies the different factors affecting flexural strength and the correlation between them. The types of resins that are printed in three dimensions (3D) and their mechanical properties were the subject of research regarding database searches of English-language literature from February 2018 to January 2024 using PubMed, Scopus, EBSCOhost, and Google Scholar. Thirty research articles were considered for full-text analysis, and they all met the inclusion criteria, indicating that, they were appropriate for this systematic review. The involved articles were classified, as per the resins being studied: This research investigated bending strength of three dimensional (3D)-printed resins under a variety of conditions, including various types of printers, resins, printing directions, layers thickness, and sample dimensions. These factors are classified as pre-printing, printing, and post-printing. Most factors had a significant effect on the three-point bending strength of (3D)-printed dental resin. To increase bending strength of three dimensional (3d)-printed dental resins, nano-filler, adjusting printing orientation, the layers' thickness, post-polymerization time and temperature degree.

Introduction:

In 1986, Charles Hull developed the first tri-dimensional (3D) printing process, and the industry grew to include several manufacturing technologies used in a wide fields. Hull range of patented stereolithography (SLA) in 1986 and developed 3D printing technology Since printing has progressed then. 3D substantially (1). Additive manufacturing (AM), also known as rapid prototyping (RP) or 3D printing, is a potential approach in dentistry for fabricating dental restorative and appliance components (2).3D printers are now user-friendly, cost-effective, and smaller and lighter than previously(3). Additive 3D printers offer advantages including the ability to create several complex shapes with low material waste, making it cost-effective (4). Stereolithography (SLA) is the preferred additive manufacturing (AM) Because of its superior accuracy, this technique is suitable for dental applications, resolution, fine building features, and fine surface finish. Stereolithography-based 3D DLP) is known printing(SLA, for producing the highest resolution, isotropic mechanical characteristics between printable materials(5). Stereolithography (SLA) uses a laser light track to polymerize resin, while digital light processing (DLP) builds 3D structures with a digital projector screen (6, 7). Vat polymerization, involving stereolithography (SLA) and digital light processing (DLP), is the layer-by-layer manufacturing of an item with a photocurable resin, and light exposure (7). Surgical guides. temporary crowns. occlusal splints, and denture bases are all examples of dental devices made with 3D printing technology. Due to its high resolution and precision, quick curing, and cheap, digital light processing (DLP) is the most widely used additive manufacturing technique (AM). In general, the printed products were subjected to a post-curing operation using an ultraviolet device to increase the cross-linking of the monomer's unreacted chemical groups and improve the mechanical properties of items(8). Flexural strength (FS) is an accurate measure of the mechanical

properties of dental materials. It is necessary to evaluate the bending strength of three-dimensional (3D)- printed resins. Three-dimensional (3D)-printed resin's strength is less than milled or traditional resins because of its print and the process photopolymerization(9). known as Enhancing the quality of printed dental restorations requires knowledge of how printing parameters affect printed object properties. Numerous studies have focused on improving the bending strength of printed projects using 3D printer resins for clinical applications to ensure maximum efficacy. However, published papers summarizing and systematically analyzing these agents are few and may not cover all affected factors. Evaluating available data can help identify factors affecting FS of three-dimensional (3D)-printed dental prostheses. This systematic review identifies a sum of variables and factors that affect the three-point bending strength of three-dimensional (3D) printed dental resins.

Materials and Methods

Information Sources and Searching Methods

The systematic review followed The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement and Participant Intervention Control and Outcomes (PICOS) approach (10). P: Participant is 3d printed resins, Intervention was the groups of factors affecting the flexural strength, C is the comparison between the resin's types, and O is the factors affected. The PICOS question asked whether the flexural strength (FS) of 3D-printed resin denture base materials. This review aimed to respond to the question: What factors influence the flexural strength of various types of 3D-printed dental resin? This study looked at how different factors affected flexural strength in 3D-printed dental resins used to make various dental prostheses. Bibliographic searches were executed in full publications in English were chosen from the databases, (PubMed, Scopus, Google Scholar, and Web of Science) between (February 2019 to January 2024). Different types of 3d resin

were used, depending on the resins used and their benefits. The research strategy depended on select studies, evaluation, scientific, and classification.

Selected studies

The selection. It used the topics and abstracts of database searches, which achieved 30 research studies. (EBSCOhost =2, Google Scholar = 13, Scopus = 9, and PubMed =6)

Three-Point Flexural Test

The maximum force applied prior to specimen deformation or breakage was measured in order to determine the specimen readings Mega Pascals (MPa) were used to assess flexural strength (11). A universal testing machine is utilized to perform a three-point bending test (12). The flexural strength test specifies how well materials or composites can resist bending deflection when energy is applied to the structure(13). The samples were fixed between two supports (20 mm span) and loaded at a crosshead speed of 0.5 mm/min until fractured. Three-point bending was calculated using the load at fracture and the specimen dimensions, which were measured with a digital caliper. The fracture load was transformed to flexural strength (σ) using the formula provided below(14): $\sigma = 3 fl/2bd2$ (14).

In this equation, σ represents flexural strength, f represents fracture load, 1 represents support span length, b represents specimen width, and d represents specimen thickness(14).

The Factors Influencing 3D Printing Resin

Printed products are affected by several variables such as printer process parameters such as type of printer, layer thickness, the position of samples on the platform and printing orientation, also material composition which includes the addition of fillers, nanoparticles, and reinforcing agent, while postprocessing such as washing with solution, disinfection and immersion in different materials (13).

Process Parameters.

The mechanical properties of 3D-printed dental restoration materials are influenced by the building orientation(15). Printing results are influenced by process parameters that involve build orientation (16-20), Layer thickness (8, 14), and post-curing (8, 16, 21-24).

