

*Corresponding author. Email: phd202110686@iips.edu.iq

Research Article

A Novel Multi-Layered Secure Image Encryption Scheme Utilizing Protein

Sequences, Dynamic Mealy Machines, 3D-AS Scrambling, and Chaotic Systems

Radhwan Jawad Kadhim
1,*,

, Hussein K. Khafaji
2 ,

1 Informatics Institute for Postgraduate Studies, University of Information Technology and Communications, Baghdad, Iraq.

2 Computer Engineering Department-Al-Rafidain University College, Baghdad, Iraq.

A R T I C L E I N F O

Article history

Received 16 Jan 2025

Revised 28 Feb 2025

Accepted 07 Mar 2025

Published 30 May 2025

Keywords

Image Encryption

Protein sequence

Mealy Machine

Chaotic System

3D-AS Scrambling

A B S T R A C T

The swift rise in multimedia transmission through insecure channels has made the study of information
security critically important. Image encryption holds significant importance in this context, hence
necessitating the improvement of the encryption algorithms. This research introduces a Protein-Driven
Mealy Machine Image Encryption with Multi-Layer Protection (PMIE-MLP) algorithm, an innovative
cryptographic system to improve image security that uses a dynamic protein-based Mealy machine, a
novel 3D-AS scrambling, and a chaotic system. An encryption framework comprises key generation and
six protection layers: substitution, four layers of diffusion, and confusion. These layers attempt to address
the confusion and diffusion principles of Shannon’s cryptographic system and meet the high security
standards of encrypted images. The authors conduct rigorous experiments to measure the efficiency of
the PMIE-MLP along with its security quotient. These experimental results provide evidence that the
PMIE-MLP is capable of achieving resistance to attacks such as brute force, statistical, differential,
occlusion, and noise attacks. Moreover, the metrics obtained by the PMIE-MLP demonstrated equal or
better security results than those of prior studies. A better performance analysis was achieved through
the key space, chi-square value, correlation coefficient values, and image resistance to differential
attacks; thus, it is evident that the PMIE-MLP is capable of transmitting colored image information in a

secure manner.

1. INTRODUCTION

With the rapid growth of digital technology and communications, data transfer over the internet is important to our daily

lives. In this context, images are among the most important types of data circulated in various fields, whether medical,

educational, commercial, or even entertainment. As the significance of digital images increases, so does the need to safeguard

these important data from unauthorized access or illicit manipulation[1], [2]. Consequently, image security has emerged as

a critical concern in recent years, prompting researchers to suggest diverse techniques to safeguard images. Image encryption

stands out as one of the most popular and efficient techniques [3]–[6]. Encrypting the digital image ensures the reliable

protection of sensitive information through transmission and storage. Because images exhibit significant pixel correlation at

neighboring locations, a large data volume, and high pixel redundancy, traditional text encryption algorithms such as DES,

3DES, AES, IDEA, and RSA are no longer suitable for use in image encryption [5], [7]–[9]. Therefore, several image

encryption systems based on different areas have been presented in recent years. Despite the existence of these systems, the

encryption system can still be improved more securely and efficiently. Cun et al. [10] introduced a new chaotic image

encryption technique utilizing dynamic DNA coding and RNA computing. The conversion of pixels into amino acids

involves several computational stages, including DNA coding, mRNA transcription, and amino acid replacement. This

method incurs computational complexity, which could delay the encryption time, especially for large images. Another

drawback is the limited key space in the process of DNA and mRNA coding, as it utilizes a finite set of nucleotides (A, T,

G, and C for DNA and A, U, G, and C for mRNA), potentially resulting in a lower key space for this segment of the

encryption. This may render the system more susceptible to brute-force attacks. Gao et al. [11] suggested a color image
encryption method that combines cross-plane permutation, hyperchaotic mapping, and DNA mutation. Analysis of some

ciphertext images yields average chi-square test results, particularly for image 4.2.03, which has a value of 352.3131, which

is significantly greater than the critical value. A nonperfectly uniform pixel distribution in a ciphered image enhances

Mesopotamian journal of Cybersecurity

Vol.5,No.2, pp. 395–423

DOI: https://doi.org/10.58496/MJCS/2025/025; ISSN: 2958-6542

https://mesopotamian.press/journals/index.php/cybersecurity

https://mesopotamian.press
https://orcid.org/0009-0008-2570-3526
https://orcid.org/0000-0002-1830-0568
https://creativecommons.org/licenses/by/4.0/
https://mc04.manuscriptcentral.com/mjcsc
https://doi.org/10.58496/MJCS/2025/025
https://mesopotamian.press/journals/index.php/cybersecurity

396 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

statistical attacks, as they detect nonuniform patterns. Meng and Gu [12] developed an image encryption system that

combines extended DNA coding with Zig-Zag transformation along with a fractional-order laser system. The analysis of

encrypted images reveals high average chi-square and high average correlation coefficient measurements with lower average

NPCR and UACI values for selecting cipher images than PMIE-MLP does. Lu et al. [13] suggested an image encryption

method that employs a new chaotic system with enhanced zigzag disambiguation. The 1D chaotic systems tend to have a

small state space, resulting in a limited chaotic sequence range. This may restrict the total randomness and efficacy of

encryption. The paper fails to provide numerical evidence of pixel correlation alongside an investigation into how the

algorithm withstands common attacks, specifically brute-force attacks, for security assessment purposes. Abdul-Hameed et
al. [14] established an image encryption methodology based on third-order differential equations with a 3D logistic map.

The high chi square values indicate that the pixel distribution in encrypted images does not reach an adequate state of

uniformity. The calculated average values of the UACI and NPCR fall below the ideal criteria for specific encrypted images.

The method proves ineffective in significantly lowering the pixel correlation present between adjacent image regions. Alexan

et al. [15] designed a technique to encrypt images on the basis of Rule 30 Cellular Automata with S-box components and

the Lorenz system. The primary disadvantage of this strategy lies in its vulnerability to specific types of differential attacks,

as the UACI values for some test images, such as the Lenna image, fall below the 33.4635 % threshold. The reduced UACI

values indicate that the scheme may lack sufficient diffusion. Another drawback is that the chi-square test values are not

sufficiently low, suggesting that encrypted images may still show statistical patterns from the original images, which

impacts the scheme's effectiveness against statistical attacks. Zhang and Wang [16] developed an image encryption method

that combines controlled zigzag transformations with bit-level encryption alongside their implementation of quantum walk

concepts. The correlation between adjacent pixels, although reduced, did not decrease to adequately low levels compared

with those of the PMIE-MLP, rendering this approach less secure against statistical attacks. Alexan et al. [17] designed a

technique to encrypt color images that integrates the KAA map with several chaotic maps. The average UACI value for

the Lenna image is 30.5681, which falls below the 33.4635 % threshold. This indicates that the system may be ineffective

in countering differential attacks. The entropy values for some images are low, which indicates that the approach may lack

sufficient diffusion. Wang et al. [18] proposed a technique for color image encryption that built a chaotic system from a
tri-valued memristor design. Only the Lena image with dimensions of 256 × 256 undergoes experimental testing as part of

this study. The 7.9895 entropy value demonstrates low randomness in the cipher image, which exposes this method to

statistical attacks. The encryption algorithm suffers from weak resistance against noise interference and attacks that

introduce occlusions. Wang et al. [6] presented an image encryption system using a new three-dimensional chaotic system

together with bidirectional spiral transform algorithms and DNA sequence methods. The main drawback of this approach

is its inability to produce a substantial decrease in pixel adjacency correlations. Some of the test images exhibit UACI and

NPCR metrics that drop below the recommended values; therefore, the system appears susceptible to differential attacks

because its performance measurements suggest potential security weaknesses[37]. Li and Chen [8] established an

encryption method to encrypt color images that uses a 6D hyperchaotic system combined with DNA encoding technology.

