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الخلاصة 
في هذه البحث، نقدم التوزيع المعمم للأسي باريتو بمتغيرين. اشتققنا بعض خصائص التوزيع، كدالة الكثافة الاحتمالية 

والهامشية، الدالة المولدة للعزوم الهامشية، دالة الموثوقية ومعكوس داله الخطر. أخيراً، قدمنا تقدير الامكان الاعظم.

الكلمات المفتاحية
التوزيع المعمم للأسي باريتو للمتغيرين، الدالة الموثوقية، معكوس دالة الخطر.
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Abstract 
In this search, a bivariate exponentiated exponential Pareto distribution is present-
ed. We derived some properties of the distribution, as probability density function 
and its marginal, marginal moment generating function, reliability function and 
reversed hazard function. Finally, we presented the maximum likelihood estima-
tion.
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Exponentiated exponential Pareto distribution, reliability function, reversed 

hazard function.
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1.  Introduction
Al-Kadim and Boshi [1] introduced the 

exponential Pareto (EP) distribution that is the 
Weibull distribution is special case of the EP 
distribution. 

The statistical multivariate analysis is 
important in many fields such as data reduction 
and hypotheses testing (see Johnson, R. A., 
Wichern, D. W.,2007) [2]. The object of 
this search is to construct a 2- dimensional 
exponentiated exponential Pareto (BEEP) 
distribution by using the similar method to 
those used by Sherpieny et al [3] in finding 
a bivariate distribution with generalized 
Gompertz, bivariate generalized exponential 
marginal distributions of Kundu and Gupta [4]. 
A new family of 2- dimensional distributions 
was introduced by Sarhan and Balakrishnan 
[5]. Block, Langberg and Stoffer [6] presented 
a 2- dimensional exponential and geometric 
autoregressive and autoregressive moving 
average models, another class of bivariate 
Gompertz distributions was studied by Al-
Khedhairi and El-Gohary [7], Kundu [8] 
presented a bivariate geometric (maximum) 
generalized exponential distribution. 

In section (2), we describe the models 
and discuss some properties. In section (3) 
we present the marginal of moment and 
moment generating functions of proposed 
2- dimensional distribution. In section (4) 
we introduce some reliability functions. In 
section (5) we obtain the parameter estimation 
using MLE. Finally, some conclusions for the 
results are given in Section (6). 

2.  Bivariate Exponentiated 
Exponential Pareto distribution
In this section we introduce the BEEP 

distribution. We discuss its distribution 
function (CDF), probability density function 
(PDF) and some properties of this distribution.

The random variable Y is distributed 
Exponentiated Exponential Pareto (EEP)  
distribution  with  parameters λ and p, that   
are  scale  parameters and θ and α are shape 
parameters,  if its cdf  is defined as follows:
FEEP(y;α,λ,p,θ)=(1-exp[-λ(y/p)θ])α,
y,α,λ ,p,θ>0                                       (1)  
    
  The pdf of EEP distribution is 
fEEP(y;α,λ,p,θ)=αλ θ p-θ yθ-1 exp[-λ(y/p)θ]
(1-exp[-λ(y/p)θ )α-1                    (2)

2.1. The Cumulative Distribution 
Function
In the following theorem introduce the 

cumulative distribution function of the 
2-dimentional vector (Y1,Y2 ).

2.1.1. Theorem  
The cdf of  the 2-dimentional vector 

(Y1,Y2 ) that has BEEP (α1,α2,α3,p,λ,θ), where 
Y1=max(D1,D3) and Y2=max (D2,D3), and the 
independent random variables  distributed EEP 
with the shape parameters  α1,α2,α3,θ and the 
scale parameters p,λ, j=1,2,3 , Dj~(αj,p,λ,θ), 
is as follows

FY1 ,Y2
(y1,y2)=(1-exp[-λ(y1/p)θ])α

1(1-
exp[-λ(y2/p)]θ)α2 (1-exp[-λ(u/p)]θ)α3          (3)

where  u=min(y1,y2) 
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Proof:  We know that  
FY1,Y2

(y1,y2)=P(Y1≤y1,Y2≤y2), and since
 Y1=max(D1,D3 ) and Y2=max(D2,D3)

That is FY1,Y2
(y1,y2)= P(max(D1,D3) 

≤y1,max(D2,D3)≤y2)  
                                   =P(D1≤y1,D2≤y2,D3≤min(y1,y2))  
As  Dj~(αj,p,λ,θ)are independent random 

variables, we get
      FY1,Y2

 (y1,y2)=P(D1≤y1)P(D2≤y2)
P(D3≤min(y1,y2))

=FD1
 (y1;α1,p,λ,θ) FD2

 (y2;α2,p,λ,θ) FD

(u;α3,p,λ,θ)
 =(1-exp[-λ(y1/p)θ])α1

 (1-exp[-λy2/p)]θ)α2

(1-exp[-λ(u/p)]θ)α3  ∎

2.2. The Probability Density Function
We can derive the pdf of the (Y1,Y2)  in the 

following theorem.