Composition of Material

Materials are important to the performance of the process of (3d) printing and the items it generates. Several investigators studied the impact of numerous additives on material conversion and characteristics to enhance printed material (1). One research studied that ZrO₂NP nanoparticles were added to 3D printed resin at concentrations from (0 to 5%) wt and the result was in addition, 3 wt.% had maximum fracture toughness and modulus. Filler concentration significantly increased the flexural strength(25). Altarazi,(2023) researched the effect of adding off addition titanium nanoparticles into 3d resin and subjected to a physical aging process, Nanoparticles improved the mechanical characteristics of resins, according to the literature, The color of titanium dioxide is white, and the particles of (TiO2) have been labeled as one of biocompatible material, which is low cost, non-toxic, and resistant to corrosion(26). Altarazi (2023) found that TiO2 addition into 3d printed resin improves the flexural strength(7). Al-Douri investigated the addition of ZnO nanoparticles into 3d printed resin in different concentrations was enhances the flexural strength(27).

Postprocessing

Important post-processing procedures in additive manufacturing that typically take a long time include support removal, powder removal, or resin removal, it is considered а continuation of the polymerization and curing procedure initiated during the printing process. The purposes of it involve enhancing surface quality. mechanical characteristics, thermal stability, weather resistance, UV resistance, and strength, and altering geometry tolerances in addition to aesthetic purposes. The post-process may be done manually, automatically, or semiautomatically (28). Aging is one of the post-processing procedures which is an artificial thermal cycling is testing process that mimics thermal changes in the mouth, prolonged simulating use of biomaterials(9). The oral environment poses unique challenges for dental structures and restorative materials due to chemical, thermal, and humidity variations that can affect material properties. In (8, 14, 16-18, 21, 24, 29-33) studies explained that aging has a significant effect on mechanical properties.

Preprinting Factors

A novel nanoparticle has been extensively utilized in dentistry, to enhance its mechanical characteristics, biocompatibility, and stable structure (13). Adding ZrO_2 , TiO_2 , and ZnOnanoparticles to denture base resin printed by a 3D printer increased its bending strength (16, 24, 25). However, using zwitterionic as an additive decreased bending strength.

Printing Factors

Multiple factors are said to influence the finished product of 3D printing, including layer thickness, light source and intensity, and printing direction. To produce optimal results, printer parameters must be properly set(4) Printing orientation layer thickness, and filling density affected 3Dprinted resin's flexural strength. (16, 17, 34) Show that there is a statistical difference in flexural strength, but (19) observed that flexural strength (FS) was higher at "0°" degrees and the (FS) is dependent on the printing process orientation and provide adequate flexural strength for use in dental restoration. The primary factor influencing flexural strength is the filling percentage (1). The printing layer was demonstrated to be having an effecting the mechanical characteristics of three-dimensional (3D) printed dental resin, resulting in increased flexural strength(14).

Post Printing Factors

Flexural strength and post-printing factors Nineteen studies evaluated threedimensional (3D) printed resin, five of which investigated the effect of the aging process in conjunction with other factors on flexural strength (FS)(16, 17, 30, 33, 35), and the other researched the thermal cycling treatment(9). Thermal cycling was found to degrade the FS in a study of 3Dprinted resin. Reduced mechanical properties of resin materials may be increased temperaturecaused by dependent water absorption, water absorption disfeatures polymer chains by cleaving ester bonds, resulting in poor mechanical properties. Two studies(29, 36) on post-rinsing time, water storage, and disinfectants, using different immersion solutions including distilled water, effervescent tablets, and sodium hypochlorite (NaOCl), examined the impact on flexural strength. The results showed that longer rinsing times deteriorated the condition (8, 14, 32).

Results and Discussion Data gathering

The authors gathered data separately from 30 included articles, as illustrated in Table 1. The search terms included 3D printing strength, denture base, flexural strength, 3D-printed resin, 3D printed provisional restoration, printing direction, and postcuring period. The included studies looked into a variety of agents that affect the strength of different types of threedimensional, (3D)-printed resin. Kind of printer, manufacturer, layer thickness of three dimensional, (3D)- printed dental resin, specimens' dimensions, and postcuring approach.

Following a thorough review of the texts, 30 research papers were identified, involving five kinds of (3D)-printed dental resin for denture base, provisional crown and bridge and denture teeth, orthodontic and occlusal split material. 7 research studied about denture base, fourteen articles studied Provisional crown and bridge, and denture teeth, four studies investigate Orthodontic. Three articles studied occlusal split material, and one study about hybrid resin, one study about dental model. Table1 displays the factors from each study included in the systematic review. The guidelines were created based on sixteen studies that examined postprinting factors (8, 9, 20-23, 27, 29-33, 3639) and eleven studies examined printing factors (3, 4, 16, 17, 19, 24, 34, 35, 37, 40, 41) There is also three research about preprinting factor(25, 39, 42). According to these studies, all of the aspects of 3D printed resin require further investigation. These factors are used to demonstrate how they affect flexural strength, either lowering or enhancing.

Discussion

This study classified the variables that influence the three-point bending strength of (3D)- printed dental resins into three groups. Factors to consider before printing, during printing, and after printing. Printing material. fillers/nanoparticles, and printers were all used as preprinting variables. Printing variables were direction, layer thickness, and light intensity. Thermal cycling, different post-curing times, temperatures, rinsing, and water storage were among the post-printing factors. Several factors can affect the strength of the produced object during the printing operation. This systematic review discovered that certain influences affect the flexural strength (FS) of printed resin and should be evaluated preprinting.