The encrypted images present low entropy measurements along with higher average correlation coefficients relative to

those of PMIE-MLP because its confusion and diffusion properties remain ineffective.

To address the identified security weaknesses in the aforementioned studies, this study proposes a novel image cryptographic

algorithm that improves image security more efficiently on the basis of a protein sequence-driven dynamic Mealy machine,

a novel 3D-AS scrambling, and a chaotic system. An encryption framework comprises key generation coupled with six

protective layers, which include substitution, four diffusion layers, and confusion for implementing Shannon's cryptographic

principles to fulfil strict encrypted image requirements. The main contributions and novelties of this study are as follows:

• A new weighted sum method is proposed to find the initial parameters of the 3D logistic map, which demonstrates

that this algorithm is exceedingly sensitive to plaintext images and is capable of effectively defending against

differential attacks.

• An amino acid encoding and decoding rule is proposed to transform the image pixels.

• The principles of the protein-driven dynamic Mealy machine are combined with a 3D logistic map to substitute the

pixel values with other values to enhance the degree of confusion. This is for the following reasons:

o Protein sequence implementation adds another random component to pixel replacement operations. The
encoding of amino acids through 4-bit binary sequences renders the transformation process enormously

complex, as attackers struggle to identify original pixel values.

o Unlike traditional static substitution boxes (S-boxes), which are found in conventional cryptographic

techniques, the Mealy Machine operates with dynamic state transitions through chaotic sequences.

Dynamic state transitions, which avoid fixed input‒output relationships, result in greater unpredictability

and confusion.

397 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

o The 3D logistic map produces unpredictable sequences through input-dependent initial parameters. The

slightest modification of an input image produces dramatically unique chaotic sequences that increase

confusion through an effective avalanche effect.

o The encryption system consists of six security layers that combine protein sequences and the Mealy

Machine with substitution methods alongside the 3D-AS scrambling technique and chaotic sequences to

destroy pixel correlation patterns and enhance confusion.

o The experimental results confirm that the proposed method succeeds in decreasing the pixel correlation

between adjacent pixels, which establishes robust secure encryption schemes.

• A novel scrambling method known as three-dimensional alternating scanning (3D-AS), which is used to scramble

the pixels of the three channels with each other in the colored image to diminish the correlation between adjacent

pixels, is proposed.

• Evaluations from experiments and security tests demonstrate that the PMIE-MLP exhibits robust resistance against

differential, brute force, occlusion, statistical, and noise attacks.

• A comparison of the PMIE-MLP algorithm's metrics revealed comparable or superior security performance

compared with earlier studies. Superior performance is shown by the key space, chi-square values, correlation

coefficient values, NPCR values, and UACI values, proving that the PMIE-MLP can reliably protect the security

of image information.

This research follows this organizational pattern: Section 2 discusses initial considerations important for developing the

PMIE-MLP. Section 3 delineates the architecture of the PMIE-MLP system. Section 4 reveals the experimental simulation

findings alongside a security evaluation. Finally, Section 5 presents the conclusions.

2. PRELIMINARIES

The preliminary details on the amino acid encoding rule, the chaotic system, and the mealy machine are provided in this

section, as these concepts are fundamental to the PMIE-MLP.

2.1 Amino Acid Encoding Rules

In the field of bioinformatics, a protein molecule is represented as a set of twenty amino acids (AAs); therefore, these 20

amino acids can be represented digitally in 5 bits, as explained in Table 1 [19]. In the suggested image cryptographic system,

only 16 amino acids are used, so we have the amino acid encoding rule, as shown in Table I. Given that one can randomly

assign the binary coding of the amino acids in Table I, there are a total of 16! = 20922789888000 possible encoding rules.

Hence, accurately deducing the appropriate binary encoding scheme for amino acids is exceedingly challenging.

TABLE I. AMINO ACID ENCODING RULE

Amino Acid Symbol Binary Value Amino Acid Symbol Binary Value

A (1) 0000 M (9) 1000

C (2) 0001 P (10) 1001

D (3) 0010 Q (11) 1010

F (4) 0011 R (12) 1011

G (5) 0100 S (13) 1100

H (6) 0101 V (14) 1101

K (7) 0110 W (15) 1110

L (8) 0111 Y (16) 1111

2.2 Chaotic System

Currently, the field of cryptography uses chaos systems since they have the advantage and capacity to enhance the security

of cryptography [20]. They are dynamical systems, have high unpredictability, are very sensitive to the initial parameters,

and are mathematically described by equations that create random numbers. In recent years, researchers have proposed

numerous types of chaotic systems that exhibit high levels of randomness. In this research, two chaotic systems are adopted:

a 3D logistic map [21] and a chaotic circuit [22].

2.2.1 3D logistic map

The 3D logistic map exhibits a significant degree of unpredictability, resulting in enhanced security, and it can be expressed

mathematically via Equations (1) to (3) [21].

xi+1 = μxi(1 − xi) + δyi
2xi + βzi

3 (1)

yi+1 = μyi(1 − yi) + δzi
2yi + βxi

3 (2)

zi+1 = μzi(1 − zi) + δxi
2zi + βyi

3 (3)

398 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

Chaotic behavior manifests when the μ, δ, and β values are between 3.53 < μ < 3.81, 0 < δ < 0.022, and 0 < β < 0.015,

respectively. In addition, the variables x0, y0, and z0 are restricted to the range of values between 0 and 1.

2.2.2 Chaotic Circuit

Recently, researchers introduced a chaotic circuit with two memristors. The dynamic behavior of this circuit is versatile over

a wide range, allowing it to be used securely for communication. It is defined in Equations (4) to (7) [22].

A = (
1

M
× b)− (

1

M × s1
 ×

a

c
) (4)

B = − (
1

K
× a)− (

s2

K
 × (d × b)) (5)

C = (
a

s1 × c
)

2

− f1 (6)

D = b2 − f2 (7)
where a, b, c, and d represent the state variables and where M, K, s1, s2, f1, and f2 are the system parameters. If we set M =

0.025, K = 0.025, s1 = 5.8, s2 = 0.825, f1 = 1.85, and f2 = 10 and the initial variables are (a = 1, b = 3, c = 1, and d = − 0.7),

then the chaotic circuit system will exhibit unpredictable behavior. Thus, four sequences with a high level of randomness

are generated.

2.3 Mealy Machine

The Mealy machine (MM) is a concept in computation theory that is characterized as a finite-state machine [23]. The MM

may be utilized in the field of cryptography to enhance system security [24]–[27], where its output is defined with the present

input and the present state of the MM [27]. MM is specified by a set of six tuples, which are denoted as MM = (Ֆ, I, O, Ғ,

Ω, p0). In such a way,

• Ֆ is a set of finite states that are not empty.

• The letters I and O represent distinct sets of finite alphabets used as inputs and outputs.