2.2.1. Theorem If the cdf of (Y1,Y2)  
is as in (3), the  pdf  is

fY1,Y2
 (y1,y2)= 

 But when to �ind f3 (y,y),we use the 
following formula to derive f3 (y,y)

          ∫0
∞∫0

y2 f1 (y1,y2) dy1 dy2+∫0
∞ ∫0

y1 f2

(y1,y2) dy2 dy1+∫0
∞ f3 (y,y)dy=1

 let J1=∫o
∞∫0

y2 f1 (y1,y2) dy1 dy2 and  J2=∫0
∞▒ 

∫0
y1 f2 (y1,y2) dy2 dy1  

Then 

hence

2.3. Marginal Probability Density 
Functions
   We derive the marginal probability density 
function of (Y1,Y2) in this subsection.

2.3.1. Theorem The marginal probability 
density functions of  Yj (j=1,2) is given by

proof:
 The marginal cumulative distribution function 
of Yj, say F(Yj) (yj), as follows:

and since Dj  is independent of D3, then
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By differentiation w.r.t. Yj , then we get fYj

(yj)   as in (11)

2.4.   Conditional Probability Density 
Functions 

We present the conditional probability 
density functions of (Y1,Y2)by using the   
marginal probability density functions in the 
following theorem.

2.4.1. Theorem The conditional probability 
density functions of Yj, given Yk=yk,
 fYj ⁄ Yk

 (yjyk) ,j,k=1,2,j≠k, is given by

for    yj<yk

Proof.
We can prove  this   theorem  by  using the 

relation

Using (4) where j,k  are replaced instead of 
1,2 respectively and using (11) to prove  (14), 
Therefore we use  (5),(6), (11)  to prove  (15), 
and(16).                                       ∎

3. The Marginal of Moment and 
Moment Generating Functions

We present  the  marginal of  moment and  
moment generating functions of Yj.

3.1. The Marginal Moment
We present  the marginal moment of  

Yj,j=1,2.

3.2. Theorem
The r^th moments of  Yj is given by

Proof

Since   0 < (1-exp[-λ (yj/p)θ])<1 for yj > 0,  
then by  using the binomial series expansion      

That is 

Then
∎

3.2.1. The Marginal Moment 
Generating Function 

We find  the  marginal  moment  generating  
function of Yj, (j=1,2) in the following  lemma 
.

3.2.2. Proposition
If Yj~BEEPD, then the marginal moment 



Kareema Abed Al-Kadim and Ashraf Alawi Mahdi

18 AL-Bahir Quarterly Adjudicated Journal for Natural and Engineering Research and Studies

Vol. 8, No. 15 and 16 P. (13-20)E, 2018

generating function of
Yj (j=1,2) is:

     (20)

Proof

3.2.3. Using Theorem

4. Reliability Functions
We discuss some reliability functions, the 

reliability function, hazard function and 
the reversed hazard functions in this 

section.

4.1. Reliability Function
We introduce the reliability function of 

(Y1,Y2) in following theorem .

4.1.1. Theorem The reliability 
function of the random vector (Y1,Y2) is:

                                                                              (21)

                                                                             (22)                                                                             (22)

and

               (23)

Proof.
The reliability function of  (Y1,Y2) can be 

obtained by:
(24)

where u=min(y1,y2)  
that is if y1= y2= y, we use the following 

formula
   (25)

while we use the following formula when 
y1 < y2, 

  (26)

and if y2 < y1, we use the following 
formula

(27)

4.2. Hazard Function      
Let (Y1,Y2) be bivariate random variable 

with joint pdf   f Y1,Y2 (y1,y2). We define hazard 
function h Y1,Y2 (y1,y2) as

(28)
Then, 
if y1<y2   

                         
(29)

where f1 (y1,y2)  from equation(5) and R1

(y1,y2) from equation (23),
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if y2<y1

                          (30)

where f2 (y1,y2)  from equation(6)  and R2

(y1,y2)  from equation(24)    
 if y1= y2= y           

                                      (31)

where f3 (y,y)  from equation(7)  and R3

(y,y)from equation(25)  

4.2.1. Reversed Hazard Function 
and Its Gradient Vector

4.2.2. Reversed Hazard Function
The reversed hazard function by:

           
(32)

Now, we find the reversed hazard function 
of BEEPD as

(33)

(34)
(35)

4.2.3. Gradient Vector
The gradient vector of bivariate reversed 

hazard function by:

                                                                       (36)

5. Maximum Likelihood Estimation
In this section we can estimate the unknown 

parameters of the BEEP distribution, by using 
the method of maximum likelihood (Kundu 
and Gupta [3]). 

 Suppose (( Y11,Y21) ,(Y12 ,Y22 ),…, (Y1n,Y2n))
is a random sample from BEEP distribution 
where

(37)                                                                      
We find that the likelihood of the sample 

is given by
l(α1,α2,α3,p,λ,θ)=∏j=1

n1 f1 (y1j,y2j) ∏j=1
n2 f2

(y1j,y2j) ∏j=1
n3 f3  (yj,yj) 

The log-likelihood function becomes:
L(α1,α2,α3,p,λ,θ)=n1 ln(α1+α3)++n1 ln 

(α2)+2n1 ln(λ)

The first partial derivatives of (38) are 
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                      (40)

Setting each of these first partial derivatives 
to be equal to zero. These equations cannot be 
solved analytically but numerically by using   

the statistical software, to get the ML of the 
unknown parameters.

6. Conclusions  
In this research we presented a bivariate Exponentiated 
Exponential Pareto distribution whose marginal 
are Exponentiated Exponential Pareto distribution. 
We discussed some statistical properties of the new 
bivariate model. they observed that the MLE of the 
unknown parameters can be obtained   numerically.
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