Conclusions

The additive manufacturing technique is considered a revolution in dentistry due to its advantages in manufacturing dental prostheses such as denture bases, surgical guide interim crowns, and bridges. 3Dprinted resin and stereolithography are the most common techniques utilized. Most studies in this research found that three-dimensional (3d) printed resin had a weaker bending strength than milled and PMMA resins. All of the variables investigated affected the bending strength of additive manufacturing (3D) printed dental resin. Some studies discovered using nanoparticles or fillers increased (FS). Increasing the post-curing duration improves strength. Strength will increase with the thickness of the layers. Thermal cycling and immersion in water and solutions will decrease the strength of 3Dprinted dental resin.

Printer type, and printing technolo gy	Wavelengt h \light intensity	Type of resin and manufactur ing	Factors	Layer thickness \PCT	Sample s' dimens ions	Results	year of publi catio n
STEREO LITHOG RAPHY (SLA)	the extreme laser speed was 5000 mm sec-1	hybrid composite resin material.	build direction vertically and horizontally printed groups.	the layer thickness was 0.05 mm. PCT /30 mins	25mm x 2 mm x 2mm	There was no statistically significant difference in flexural strength (FS) among the test groups, but fractographic analysis revealed a unique fracture mode.	2019 (18)
(DLP)	405 um	EXT	Flexural	25-100	150mm	This study	2020
(D-150),	(Diameter	DENT Co,	strength was	um	Х	discovered	(3)
SLA	of laser	C&B	compared	120	84mm	that	
(FORM2,	spot)	Poly	between 3d	mins,	x3mm	temporary	
FDM	150 W,	Polymethyl	printed	25-100	x100m	crowns made	

Table 1. The included studies looked at the factors that influence (FS) of various 3D-printed resins

	1	1	1			1	
	140 um	acrylate,	three-unit	um	m,	employing	
	(Diameter	Standard	fixed dental	60 mins,	145	(DLP) and	
	of laser	(GPGR04)	prosthesis to	100–500	$mm \times$	(SLA)	
	spot)	FORM	traditional	um	1/5	technologies	
	65 W,	LABS Co	restoration		$mm \times$	have	
	400 um	Poly	and milled		1/5	sufficient	
	(Diameter	Polymethyl	prosthesis.		mm,	bending	
	of nozzle)	acrylate,			227	strength to be	
	350W	COLOR			mm ×	used in	
		FABB Co			148	dentistry.	
		Polylactic			mm ×		
		acıd,			150		
		PLA			mm		
					100		
VELTZ,	A 405-nm	NEXT	different 3D	$100 \mu m$	(25	Results	2020
D2 3D	UV,	DENT	printed	PC1/15,	mm x	showed that	(22)
PRINTE	"LED"	C&B,	C&B resin	30, 60,	2mm x	post-curing	
R	light in	NEXT	materials	90, and	2 mm),	the 3D	
ZENITH,	intensity of	DENT	and assessed	120 mins	DIN	printed resin	
D 3D	1.4	C&B	changes in		EN	for 60-90	
PRINTE	mW/cm3	MFH,	their		ISO	minutes	
R		ZMD-	features		4049	increased its	
		1000B	based on			flexural	
		temporary	post-curing			strength (FS	
		and	time.				
		DIO Navi					
		C&B		100	0.0	<u> </u>	2020
FORM		NEXT	printing	100 µm	80mmx	Statistically	2020
2;		DENT	orientation		10	significant	(34)
(FORML		BASE;VE	(0,45,90		mmx	increases in	
ABS)		RTEX	degree)		4mm	FS were	
		DENTAL			Accord	observed for	
					ing to	samples	
					(ISO	printed at	
					178)	direction of	
					(0.0	90,45, and 0.	
3D	365-405	(IMPRIMO	The effects	Fifty	(3.2m	Mechanical	2021
PRINTE	nm		of post-	percent	m x	characteristic	(8)
R		Splint,	curing	of	10mm	s of 3D-	
(ASIGA,		(BISPHEN	process,	samples	x 65	printed of	
MAX)		OL-A-	thickness of	were 100	mm).	occlusal	
DLP		ethoxylate	layers, with	µm in		splints.	
		diacrylate	socking in	thickness		The post-	
		(B1SEMA)	water on FS,	And		curing	
			hardness,	another		process,	
			and .	titty		storage in	
			conversion	percent		water, as well	
			degree of a	$50 \mu m$		as the	
			light-curable			printing layer	
			methacrylat	30 mins		thickness all	
			e based	at 60 °C		have an	
			resin.			influence on	
						the final	
						outcome.	
						Application	