• p0 indicates the start state, where p0 belongs to the set Ֆ.

• Ғ indicates the input transition function, which is expressed as Ғ: Ֆ × I → Ֆ.

• Ω indicates the output transition function, which is expressed as Ω: Ֆ × I → O.

The following example illustrates the Mealy machine:

− Ֆ = {1, 2}

− I = {h, b}

− O = {h, b}

− p0 = 1

Fig. 1. Design of MM with Two States
Figure 1 shows a transition diagram for the Mealy machine. The machine has two states, labelled '1' and '2', with '1' being
the start state. The Mealy machine uses 'h' and 'b' as its input and outputs alphanumeric components. The machine function

here is to transform every string into a new string that exclusively utilizes the 'h' and 'b' elements from the alphabet.

TABLE II. MM STATE TABLE

Ғ: Ֆ × I → Ֆ (Input transition function)

Present State
Input = h Input = b

Next State Next State

1 1 2

2 2 1

Tables II and III show the state and output tables that serve as the foundation for the Mealy machine architecture. Let us

consider the string 'bhbbbhb' as the input for the Mealy machine. The machine starts with its start state '1' and processes the

first input symbol 'b'. As a result, the output string is 'h', which transitions to state '2'. The symbol that is subsequently

encountered is 'h', which results in the output machine producing 'h' while remaining in state '2'. This process is repeated

b/h

b/b

h/h h/b

2 1

399 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

until all the input symbols have been utilized. Ultimately, the input string 'bhbbbhb' of the Mealy machine transforms into

'hhbhbbh'.
TABLE III. MM OUTPUT TABLE

Ω: Ֆ × I → O (Output transition function)

Present State
Input = h Input = b

Output Output

1 𝑏 ℎ

2 ℎ 𝑏

MM is inherently reversible. To design a trustworthy cryptographic system, it is necessary to ensure that the computations

used in the encryption scheme are reversible. To retrieve the original string 'bhbbbhb', the mealy machine's inverse function

is used as follows: the mealy machine begins with the start state '1' and takes the output symbol 'h' from the string 'hhbhbbh',

so the original input symbol is 'b' (see Table III). In Table II, for state 1 and input 'b', the next state is '2'. After that, the

machine moves to the second symbol of the string ('hhbhbbh'), which is the character 'h', so the original input symbol will

be 'h', and the next state is '2'. The machine repeats this process until it uses all of the symbols ('hhbhbbh') and retrieves the
original string, 'bhbbbhb'. In PMIE-MLP, we dynamically generate the MM on the basis of the amino acid symbols and the

chaotic system, where the job of the MM is to confuse the image pixels.

3. THE PMIE-MLP DESIGN

This section provides a comprehensive explanation of the PMIE-MLP algorithm. Figure 2 shows the data flow diagram of

the PMIE-MLP algorithm, which consists of six layers of protection in addition to the key generation module, which is

detailed in Subsections 3.1 and 3.2. In the first layer, the substitution process is executed via an amino acid

encoding/decoding rule (Section 3.3) combined with a dynamic Mealy machine for pixel substitution (Section 3.4). The

confusion process is performed in layer 4 via the generated key, whereas the diffusion process occurs in layers 2, 3, 5, and 6

via the proposed three-dimensional alternating scanning (3D-AS) technique (Section 3.5) along with the generated key.

Finally, Subsections 3.6 and 3.7 offer a detailed and systematic explanation of the image encryption and decryption

processes, outlining the key steps and methodologies involved in each phase.

Fig. 2. Data flow diagram of the PMIE-MLP algorithm

400 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

3.1 Chaotic Sequence Generation

3.1.1 3D Logistic Map Initial Value Generation

In this subsection, the weighted sum method is suggested to find the initial parameters of the 3D logistic map. Thus, it is

guaranteed that the PMIE-MLP is very sensitive to the plaintext image. The plaintext image PI is of size u × n, and its

components are PIR, PIG, and PIB. Therefore, the initial values of x0, y0, z0, μ, δ, and β in Equations (1--3) can be calculated

via the proposed Equations (8--13):

 x0 = (∑ ∑(NRij × Wtij

n

j=1

+ NGij × Wtij
2 + NBij × Wtij

3)) mod 1 (8)

u

i=1

 y0 = (∑ ∑(NGij × Wtij

n

j=1

+ NBij × Wtij
2 + NRij × Wtij

3)) mod 1 (9)

u

i=1

z0 = (∑ ∑(NBij × Wtij

n

j=1

+ NRij × Wtij
2 + NGij × Wtij

3)) mod 1

u

i=1

 (10)

μ = (3.53 +
ex0 − 1

e − 1
 × (0.28) (11)

δ = (0.022 × (1 − e(− y0 ×5))) (12)

β = (0.015 × sin(
π × z0

2
)) (13)

where NRij, NGij, and NBij are the normalized pixel values of the three channels, respectively, at position (i, j), 0 ≤ (NRij ,

NGij, and NBij) ≤ 1.

Wtij is the summation of coordinates i and j (i + j), and e is the exponent.

To demonstrate the effectiveness of the suggested weighted sum method, it is applied to a 512*512-pixel color image of

peppers. Applying Equations (8-13) to that image yields the following initial parameters for the 3D logistic map: x0 =

0.507812500000000, y0 = 0.125000000000000, z0 = 0.546875000000000, μ = 3.637818551917099, δ =

0.010224248572582, and β = 0.011358132697597. Next, we select a pixel value at random from one of the three channels

and adjust it by one bit. For example, we select the green channel and alter the pixel value at location (25, 167) from 206 to

207. When equations (8-13) are applied to the modified image, the 3D logistic map initial parameters are x0 =

0.011718750000000, y0 = 0.976562500000000, z0 = 0.671875000000000, μ = 3.531920844032654, δ =

0.021833335096226, and β = 0.013051304866631. Therefore, Equations (8)–(13) demonstrate that the weighted sum values

of the plain image have a direct effect on the initial parameters of the 3D logistic map. Despite minimal variations in the

values of the pixels between two plain images, the resulting values from the weighted sum will exhibit substantial disparities.

Consequently, the chaotic sequences employed for encryption also differ significantly, resulting in completely distinct

encrypted cipher images. Thus, the proposed weighted sum method is extremely sensitive to plain images and is capable of
effectively defending against differential attacks.

3.1.2 Chaotic Circuit Initial Value Generation

To further improve security, we use the intermediate key TK, created by calculating the plain image's SHA-512 hash value.

Hence, each image provides different hash values, resulting in different initial values and subsequently generating different

chaotic circuit sequences. First, the intermediate key TK is divided into 64 8-bit blocks (TK1 TK2 … TK64). Then, we XOR

these key blocks together to create a new set of 32 8-bit blocks, as shown below:

HBj = TKj ⊕ TK64 −j +1 (14)

where ⨁ indicates the exclusive OR (XOR) operator, j ∈ (1,32). Finally, the initial parameters a, b, c, and d of the chaotic

circuit can be identified via Equations (15-18):

a = a0 + ∑ HB2i+1

7

i=0

/ 105 (15)

401 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

b = b0 + ∑ HB2i

8

i=1

/ 104 (16)

c = c0 + ∑ HB2i+1

15

i=8

/ 105 (17)

d = d0 + ∑ HB2i

16

i=9

 / 104 (18)

where a, b, c and d represent modified initial state variables of the chaotic circuit and where a0, b0, c0, and d0 represent

given values without any changes.