						of heat and	
						light in PCT	
						unit	
						Improves.	
						characteristic	
						s and	
						s allu	
						three-	
						dimensional	
						resin occlusal	
						splints. The	
						FS grew as	
						the thickness	
						of the	
						printing layer	
						decreased.	
3D		NextDent	adding	PCT/10	64mm	The addition	2021
PRINTE		ortho rigid	"zwitterioni	mins	Х	of	(42)
R (DLP)		3D printer	c materials"		10mm	"Zwitterion"	
		(NextDent			Х	resulted in	
		5100, 3D			3.3mm	decreased	
		Systems,			3	(FS)	
		$\mathbf{P}\mathbf{V}$			150 20705		
STERIO		$\frac{\mathbf{D} \cdot \mathbf{v} \cdot \mathbf{j}}{\mathbf{Form} \mathbf{3B} \cdot \mathbf{k}}$	The	100 um	(30	The growing	2021
LITHOG		FORMLA	influence of	/PCT	(50 mm x 5	nost-rinsing	(29)
RAPHY		BS.	post-rinse	20 mins/8	$mm \ge 5$ mm ≥ 5	pose mising	(2))
(SLA)		Somerville.	duration.	0 °C	mm3)	reduced the	
		MA, USA.	Wash by	without	- /	bending	
			isopropanol	inert gas		strength of	
			for 5 mins,	C		three-	
			12 mins, 20			dimensional	
			mins, 30			(3D)-printed	
			mins,			resin	
			1 hour, and			samples.	
			12 hours.				
DIGITA	200 W, 20	NEXT	ZrO_2	Layer	25 x 2	The addition	2021
L LIGHT	mins	DENT,	nanoparticle	thickness	x 2	of ZrO ₂ NPs	(25)
PROCES		3(Trimetho	s were used	$50 \mu\text{m},$	mm3	(3%, 4%, and)	
SING (DL D)		xysilyl)pro	to enhance	PC1/20	(ISO)	5%)	
(DLP)		pyi	strength and	mms	10477,	ES	
			as reinforceme			significantly	
		C	nt to 3D-			over the	
			printed			unmodified	
			dental resin			printed resin.	
			in varying			After three	
			concentratio			months of	
			ns ranging			storage in	
			from 0 to			artificial	
			5% by			saliva, groups	
			weight.			with higher	
						filler content	
						experienced a	

D20II, 3D PRINTE R (DLP)		NEXT DENT, C&B, 3Delta TEMP, FREE PRINT TEMP	The impact of printing direction and aging process on three-point bending	FREE PRINT, NEXT DENT c&b 50 µm, 3Delta 100 µm Post cure time, PCT. The FREE PRINT and 3Delta temperat ures were post- cured for 2 x 2000 flashes in a nitrogen atmosphe re. The Next Dent temperat ure was 30 minutes.	2mm × 2mm ×25 mm3 ISO 4049	greater reduction in strength than those with lower filler content. The orientation of printing has a significant impact on the mechanical features of the samples. To attain the best results, align the layers vertical to the load direction. Other factors such as the material, aging, and the direction of print all had a significant impact on FS.	2021 (17)
LOW FORCE STERIO LITHOG RAPHY (LFS)	05 nm ultra violet light, with a laser power of 250 m W.	FORM LABS OFFER DENTURE TEETH RESIN in A2 and Form 3.	Post-curing temperature s are (40, 60, and 80°C) for different durations (15, 30, 60, 90, and 120 minutes).	50µm	25 mm x 2 mmx 2 mm, ISO 10477	Raising post- curing temperature significantly enhanced three-point bending strength.	2021 (21)
STEREO LITHOG RAPHY (SLA)		DENTAX FREE PRINT Temp. and NEXT DENT,	The Printing angle and the load direction "0°", "45°", "90°"	50-µm PCT/ Manufact ure Instructio n,	25mm x 2mm x 2 mm,	The statistical analysis revealed that the bending strength of	2021 (19)

		MEU		nost		hoth	
		1011-111		post-		investigated	
				curing		Investigated	
				under		materials is	
				nitrogen		significantly	
				gas.		dependent on	
						degrees of	
						orientation.	
						Three point	
						bending	
						strength was	
						superior at	
						·	
						so it depends	
						on	
						printing	
						direction	
NEVT		haat	Thompol	50	64 10	2D printed	2021
DENT.2				$\frac{30\mu\text{m}}{10M}$	04 X10	SD-printed	2021
DEN1;5		polymerize	cychng	TOM,	X 3.3	specimens	(43)
		a acrylic	treatment	I en	±0.2	snow more	
SYSTE		resin		thousand	mm	irregularities,	
MS		SPA,		repetition	ISO	including	
VERTE		NEXT		s at 5-	20795-	minor acute	
X		DENT		55°C,	1:2013	lamellae with	
DENTA		Denture		with 5		numerous	
L,		3D+,		seconds		empty	
		3D		of		spaces, deep	
		systems,		moveme		holes, and	
		VERTEX		nt and 30		layers.	
		DENTAL,		seconds		The use of	
		B.V.		of rest.		thermal	
		,		10,000		cycling	
				cycles		significantly	
				eyeles		decreased	
				equal one		flowural	
				year or		atrop ath (ES)	
				initia-orai		strength (FS),	
				use.		and 5D-	
						printed dental	
						resin	
						performed	
						worse than	
						heat-	
						polymerized	
						resin in all	
						checked	
						properties.	
DLP 3D	405 nm	The	The	50 µm	A bar	There was	2021
PRINTE	ultra-	NextDent	researchers	PCT /60	measur	also a distinct	(31)
R(NEXT	violate,	C&B	explored the	mins	ing (25	connection	` ´
DENT	"LED"		effects of		mm x.	between the	
ND5100	used as the	FORMLA	different		2 mm x	cleaning	
SLA 3D	light	BS	washing		2 mm	solution and	
PRINTE	Source	DENTURE	solutions		Follow	the resin	
R	with a 250	TEETH $\Delta 2$	such as		ed ISO	utilized	
(FORM			(isopropul		10/77	$\Delta \log \alpha \cos \alpha$	
	μνν		alaohaland		104//	$\frac{1}{100}, a 0100$	
э,			alconor and			way ANOVA	