3.1.3 Chaotic Sequence Generation

For any plain image PI of size u × n (PIu ×n):

(1) Generating 3D logistic map sequences

Step 1: Iterate Equations (1--3) (1000 + u × n) times, using the initial values (x0, y0, z0, μ, δ, and β) obtained from

Equations (8--13). To avoid transient effects, the initial 1000 outcomes were excluded. During each iteration, we can obtain

three decimal sequences x = (x1, x2, … , xu ×n), y = (y1 , y2, … , yu×n), and z = (z1, z2, … , zu ×n), which are inside the range of

0--1.

Step 2: Convert the decimal sequences in Step 1 (x, y, and z) into sequences (x̅ , y̅ , and z̅) in the range of 1--16 to utilize

them in constructing the state table and output table and in choosing an appropriate amino acid encoding rule, as shown in

Equations (19--21):

{

 xtmp = (((x + 100) × 1010) mod 16) + 1

[~ , xidx] = unique (xtmp)

x̅ (1: 16) = xtmp (sort(xidx))

 (19)

{

 ytmp = (((y + 100) × 1010) mod 16) + 1

[~ , yidx] = unique (ytmp)

y̅ (1: 16) = ytmp (sort(yidx))

 (20)

{

 ztmp = (((z + 100) × 1010) mod 16) + 1

[~ , zidx] = unique (ztmp)

z̅ (1: 16) = ztmp (sort(zidx))

 (21)

where p = maximum {q ∈ Z; p ≥ q}.

(2) Generating chaotic circuit sequences

Step 3: Utilizing the modified initial state variables obtained from Equations (15)–(18) and the given values (M, K, s1, s2,

f1, and f2), the chaotic circuit system (equations (4)–(7)) is iterated (1000 + u × n) times via the Runge–Kutta 4th-order
program (ODE45). We eliminate the first 1000 results to achieve the desired level of unpredictability. Four decimal chaotic

sequences are created here: A= (A1, A2, … , Au ×n), B = (B1, B2, … , Bu ×n), C = (C1, C2, … , Cu ×n), and D = (D1, D2, … , Du ×n).

Step 4: Merge the three decimal chaotic sequences in step 1 (x, y, and z) with the first three decimal chaotic sequences in

step 3 (A, B, and C) to prepare the final integer chaotic sequences A̅ = (A̅1 , A̅2, … , A̅u×n), B̅ = (B̅1 , B̅2 , … , B̅u×n), and C̅ =
 (C̅1 , C̅2, … , C̅u×n), within the interval of 1--u × n to utilize them in the diffusion process as follows:

[~ , A̅] = sort (A + x) (22)

402 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

[~ , B̅] = sort (B + y) (23)

[~ , C̅] = sort (C + z) (24)

where the expression [H, T] = sort (G) signifies the process of arranging the elements in G in an ascending fashion, which

produces the sorted array H and the index array T. The symbol (~) denotes that the variable is unnecessary.

Step 5: Convert the last three sequences of the chaotic circuit in step 3 (B, C, and D) into integer sequences (B̿, C̿, and D̅) in

the range of 0--255 to utilize them in the confusion process, as shown in Equations (25--27):

B̿ = (round(abs(B) × 226) mod 256 (25)

C̿ = (round(abs(C) × 226) mod 256 (26)

D̅ = (round(abs(D) × 1015) mod 256 (27)

3.2 Round Key Generation

In this research, we use the generated round keys to confuse and diffuse the image pixels, using a unique round key for each

group of pixels. Equation (28) calculates the number of unique round keys (UKs) required to confuse and diffuse the pixels,

assuming that the key length is KL bits and that the image size is u × n.

UKs = ⌈
u × n × 8

KL
 ⌉ (28)

To generate strong and highly random secret keys, we use the KE-DMM3DLMPS method proposed in the literature [28],

which generates secret keys in the form of amino acids of various sizes. This method involves entering a master secret key

(MSK) of a specific length into the Mealy machine to generate round keys. For a MSK length of 128 bits (32 amino acids),

the KE-DMM3DLMPS generates 32 round keys in a single run, as illustrated in Equation 10 [28].

To generate a sufficient number of unique round keys (UKs), the KE-DMM3DLMPS is run a number of times (Nrun), as in

equation 29:

Nrun = ⌈
UKs

KLaa

 ⌉ (29)

where KLaa is the number of amino acids in a single key and where x is the rounding-up function.

Given a master secret key length of KL = 256 bits (KLaa = 64 amino acids) and an image size of u = 256 and n = 256, we

can calculate UKs = 2048 round keys and Nrun = 32 runs.

In this case, the KE-DMM3DLMPS method necessitates the entry of a master secret key (MSK) for the generation of round

keys in each iteration. This method generates the first 64 round keys (rk1
1, rk2

1 , … , rk64
1) using the entered MSK and considers

the final round key from the first 64 round keys (rk64
1) as a master secret key (MSK = rk64

1) to generate the second set of

round keys (rk1
2, rk2

2, … , rk64
2). This process continues until a sufficient number of unique round keys (RK =

 rk1
1, rk2

1 , … , rk64
32) is generated. Finally, we merge those (RK) into a single round key, convert it into a binary key (BK) by

converting every two amino acids to eight bits in accordance with Table 5 in [28], and then convert it into an integer key

(IK) within the range of 0--255, as demonstrated in the following example:

Let us take a fragment of a round key with a length of 40 bits, RK = 'TKNQACHTGY', so according to Table 5 in [28], BK

= 0011 0101 1100 1001 0011 0000 0110 0011 0100 1111 and IK = 53, 201, 48, 99, 79.

3.3 Image Pixel Transformation

In the PMIE-MLP, one of the 16! The rule is used to transform image pixels on the basis of the generated chaotic sequence

(z̅; Equation 21). If z̅ = [15, 7, 12, 11, 14, 9, 6, 13, 5, 10, 4, 1, 8, 16, 3, 2] and amino_acids =

{A, C, D, F, G, H, K, L, M, P, Q, R, S, V, W, Y}, then Table IV displays the amino acid encoding and decoding rule.

403 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

TABLE IV. AMINO ACID ENCODING AND DECODING RULE

Amino Acid Symbol Binary Value Amino Acid Symbol Binary Value

W (15) 0000 G (5) 1000

K (7) 0001 P (10) 1001

R (12) 0010 F (4) 1010

Q (11) 0011 A (1) 1011

V (14) 0100 L (8) 1100

M (9) 0101 Y (16) 1101

H (6) 0110 D (3) 1110

S (13) 0111 C (2) 1111

The process of transforming the image pixels into protein sequences is performed before and after the confusion process by

the Mealy machine. First, for each channel, the pixels are transformed to 8 bits and then to a specific amino acid before the

confusion process (during encryption/decryption). After the confusion process (during encryption/decryption) is completed,
the pixel values are transformed back to 8 bits and then to integers. A specific rule represents each 8 bits as two amino acids,

and vice versa. For example, if the pixel value is 167, converting it into a binary value results in '10100111'. Consequently,

the protein sequence associated with this pixel is 'FS', as illustrated in Table IV. Additionally, using the rule in Table IV to

transform the protein sequence 'FS' into a pixel value, we can obtain a binary value of '10100111', followed by a pixel value

of 167.