FORML		Tri-			was used to	
ARS		nronvlene			analyze the	
7 LD D		glycol			difference in	
		grycor			ES between	
					rs between	
		ether) and			cleaning	
		numerous			duration for	
		times (3, 5,			each 3D-	
		10, 15, 30,			printed resin	
		60, and 90			cleaning	
		minutes) on			solution, and	
		3D printed			no significant	
		resin			differences	
		samples.			were found in	
		sumptest			either group	
STEPEO	Dontol I T	1 day 3	followed	accordi	On day 7	2021
LITUOC		Tuay,5	lollowed	accolui	Ull day 7,	(22)
	Clear	uays, 3		ng	three-point	(55)
RAPHY		days, and /	ultraviole	(150	bending tests	
(SLA)	(Formlabs)	days.	t post-	178:20	produced the	
	polymer,	To reduce	curing to	19).	specimens	
		environment	raise	80mmx	with the	
		al impact,	conversio	10mmx	highest	
		all samples	n of	4mm	flexural	
		were kept in	photopol		strength and	
		a darkened	vmer.		failure stress.	
		environment	accordin			
		with a	g			
		humidity of	5 to the			
		55 590/	to the			
		33-38%	demands			
		along with a				
		temperature	(FORML			
		of 24°C.	ABS)			
			Company			
EVERES	Dental	Samples in	layer	(25mm	100µm	2022
ZERO,	resin	varying	thickness	x 2mm	thickness,	(14)
(DLP)	(A2	printing	printed	Х	showed the	
× ,	EVERES	thickness of	(25micro	2mm)	highest FS	
	TEMPOR	lavers (25	meter	accordi	compared to	
	ARY	50 and 100	50micro	ng to	other	
	SISMA	$\frac{100}{100}$ $\frac{100}{100}$	m tor	ISO	thickness	
	JishiA,	printing		4040	Dost printing	
	italy)	printing,	01	4049	Post-printing	
		samples	$100\mu m$).		and printing	
		were	PC1/		thickness	
		subjected to	20mins		have a	
		seven			combined	
		different			effect.	
		treatment				
		conditions,				
		including				
		water				
		socking for				
		24 hours 30				
		dave light				
		uays, iigin				
		or neat				
		curing for				
		five or				

			fifteen mins,				
			and control.				
ASIGA	405	ASIGA	Bending	50 µm	65 x10	3d printed	2022
DIGITA	nm/13.14M	Denta	characteristi	10M\60°	x 3.3	samples had	(4)
L LIGHT	w/cm ² ,	BASE,	cs of 3D-	С,	mm ³	inferior FS	
PROCES	395 nm/	(ASIGA,	printed		(±0.2	and modulus	
SING	1.176	FORMLA	dental resins		mm ³)	of elasticity	
(DLP),	mW/cm ²	BS	and		ISO/F	than	
FORM 2	,405 nm/	DENTURE	accuracy		DIS	traditional	
STERIO	1.4	BASERESI	were		1567)	heat-	
LITHOG	mW/cm ²	N,	compared to			polymerized	
RAPHY		LP,	those			samples.	
(SLA),		NEXTDEN	produced			Heat-	
NEXT		T Denture	through			polymerized	
DENI 5100		3D+, The	traditional			samples	
5100 (DLD)		NETHERL	neat-			exhibited the	
(DLP)		AND)	polymerizau			$\begin{array}{c} \text{mgnest FS} \\ (02.4 \text{MDs}) \end{array}$	
			OII			(95.4MPa)	
						DENT	
						specimens	
						had the	
						minimum	
						(FS) No	
						significant	
						differences	
						between	
						FORMLABS	
						and ASIGA	
						specimens.	
FORML	405nm	NEXT	Investigate	The	(65mm	Changing the	2022
ABS	laser	DENT,	how printing	layers	x10mm	orientation of	(16)
FORM,	wavelength	denture	direction	thickness	x3.3	printing from	
2		3D+	and curing	50 µm /	mm3)	0° to 90° led	
PRINTE			time	PCT		to a	
R			influence	20,30		significant	
(SLA)			physical and	and 50		increase in	
			mechanical	mins / 60		bending	
			characteristi	°C		strength. FS	
			cs.			did not differ	
						significantly	
						when post-	
						durations	
						uurations	
						from $20 to 50$	
						minutes	
NEXT	405 nm	Telio	The effect	The nost-	The	(FS) varied	2022
DENT		CAD: Next	of	curing	distanc	significantly	(35)
	IIIITra-violet		01	Saring	anstance	Significantry	(33)
5100 3D	LED.	Dent c&b	(CAD/CAM	stage was	e	among	
5100 3D SLA.	LED, UV LED	Dent c&b MFH.	(CAD/CAM milling and	stage was carried	e betwee	among traditional	
5100 3D SLA, ASIGA	Ultra-violet LED, UV LED (385–405	Dent c&b MFH, ASIGA	(CAD/CAM milling and 3D-printing)	stage was carried out in	e betwee n both	among traditional IFDPs and all	
5100 3D SLA, ASIGA ,MAX,	Ultra-violet LED, UV LED (385–405 nm)	Dent c&b MFH, ASIGA DENTA	(CAD/CAM milling and 3D-printing) manufacturi	stage was carried out in accordan	e betwee n both retainer	among traditional IFDPs and all materials	
5100 3D SLA, ASIGA ,MAX, UV	Ultra-violet LED, UV LED (385–405 nm)	Dent c&b MFH, ASIGA DENTA TOOTH,	(CAD/CAM milling and 3D-printing) manufacturi ng processes	stage was carried out in accordan ce with	e betwee n both retainer s was	among traditional IFDPs and all materials except digital	

		ERFURT,	mechanical characteristi c of a 3-unit provisional fixed dental restoration after thermomech anical aging.	manufact urer's instructio ns for each method.	20 mm. The connec tors among the abutme nt teeth were designe d to be 4×4 mm with a pontic height of 9mm.	processing (DLP) (ASIGA)	
(LCD) (DLP)	405 nm 385 nm	(Key Splint Hard)	mechanical characteristi c of a 3D- printed hard type occlusal splint material can be affected by stroboscopic post-curing in a nitrogen gas (N ₂) atmosphere as opposed to an air atmosphere, as well as the type of printer.	100µm Post- curing in a N ₂ atmosphe re or in air atmosphe re (n = 20 per subgroup). For each subgroup , 10 samples were aged in boiling deionized distilled water for 16 h before testing, and the other half had been kept in the air atmosphe re without any aging.	3mmx1 0mmx6 0mm3	A three-way ANOVA revealed that post-curing period , type of printer , and aging all had a significant impact on FS. Aging in boiling water resulted in reduced FS.	2022 (20)

(NEXT DENT 5100)	(Next Dent C &B MFH N1;3D Systems)	The effect of postpolymer ization methods (dry, water, and glycerin- submerged) and duration (25, 30, 35, 40, and 45 minutes)	PCT/ 25,30,35, 40,45 mins (300-550 nm) ultra violet- light exposure for 30 mins	25mmx 2mmx2 mm Accord ing to (ISO) 10477- 2018	The fracture strength analysis explained that significant main effect for all three factors. Dry post conditioning at 25 mins and non-aged procedure resulted significantly higher fracture resistance and FS values.	2022 (24)
DIGITA L LIGHT PROCES SING (DLP) AND STERIO LITHOG RAPHY (SLA)	(NEXT DENT,) (FORMLA BS)	The impact of disinfectant chemicals on the FS of 3D-printed resins used as denture bases. (The soaking solutions are distilled water (DW), effervescent tablets, and sodium hypochlorite (NaOCl).	50 μm layer thickness , PCT/30 min Temperat ure 60 °C)	64mm x10mm x3.3m m ± 0.2 mm, ISO 20795- 1:2013	After soaking in the solution, all materials' flexural strength decreased significantly. (FS) was significantly reduced by both the effervescent tablet and the (NaOCl) immersion, with the latter producing the lowest values.	2023 (32)
3D PRINTE R	NEXT DENT, Ortho rigid, Dental LT Clear, DENTON A Flexisplint, Cosmos Bite Splint, and ProArt Print Splint), one milled	This study compares the bending strength and surface hardness of 3D-printed occlusal splint resin to milled and conventiona l cold- polymerized		64mm x 10mm x 3.3mm ±0.2 mm Accord ing to (ISO 20795- 1:2013)	Pro Art CAD Splint had the greatest FS values, which were significant. Unlike the other groups.	2023 (44)

			1				
		(ProArt	splint resin.				
		CAD					
		Splint),					
		and one					
		cold-					
		polymerize					
		d (ProBase					
		Cold)					
3D		Tera,	The	100 µm	10mmx	The degree of	2023
PRINTE		HARS,	influence of	•	40mmx	conversion	(36)
R		TC-	different		1mm	did not differ	× /
		85RESIN	post-curing		accordi	significantly	
			environment		ng to	between	
			s (nitrogen		ISO	groups	
			versus air)		178.20	However the	
			and rinsing		19	nolymerizatio	
			protocols		17	n	
			(centrifuge			environment	
			ethanol			accounted for	
			isopropapol			24.0% of the	
			and			24.070 Of the	
			isopropapol			variance.	
			isopropation				
			+ water)				
			studied				
2D	Waya		Evenloretion	Zaria	61	Nanonatialaa	2022
JU DDINTE	wave		Exploration the effect of	Z axis	0411111X 10mmm	Nanoparticles	2025
PRINIE	405 nm		Tipe evide	50μm	$\frac{1011111}{2}$	significantly	(27)
	403 1111			45 111118	5.511111	(ES) at all	
PHOIO					±0.2	(FS) at all	
			nanoparticle		Accord	concentration	
MONO			s were		ing to	s, with the	
(SHENZ			added at		150	nignest	
$\frac{\Pi E N}{C H N A}$					(20793	observed at	
CHINA)			115 OI 2%, $20%$ and $40%$		-	5%.	
			5%, and 4%		1:2015		
			to 3D-)		
			printed				
DICITA		Creation 9	resin.	Lacer	2		2022
		Crown &	Half of	Layer	2 mm	The A2	2023
		Bridge	samples in	tnickness	× 2	group had	(30)
PROCES		Next dent,	each group	50 µm.	$mm \times$	nignest FS	
SING		Denta	underwent		25 mm	before aging	
(DLP)		I ooth;	accelerated		15010	than the other	
NEXT		Asiga,	aging,		4//	groups, and	
DENT 5100		INSW,	which			only groups	
		Jamg He	included			AI and A2	
ASIGA		temporary	simulated			experienced a	
DENIA		resin;	brushing			decrease in	
IOUTH,			and thermal			strength after	
NUVA			cycling.			aging. Three-	
3D						point	
MASTE						bending,	
K NOV112						hardness, and	
NOVA3						roughness of	
I D.						the surface of	

STERIO	405 nm	NextDent	Influence of	50 μm	64mm	three dimensional (3D)- printed temporary dental resins after aging differed dependent on the material, system, and printing direction. Adding TiO2	2023
LITHOG RAPHY (SLA)	laser wavelength	denture 3D+, Netherland)	adding TiO ₂ nanoparticle s and subjecting it to a physical ageing process.	layer thickness , The samples were cured using an "ultraviol et" light curing chamber with a 405 nm LED waveleng th and 39W energy at 60°C.	×10m m ×3.3m m	nanoparticles to 3D-printed dental resin improved its flexural modulus, Vickers hardness, and impact strength, and. It also increased Martens' hardness over the unmodified resin.	(39)
ASIGA, MAX, DLP PRINTE R	wavelength = 385, pixel resolution = 62	NEXT DENT Denture 3D+, GC Temp Print and Sprint Ray EU Denture Base.	A variety of technologies were used to compare the FS of various resins. (traditional, CAD/CAM, subtractive manufacturi ng (milled) and additive manufacturi ng (3d- printed) and polymerizati on process.	Post curing duration PCT/20, 40 mins	Accord ing to ISO- 20795- 1:2013 Dimen sional sample s was (64 mm x 10 mm x 3.3 mm3)	CAD-CAM subtractive manufacturin g milled samples had the maximum flexural strength, followed by 3D-printed dental composite resins. There were no statistically significant differences, between 3d- printed and conventional resin groups after 40 mins	2023 (40)