3.4 Design of a Dynamic Mealy Machine (DMM)

The DMM is designed with sixteen states, namely, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The ability of a

cryptographer to reconstruct a Mealy Machine (MM) when necessary defines what is meant by "dynamic" meaning,

incorporating new features to eliminate any possibility of predicting its structure. To minimize complexity, every state

produces a particular amino acid. Therefore, the number of amino acids used is only sixteen, namely,

D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W and V. The DMM is formally defined as MM = (Ֆ, I, O, Ғ, Ω, p0). where:

• Ֆ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

• I = {D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W, V }

• O = {D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W, V }

• Ғ and Ω = Derived with the help of the sequences, which are received at the result from the chaotic system

• p0 = chosen through the user (p0 = q | q ∈ Ֆ)

Algorithms I and II explain the structure of the DMM and the inverse of the DMM, which are mainly based on two tables,

named SST for the secret state and SOT for the secret output. Both SST and SOT store transition functions; the former stores

the input function Ғ: Ֆ × I → Ֆ, whereas the latter stores the output function Ω: Ֆ × I → O. The entries of the ‘next states’

in the SST are allocated from the given set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} on the basis of the chaotic

integer sequence x̅ (Equation 19) and the circular shift operation to the left, as explained in Algorithm 1 [28]. Additionally,

the entries of the ‘Output’ in the SOT are assigned from the set { D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W, V } on the basis of

the chaotic integer sequence y̅ (Equation 20) and the circular shift operation to the left, as explained in Algorithm 2 [28].

Algorithm I. Algorithm of the Dynamic Mealy Machine

Input: SST, SOT, current state (Cs), plain text (PT)

Output: 𝐂𝐓//CT is a cipher text

Step 1. S Cs

Step 2. CT blanks(length(PT))//Initialize an empty output string

Step 3. Iterate over the plain text:

 for i = 1 to length(PT) do

 inpt PT (i)

 inpt index find([D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W, V] == inpt)

 nxtstate SST (S, inpt index)

 𝐂𝐓 (i) SOT (S, inpt index)

 S nxtstate

 end for

Algorithm II. Algorithm of the Inverse Dynamic Mealy Machine

Input: SST, SOT, current state (Cs), cipher text (CT)

Output: 𝐏𝐓//PT is a plain text

Step 1. S Cs

Step 2. PT blanks(length(CT))//Initialize an empty string

Step 3.inptalphabet [D, A, C, F, G, H, L, Y, M, K, Q, R, S, P, W, V]

Step 4. Iterate over the cipher text:

404 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

 for q = 1 to length(CT) do

 outpt CT (q)

 inpt index find(SOT(S, ∶) == outpt)

 nxtstate SST (S, inpt index)

 𝐏𝐓 (q) inptalphabet (inptindex)

 S nxtstate

 end for

3.5 Proposed Three-Dimensional Alternating Scanning (3D-AS) Scrambling

In image encryption, traditional zigzag or scan methods are widely used for pixel position scrambling. The pixels of the

image are scanned in a sequential fashion in accordance with the "Z" form, starting from the left upper corner and then taking

all subsequent pixels one by one via a fixed zigzag path, and the pixels that have been scanned are then placed in a vector

following the same path. The vector is subsequently transformed into a 2D matrix [29]. Therefore, the pixels of the image

can be diffused. This zigzag scrambling method is limited to traversing numbers in an N × N matrix via a fixed scanning

path. Figure 3 provides an illustration of a 4 × 4 matrix as an example. Through this established pathway, the various channels

of the color image cannot be scrambled.

In light of its limitations, this study introduces an innovative three-dimensional alternating scanning (3D-AS) scrambling

that is used to scramble the pixels of the three channels with each other in the colored image. 3D-AS starts by dividing each

channel of the color image into upper and lower triangles along the main diameter and then flipping the elements of the

upper triangle, as illustrated by an example of a 4 × 4 × 3 color image, as shown in Figure 4.

22 37 35 27

41 64 19 48

67 53 11 79

62 14 80 17

63 24 44 99

32 93 51 86

29 92 91 83

47 98 94 78

71 55 52 40

15 69 13 30

66 59 76 33

77 20 50 10

27 48 79

35 19

37

 22

 64 41

 11 53 67

17 80 14 62

99 86 83

44 51

24

 63

 93 32

 91 92 29

78 94 98 47

40 30 33

52 13

55

Red

 71

 69 15

 76 59 66

10 50 20 77

Green Blue

Fig. 4. Colored Image to Six Triangles

 22 24 35 27

41 64 19 48

67 53 11 79

62 14 80 17

22 24 64 19

35 41 48 62

27 67 79 14

53 11 80 17

22 24 35 27 41 64 19 48 67 53 11 79 62 14 80 17

Fig. 3. 4 x 4 Standard Zigzag Scrambling

405 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

These six triangles are then arranged in a circular form, as shown in Figure 5. The diffusion process begins by alternatively

scanning the entire circle from the center, where the odd circles (pixel values are surrounded by purple arrows) are first

scanned and then the even circles (pixel values are surrounded by black arrows) are scanned. All the pixels that have been

scanned from these circles are subsequently placed in a vector following the order of the scan. Finally, the vector is

transformed into three two-dimensional matrices, as shown in Figure 6. In this method, the pixels of all channels of the image

are ensured to be scrambled to eliminate pixel adjacency correlations. The well-known correlation coefficient measure (CC)

provides an analytical method for testing the effectiveness of the 3D-AS scrambling method in reducing the degree of pixel

correlation between adjacent elements. Table V presents the calculated CC values for connecting elements between different
plaintext and scrambled images taken from three orientations across all color channels. Test outcomes indicate that the CC

metrics of plain images' three channels in three directional parameters display values very close to one, whereas encrypted

image CC values stand close to zero. The results show that 3D-AS scrambling provides effective pixel decorrelation between

adjacent components in an image.

TABLE V. CC VALUES FOR VARIOUS PLAINTEXT AND SCRAMBLED IMAGES

Image

Color

Plaintext image Scrambled image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Tree 256

R 0.958993 0.936077 0.915908 0.007702 -0.000303 0.000797

G 0.968698 0.945745 0.931768 0.030226 0.005607 -0.000705

B 0.961233 0.940562 0.926500 0.031368 -0.004373 -0.002069

Lenna 256

R 0.957216 0.978889 0.933884 -0.151646 0.007257 -0.004004

G 0.943203 0.971369 0.919305 -0.158238 -0.003748 -0.007094

B 0.928443 0.955931 0.900678 -0.151805 -0.002868 0.014904

Peppers 512

R 0.963525 0.966337 0.956377 -0.099269 0.004055 0.005154

G 0.981118 0.981774 0.968658 -0.107545 -0.005323 -0.003305

B 0.966517 0.966425 0.947794 -0.101123 0.001952 0.006058

Baboon 512

R 0.923066 0.865959 0.854341 -0.025337 0.001878 0.004855

G 0.865479 0.765007 0.734795 -0.027026 -0.001893 0.001888

B 0.907344 0.880892 0.839855 -0.021989 -0.000816 0.004051

47 99

98

29

44

86

94

92

32

24

51

83

78

91

93

63

Fig. 5. Paths of the Proposed 3D-AS Scrambling

406 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

Moreover, Table VI compares the CC of different scrambled color images of the 3D-AS scrambling method to that of the

traditional zigzag method, which scrambles only one channel at a time [29]. Table VI shows that the 3D-AS scrambling

method is much better than the traditional method in reducing the correlation between adjacent image elements.