					of	
					polymerizatio	
					n and curing.	
W3D	3D printing	The effect	16 mins.	64mm	Flexural	2024
PRINTE	resin	of different	32 mins	X	strength	(23)
R	(Resilab	post curing	and 60	10mm	improved	()
(WILCO	Temp)	times (no	mins	x	with groups	
(11200	p),	curing.16		3.3mm	that were	
~) ,		mins.32		3	polymerized	
		mins and 1		ISO	for 32	
		h)		20795	minutes or	
		,		(25mm	one hour	
				X		
				10mm		
				х		
				3mm)		
				accordi		
				ng to		
				ISO		
				4049		
				(25 x		
				10 x 3		
				mm)		
ZORTRE	acrylonitril	Evaluating	No post-	20mm	The FDM	2024
Х	e butadiene	the flexure	cure with	x 5mm	group had the	(37)
(FDM),	styrene	strength of	FDM and	x 2	highest	
FORM	(ABS)	3D-printed	isopropyl	mm	flexure	
LABS	polymer,	models	alcohol		strength at	
(SLA),	PMMA-	using FDM,	(IPA)		69.36 ± 6.03	
NEXT	based	DLP, and	wash and		MPa, while	
DENT	liquid	SLA	ultraviole		the DLP	
(DLP)	photopoly	technology	t		group had the	
	mer resin is		(UV)cure		lowest at	
	used in		with		67.47 ± 20.58	
	both (DLP)		(SLA)		MPa.	
	and (SLA)		and			
	printers.		(DLP)			

References

Technologies, affecting factors, and applications. Scanning. 2021;2021.

2. Arcila LVC, de Carvalho Ramos N, Bottino MA, Tribst JPM. Indications, materials and properties of 3D printing in dentistry: a literature overview. Research, Society and Development. 2020;9(11):e80791110632-e.

3. Park S-M, Park J-M, Kim S-K, Heo S-J, Koak J-Y. Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials. 2020;13(18):3970.

4. Al-Qarni FD, Gad MM. Printing accuracy and flexural properties of different 3D-printed denture base resins. Materials. 2022;15(7):2410.

5. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: A systematic review. Dental Materials. 2021;37(2):336-50.

6. Scotti CK, Velo MMdAC, Rizzante FAP, de Lima Nascimento TR, Mondelli RFL, Bombonatti JFS. Physical and surface properties of a 3D-printed composite resin for a digital workflow. The Journal of Prosthetic Dentistry. 2020;124(5):614. e1-. e5.

7. Hata K, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Development of dental poly (methyl methacrylate)-based resin for stereolithography additive manufacturing. Polymers. 2021;13(24):4435. 8. Perea-Lowery L, Gibreel M, Vallittu PK, Lassila LV. 3D-printed vs. heat-polymerizing and autopolymerizing denture base acrylic resins. Materials. 2021;14(19):5781.

9. Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ, et al. Strength and surface properties of a 3D-printed denture base polymer. Journal of Prosthodontics. 2022;31(5):412-8.

10. Lourinho C, Salgado H, Correia A, Fonseca P. Mechanical properties of polymethyl methacrylate as denture base material: heat-polymerized vs. 3D-printed systematic review and meta-analysis of in vitro studies. Biomedicines. 2022;10(10):2565.

11. Almulayounis MN, Ali AA. Effect of Heat Treatment Duration and Cooling Conditions on Flexural Strength and Surface Roughness of Cobalt-Chromium Alloys produced by Selective-Laser-Melting. Tikrit Journal for Dental Sciences. 2023;11(2):198-207.

12. Ahmad ZA, Nayif MM, Fathi UA. Flexural Strength of Glass Fiber Post Following Conditioning with Various Chemical Solutions Running Title: Flexural Strength of Fiber Post with Different Chemical Treatments. Tikrit Journal for Dental Sciences. 2022;10(2):152-9.

13. AlFuraiji N, Atallah W, Qasim SSB. Evaluation of Flexure Strength of Heat Cure Acrylic Resin Reinforcement with Nano Al2O3 After Polishing with Different Abrasive Materials. Journal of Techniques. 2023;5(2):134-40.

14. Alshamrani AA, Raju R, Ellakwa A. Effect of printing layer thickness and postprinting conditions on the flexural strength and hardness of a 3D-printed resin. BioMed Research International. 2022;2022.

15. Anadioti E, Musharbash L, Blatz MB, Papavasiliou G, Kamposiora P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health. 2020;20:1-9.

16. Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dental Materials. 2022;38(12):1841-54.

17. KEßLER A, Hickel R, Ilie N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dental Materials Journal. 2021;40(3):641-9.

18. Alharbi N, van de Veen AJ, Wismeijer D, Osman RB. Build angle and its influence on the flexure strength of stereolithography printed hybrid resin material. An in vitro study and a fractographic analysis. Materials technology. 2019;34(1):12-7.

19. Derban P, Negrea R, Rominu M, Marsavina L. Influence of the printing angle and load direction on flexure strength in 3D printed materials for provisional dental restorations. Materials. 2021;14(12):3376.