TABLE VI. COMPARISON OF THE CC VALUES FOR VARIOUS SCRAMBED IMAGES

Image

Color

Scrambled image using 3D-AS Scrambled image using Method in Ref. [29]

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Tree 256

R 0.007702 -0.000303 0.000797 0.855223 0.025778 0.031473

G 0.030226 0.005607 -0.000705 0.869506 0.079911 0.081378

B 0.031368 -0.004373 -0.002069 0.884428 0.065674 0.067898

Lenna 256

R -0.151646 0.007257 -0.004004 0.917400 0.123350 0.119954

G -0.158238 -0.003748 -0.007094 0.892121 0.090034 0.089479

B -0.151805 -0.002868 0.014904 0.865531 0.104593 0.102893

Peppers 512

R -0.099269 0.004055 0.005154 0.958658 0.089313 0.088077

G -0.107545 -0.005323 -0.003305 0.971034 0.168233 0.167274

B -0.101123 0.001952 0.006058 0.948298 0.058653 0.056872

Baboon 512

R -0.025337 0.001878 0.004855 0.852408 0.211434 0.212461

G -0.027026 -0.001893 0.001888 0.726344 0.049491 0.048986

B -0.021989 -0.000816 0.004051 0.842724 0.099946 0.098069

Figure 7 shows the effectiveness of the 3D-AS algorithm for recovering encrypted images with missing information. Despite

the destruction of the image, the information of the original image can still be retrieved effectively.

3.6 PMIE-MLP/Encryption Sub algorithm

After all the algorithms, methodologies, and techniques required to design the PMIE-MLP are elucidated, this section

explains in detail its design and the cooperation among its modules. The PMIE-MLP utilizes a dynamic Mealy machine-

based protein sequence, 3D-AS scrambling, and a chaotic system. The dynamic Mealy machine, which functions as a key

generator (KE-DMM3DLMPS), is employed to both confuse and diffuse the image pixels. Additionally, it substitutes the

pixel values with alternate values, thereby strengthening the confusion property and introducing an additional layer of

security to the encryption process. An encryption structure consists of key generation and six layers of protection:

substitution, four layers of diffusion, and confusion, as shown in Figure 8. The key generation process is described in Step

1, the substitution process is described in Step 3, the diffusion process is elucidated in Steps 4, 5, 7, and 8, and the confusion

process is given in Step 6, as explained in Algorithm III. A detailed explanation of the encryption steps is as follows:

Fig. 7. Scrambling Performance of 3D-AS Scrambling

27 99 40 62

47 77 37 19

79 24 51 83

55 13 33 41

53 80 32 92

94 15 59 50

35 48 44 86

52 30 67 14

29 98 66 20

22 64 11 17

63 93 91 78

71 69 76 10

Red Green Blue

Fig. 6. Scrambled Channels

407 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

Algorithm III. The PMIE-MLP Algorithm

Input: Plaintext image PIRGB of size u × n, given values (a0, b0 , c0 , d0, M, K, s1, s2, f1, f2), and Master Secret Key

Output: Cipher image CIRGB of sizeu × n

Step 1. Key Generation:

Step 1.1. Generate the sequences: (x̅, y̅, and z̅) in the range of 1--16 (Equations 19--21), (A̅, B̅, and C̅) in the range of 1--

u × n (Equations 22--24), and (B̿, C̿, and D̅) in the range of 0--255 (Equations 25--27), as explained in Section 3.1.
Step 1.2. The round keys (RK) are generated via the KE-DMM3DLMPS method and converted into integer keys (IK) in the

range of 0--255, as described in Section 3.2.
Step 1.3. Create a new key by performing the exclusive-OR between one of the keys from Step 1.1 and the key from Step

1.2, as follows:

NK = D̅ ⊕ IK (30)

where ⨁ indicates the exclusive OR (XOR) operator.

Step 1.4. The new random key is prepared from IK in the range of 1--u × n, as in Equation (31).

[~ , IKidx] = sort (IK(1: u × n)) (31)
Step 2. Separate the plain image PIRGB of size u × n into red (PIR), green (PIG), and blue (PIB) components, with u × n

being the size of each. Then, convert the pixels of each channel from a 2D matrix (PIR,PIG, and PIB) to a vector

Rvec , Gvec , and Bvec of size 1 to u × n.
Step 3. First Layer (Substitution):

Step 3.1. Amino Acid (AA) Encoding: Transform the pixels of each vector from integer values (Rvec , Gvec , and Bvec) to

amino acid values (Raa , Gaa , and Baa) based on the key (Z̅), following the discussion in Section 3.3.

Step 3.2. Substitute the pixels of each vector (Raa , Gaa , and Baa) using the DMM based protein sequence and two processed

chaotic sequences (X̅ and Y̅), as discussed in Section 3.4, to obtain (R1aa , G1aa, and B1aa).

Step 3.3. Amino Acid Decoding: Transform the Substituted pixels of each vector from amino acid values (R1aa , G1aa,
and B1aa) to integer values (R1, G1, and B1) based on the key (Z̅), following the discussion in Section 3.3.

Step 4. Second Layer (Diffusion): Convert each vector (R1, G1, and B1) to a 2D matrix (R12d, G12d, and B12d) with the

same dimension of a plain image (u × n), as described below:

 {

R12d = reshape (R1 , [u , n])′

G12d = reshape (G1 , [u , n])′

B12d = reshape (B1 , [u , n])′

 (32)

Then, diffuse the pixels of the three channels (R12d, G12d, and B12d) using the proposed 3D-AS scrambling

described in Section 3.5 to obtain R2, G2 and B2.

Step 5. Third Layer (Diffusion): Convert the diffused pixels of each channel from a 2D matrix (R2, G2 and B2) to a vector

R2vec , G2vec , and B2vec of size 1 to u × n.

Then, diffuse the pixels of each vector (R2vec , G2vec , and B2vec) using the generated sequences (IKidx) from Step

1.4 to get (R3, G3, and B3), as follows:

 {

R3 = R2vec (IKidx)

G3 = G2vec (IKidx)

B3 = G2vec (IKidx)
 (33)

Step 6. Fourth Layer (Confusion): Change the values for each vector's diffused pixels via the two keys (B̿ and C̿) from

step 1.1 and the key (NK) from Step 1.3 to obtain (R4, G4, and B4), as explained below:

 {

 R4 = R3 ⊕ NK

G4 = G3 ⊕ B̿

B4 = B3 ⊕ C̿

 (34)

Step 7. Fifth Layer (Diffusion): Diffuse the confused pixels (R4, G4, and B4) of each vector via the generated sequences

(A̅, B̅, C̅) from Step 1.1 to obtain (R5, G5, and B5) as follows:

 {

R5 = R4 (A̅)

G5 = G4 (B̅)

B5 = B4 (C̅)

 (35)

Step 8. Sixth Layer (Diffusion): Convert each vector (R5, G5, and B5) to a 2D matrix (R52d , G52d, and B52d) with the

same dimension as a plain image (u × n), as described below:

 {

R52d = reshape (R5 , [u , n])′

G52d = reshape (G5 , [u , n])′

B52d = reshape (B5 , [u , n])′

 (36)

408 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

After that, the pixels of the three channels (R52d, G52d, and B52d) are diffused via the proposed 3D-AS to obtain

R6, G6 and B6.

Step 9. The three ciphered channels (R6,G6, and B6) are combined to construct the cipher image CI_RGB.

3.7 PMIE-MLP/Decryption Sub algorithm

The decryption steps of the PMIE-MLP are the inverse operation of its encryption steps since the PMIE-MLP is symmetric

encryption. Before the decryption process, the initial parameters (x0, y0, z0, μ, δ, and β) of the 3D logistic map, the 512-bit

hash values TK (see 3.1.2), the given values (a0, b0 , c0 , d0, M, K, s1, s2, f1, and f2), and the MSK must be sent to the recipient

side. The receiver side first uses Equations (14–27) to produce the chaotic sequences and then uses MSK to generate round

keys via the KE-DMM3DLMPS method described in Section 3.2. After generating the keys needed to decrypt the image,

the recipient reverses all the encryption steps to obtain the plain image, as explained in Figure 9.

6th Layer (Diffusion by 3D-AS)

A̅ B̅ C̅

R5 G5 B5

cipher image

CIRGB (u × n)

R6 G6 B6

IKidx

IKidx

IKidx

R3 G3 B3

B̿

R4 G4 B4

R2 G2 B2

A
A

 e
n

co
d

in
g

Key generation using the KE-

DMM3DLMPS algorithm

Master Secret Key

D̅

IK

NK

IKidx

X0, Y0, Z0, μ, δ, β a, b, c, d
M, K, s1,

s2, f1, f2

3D Logistic Map
Chaotic Circuit

Treated chaotic sequences

x̅, y̅, z̅, A̅, B̅, C̅, B̿, C̿, D̅

Given values

Plain image 𝑃𝐼𝑅𝐺𝐵 (𝑢 × 𝑛)

Proposed

Weighted sum

SHA

512

a0 , b0,
 c0, d0

Given

values

Bvec

Gvec

Rvec

Z̅

Baa

Gaa

Raa

 B1aa

G1aa

R1aa

S
u

b
st

it
u

ti
o
n

 u
si

n
g

D
M

M

X̅, Y̅

 B1

G1

R1

A
A

 d
ec

o
d

in
g

2nd Layer

(Diffusion by

3D-AS)

3rd Layer (Diffusion by key)

C̿

Fig. 8. PMIE-MLP Algorithm Architecture/Encryption Part

4th layer

1st Layer

5th Layer (Diffusion by key)

409 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

4. RESULTS OF EXPERIMENTATION AND SECURITY EVALUATION

An extensive analysis is carried out to assess the effectiveness and security of the PMIE-MLP, and the results are compared

to those of some of the latest and outstanding techniques. The experimental results are obtained via an HP PC with an Intel

(R) Core (TM) i5-6200U processor @ 2.30 GHz, 4 GB of RAM, an operating system of 64-bit MS Windows 10, and

MATLAB (R2021a). The simulation results are performed on four standard color images. Using internet sources and the

trustworthy USC-SIPI image database [30], four test images are selected: Tree (256 × 256), Lenna (256 × 256), Peppers (512

× 512), and Baboon (512 × 512). Figure 10 shows the outcome of the encryption and decryption. The performance test

reveals that the encrypted images are too obscure and therefore inconsequential to contain identifiable information in relation

to the plain images. In addition, the decrypted images are matched to the plain images that were decrypted via the correct

secret keys. Thus, the PMIE-MLP is expected to have higher encryption and decryption capabilities to ensure data security.

Given values

Given values

6
th

 L
a

y
e
r

(I
n

v
e
r
se

 D
if

fu
si

o
n

b
y
 I

3
D

-A
S

)

A̅

B̅

C̅

Plain image

PIRGB (u × n)

R3 G3 B3

G2 R2 B2

Key generation using the KE-

DMM3DLMPS algorithm

Master Secret Key

D̅

IK

NK

IKidx

X0, Y0, Z0, μ, δ, β a, b, c, d
M, K, s1,

s2, f1, f2

3D Logistic Map
Chaotic Circuit

Treated chaotic sequences

x̅, y̅, z̅, A̅, B̅, C̅, B̿, C̿, D̅

Given values

cipher image CIRGB (u × n)

SHA-512 values

(𝑇𝐾)

Given values

B6

G6

R6

B5

G5

R5

B4

G4

R4

3rd Layer (Inverse Diffusion by key)

5th Layer (Inverse

Diffusion by key)

Fig. 9. PMIE-MLP Algorithm Architecture/Decryption Part

a0, b0,
 c0, d0

4th Layer

B̿

C̿

IKidx

IKidx

IKidx

2nd Layer (Inverse

Diffusion by I3D-AS)

G1 R1 B1

R1aa G1aa B1aa

AA encoding

Raa Gaa Baa

Inverse Substitution

Rvec Gvec Gvec

AA decoding

Z̅

X̅, Y̅

1st Layer

410 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 10. Test results. (a)-(d) plaintext images. (e)-(h) encrypted images. (i)-(l) decrypted images.

4.1 Analysis of the Key Space

Creating an effective key space for highly secure applications is crucial in the development of modern cryptographic

algorithms. The key space must exceed 2100, with the goal of making brute-force attacks ineffective [31].

TABLE VII. COMPARISON OF THE KEY SPACES

Algorithm Key space

Ref. [10] 2212

Ref. [11] 2398

Ref. [12] 2239

Ref. [14] 10168

Ref. [15]8 2425

Ref. [16]9 1032 × 2256

Ref. [17]11 2478

Ref. [18]13 4 × 1095

Ref. [6]4 10266

Ref. [8]6 10195

PMIE-MLP 𝟐𝟏𝟒𝟖𝟖

The key space of the PMIE-MLP includes (1) the initial values of the system parameters (μ, δ, β, M, K, s1, s2, f1, and f2)

and the state variables (x0, y0, z0, a, b, c, and d) of the 3D logistic map and the chaotic circuit system; therefore, if the

precision of the computer is 10−15, then the key space for these initial values is (1015)16 = 10240 ≈ 2797. (2) the amino

acid encoding rules consist of 16! ≈ 244 distinct rules that transform the 4 bits to amino acids, and the amino acid decoding

rules consist of 16! ≈ 244 distinct rules that transform the amino acids to 4 bits. (3) The key space of the KE-DMM3DLMPS

is 20 × 2599 ≈ 2603 when the master secret key is 256 [28]. Thus, the PMIE-MLP has a key space of 21488. Table VII

presents the results for the key space between the PMIE-MLP and a comparison with several recent encryption algorithms.

Table VII clearly shows that the key space of the PMIE-MLP is far larger than that of certain current encryption systems.

This method thus clearly offers a high degree of defense against brute force assaults.

4.2 Analysis of the Histogram

The histogram is one of the significant measures employed in the assessment of the encryption’s vulnerability to statistical

analysis of encrypted images. It is used to compare the distribution of the pixel density in an image [32]. Statistical analysis

411 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

attacks are capable of collecting information from images containing an uneven distribution of pixels by examining the

statistical properties of the encrypted images. If the image histogram is uniform, meaning that the frequency distribution of

pixels in an image is even, extracting information through statistical attacks becomes more challenging. Therefore, the

resulting histogram of the ciphered images produced by an effective encryption scheme must be uniform. Figures 11(a)–(c)

show the histograms for each channel of the plain color Baboon image in Figure 10(d), which lacks uniformity. Additionally,

Figures 11(d)-(f) show the histogram for each channel of the ciphered color image of Baboon in Figure 10(h), which is

uniform. Therefore, this research's encryption algorithm produces an encrypted image that can withstand statistical analysis

attacks.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Histogram analysis. (a)-(c) histogram plots of the red, green, and blue channels for the plain image of Baboon. (d)-(f) histogram plots of the red,

green, and blue channels for the cipher image of Baboon (512 × 512).