20. Wada J, Wada K, Gibreel M, Wakabayashi N, Iwamoto T, Vallittu PK, et al. Effect of nitrogen gas postcuring and printer type on the mechanical properties of 3D-printed hard occlusal splint material. Polymers. 2022;14(19):3971.

21. Bayarsaikhan E, Lim J-H, Shin S-H, Park K-H, Park Y-B, Lee J-H, et al. Effects of postcuring temperature on the mechanical properties and biocompatibility of three-dimensional printed dental resin material. Polymers. 2021;13(8):1180.

22. Kim D, Shim J-S, Lee D, Shin S-H, Nam N-E, Park K-H, et al. Effects of post-curing time on the

mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers. 2020;12(11):2762.

23. dos Santos Siqueira JRC, Rodriguez RMM, Campos TMB, Ribeiro NdCR, Bottino MA, Tribst JPM. Characterization of Microstructure, Optical Properties, and Mechanical Behavior of a Temporary 3D Printing Resin: Impact of Post-Processing Curing Time. 2024.

24. Scherer MD, Barmak AB, Özcan M, Revilla-León M. Influence of postpolymerization methods and artificial aging procedures on the fracture resistance and flexural strength of a vat-polymerized interim dental material. The Journal of Prosthetic Dentistry. 2022;128(5):1085-93.

25. Aati S, Akram Z, Ngo H, Fawzy AS. Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations. Dental Materials. 2021;37(6):e360-e74.

26. Abd Kati F. The effects of TiO2 Nanoparticles on Flexural Strength of Self-Polymerized Resins: In Vitro Study. Journal of Techniques. 2022;4(2):45-9.

27. Al-Douri ME, Sadoon MM. Flexural Strength, Hardness and Surface Roughness of 3D Printed Denture Base Resin Reinforced by Zinc Oxide Nanoparticles. Journal of Research in Medical and Dental Science. 2023;11(01):194-200.

28. Dizon JRC, Gache CCL, Cascolan HMS, Cancino LT, Advincula RC. Post-processing of 3D-printed polymers. Technologies. 2021;9(3):61.

29. Xu Y, Xepapadeas AB, Koos B, Geis-Gerstorfer J, Li P, Spintzyk S. Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dental Materials. 2021;37(5):e314-e27.

30. Alageel O, Alhijji S, Alsadon O, Alsarani M, Gomawi AA, Alhotan A. Trueness, flexural strength, and surface properties of various three-dimensional (3D) printed interim restorative materials after accelerated aging. Polymers. 2023;15(14):3040.

31. Hwangbo N-K, Nam N-E, Choi J-H, Kim J-E. Effects of the washing time and washing solution on the biocompatibility and mechanical properties of 3D printed dental resin materials. Polymers. 2021;13(24):4410.

32. Alkaltham NS, Aldhafiri RA, Al-Thobity AM, Alramadan H, Aljubran H, Ateeq IS, et al. Effect of denture disinfectants on the mechanical performance of 3D-printed denture base materials. Polymers. 2023;15(5):1175.

33. Milovanović A, Sedmak A, Golubović Z, Mihajlović KZ, Žurkić A, Trajković I, et al. The effect of time on mechanical properties of biocompatible photopolymer resins used for fabrication of clear dental aligners. journal of the mechanical behavior of biomedical materials. 2021;119:104494.

34. Shim JS, Kim J-E, Jeong SH, Choi YJ, Ryu JJ. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. The Journal of prosthetic dentistry. 2020;124(4):468-75.

35. Ellakany P, Fouda SM, Mahrous AA, AlGhamdi MA, Aly NM. Influence of CAD/CAM milling and 3d-printing fabrication methods on the mechanical properties of 3-unit interim fixed dental prosthesis after thermo-mechanical aging process. Polymers. 2022;14(19):4103. 36. Šimunović L, Jurela A, Sudarević K, Bačić I, Haramina T, Meštrović S. Influence of Post-Processing on the Degree of Conversion and Mechanical Properties of 3D-Printed Polyurethane Aligners. Polymers. 2023;16(1):17.

37. Atwal N, Bhatnagar D. Evaluating and Comparing Flexure Strength of Dental Models Printed Using Fused Deposition Modelling, Digital Light Processing, and Stereolithography Apparatus Printers. Cureus. 2024;16(2).

38. Jang W, Kook G-S, Kang J-H, Kim Y, Yun Y, Lee S-K, et al. Effect of washing condition on the fracture strength, and the degree of conversion of 3D printing resin. Applied Sciences. 2021;11(24):11676.

39. Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. 3D printed denture base material: The effect of incorporating TiO2 nanoparticles and artificial ageing on the physical and mechanical properties. Dental Materials. 2023;39(12):1122-36.

40. Casucci A, Verniani G, Barbieri AL, Ricci NM, Ferrari Cagidiaco E, Ferrari M. Flexural Strength Analysis of Different Complete Denture Resin-Based Materials Obtained by Conventional and Digital Manufacturing. Materials. 2023;16(19):6559.

41. Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D-printed, CAD/CAM, and conventional denture base materials. Journal of prosthodontics. 2020;29(6):524-8.

42. Kwon J-S, Kim J-Y, Mangal U, Seo J-Y, Lee M-J, Jin J, et al. Durable oral biofilm resistance of 3D-printed dental base polymers containing zwitterionic materials. International journal of molecular sciences. 2021;22(1):417.

43. Gad MM, Al-Thobity AM. The impact of nanoparticles-modified repair resin on denture repairs: a systematic review. Japanese Dental Science Review. 2021;57:46-53.

44. Prpic V, Spehar F, Stajdohar D, Bjelica R, Cimic S, Par M. Mechanical Properties of 3D-Printed Occlusal Splint Materials. Dentistry journal. 2023;11(8):199.