Furthermore, the chi-square (x2) test is utilized to statistically evaluate the uniformity of the pixel value distribution in the

cryptographic images and can be described mathematically by the equation below [20]:

𝑥2 = ∑
(Oj − εj)

2

εj

255

j=0

 (37)

where j signifies the pixel value, Oj is the observed frequency, and εj is the expected frequency and can be formulated as

follows:

εj =
u × n

256
 (38)

where u and n are the color image dimensions. The threshold value of x2 for significance levels of 1 % and 5 % is x2
0.01 =

310.4574 and x2
0.05 = 293.2478 to determine whether to pass the x2 test for uniformity [20]. A reduced x2 value reflects a

more even distribution of pixel values in the encrypted images [7]. Table VIII displays the results of the x2 test on the various

encrypted images, with all the x2 values less than the thresholds of 293.2478 and 310.4574, indicating that the PMIE-MLP

investigates the uniformity distribution of pixel values and thus withstands statistical attacks.

TABLE VIII. CHI-SQUARE VALUES FOR VARIOUS CIPHER IMAGES

Cipher image Red Green Blue Average Results

Tree 256 239.3203 247.9609 255.7266 247.6693 Pass

Lenna 256 228.9297 231.8750 221.9297 227.5781 Pass

Peppers 512 247.4414 192.2930 222.1543 220.6296 Pass

Baboon 512 242.4180 229.3496 248.0996 239.9557 Pass

412 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

Moreover, Table IX displays a comparison of the x2 values with those of the most recent studies that used the x2 test to

assess uniformity. Obviously, the x2 values in this study are markedly lower than those in other studies. This reveals that the

PMIE-MLP algorithm yields a more uniform pixel distribution and exhibits an excellent ability to randomize pixel values

relative to prior methodologies. Consequently, our strategy diminishes the likelihood of detecting patterns in the ciphered

images, indicating better security performance.

TABLE IX. COMPARISON OF THE AVERAGE CHI-SQUARE VALUES

Cipher image PMIE-MLP Ref. [11] Ref. [12] Ref. [14] Ref.[6] Ref. [15]

Tree 256 247.6693 NaN 283.8233 NaN 231.3359 NaN

Lenna 256 227.5781 NaN 248.7867 NaN NaN 289

Lenna 512 244.0605 NaN NaN 283.2109 NaN NaN

Peppers 512 220.6296 257.3021 227.4600 256.1543 NaN NaN

Baboon 512 239.9557 352.3131 NaN 279.7891 NaN NaN

Peppers 256 250.7318 NaN NaN NaN 257.8906 NaN

Baboon 256 246.8281 NaN NaN NaN 247.3646 NaN

Fruits 512×480 249.3215 NaN 271.7467 NaN NaN NaN

San Diego 1024×1024 240.1935 270.7210 NaN NaN NaN NaN

4.3 Analysis of the correlation coefficients

The correlation coefficient (CC) test is a common metric that is used to compute the relationships among neighboring pixels

across horizontal, vertical, and diagonal orientations. The plaintext images have significant correlations among nearby pixels,

rendering them susceptible to statistical attacks. A successful encryption technique must disrupt the correlation between

adjacent pixels; a higher correlation diminishes the algorithm's efficacy. The CC between pixels for both plaintext and cipher

images can be computed via Equations (39–42) [3].

M (x) =
1

NP
 ∑ xi

NP

i=1

 (39)

V (x) =
1

NP
 ∑(xi − M (x))2

NP

i=1

 (40)

C(x, y) =
1

NP
 ∑((xi − M (x))

NP

i=1

× (yi − M (y))) (41)

CCxy =
C (x, y)

√V(x) × √V(y)
 (42)

where xi and yi are the values of two neighboring pixels; M (x) is the mean; V (x) is the variance; C(x, y) is the covariance;

and NP is the total number of pixels in the image. When the CC value is close to 1 or -1, the correlation between neighboring

pixels is strong. Conversely, if the CC value is close to zero, the relationship between neighboring pixels is weak.

Figure 12 shows the CC between neighboring pixels of the plaintext and cipher images for Lenna256×256 in all directions.

The distributions of neighboring pixels in the plaintext image clearly have a concentrated shape, whereas the distributions in

the encrypted image are more random and uniform, demonstrating the efficiency of the scrambling methods used in this

paper, such as 3D-AS.

413 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

(a) (b) (c)

(d) (e) (f)

Fig. 12. Correlation coefficient plots. (a)-(c) Horizontal, vertical, and diagonal correlation, respectively, of the three channels

for the plain image of Lenna. (d)-(f) Horizontal, vertical, and diagonal correlation, respectively, of the three channels for the

cipher image of Lenna.

TABLE X. CC VALUES FOR VARIOUS PLAINTEXT AND CIPHER IMAGES

Image

Color

Plaintext image Cipher image

H V D H V D

Tree 256

R 0.958993 0.936077 0.915908 0.000017 0.006223 0.002231

G 0.968698 0.945745 0.931768 0.002055 − 0.001861 0.000226

B 0.961233 0.940562 0.926500 − 0.002935 0.004891 0.000372

Lenna 256

R 0.957216 0.978889 0.933884 0.000114 − 0.000176 − 0.006901

G 0.943203 0.971369 0.919305 0.002168 − 0.001067 − 0.001003

B 0.928443 0.955931 0.900678 0.003415 − 0.001035 0.001366

Peppers 512

R 0.963525 0.966337 0.956377 0.000860 0.002048 − 0.001777

G 0.981118 0.981774 0.968658 − 0.000177 − 0.000822 − 0.002614

B 0.966517 0.966425 0.947794 0.003410 0.000456 0.000509

Baboon 512

R 0.923066 0.865959 0.854341 − 0.002348 0.000225 − 0.002606

G 0.865479 0.765007 0.734795 − 0.001678 − 0.000735 − 0.001566

B 0.907344 0.880892 0.839855 0.000772 0.001359 − 0.001031

More precisely, Table X shows the values of the CC between adjacent pixels of different plaintexts and ciphered images in

three directions and for each colored channel. According to the test results, the CC values for the three channels in three

directions for plaintext images are all very close to one, whereas the CC values for encrypted images are very near zero. This

shows that the PMIE-MLP works well at eliminating the strong correlation between pixels that are next to each other, which

effectively stops statistical attacks.

Table XI compares the CC of different color images of the PMIE-MLP to some recent and excellent studies. Table XI

calculates the horizontal CC of all images by calculating the average absolute horizontal correlation coefficient of the three

channels [10]; it also calculates the vertical and diagonal CC in the same manner.

Table XI clearly shows that the PMIE-MLP has a lower average CC between adjacent pixels across different image sizes

and types. This is a basic criterion for secure encryption, indicating that the PMIE-MLP can effectively and significantly

resist statistical analysis assaults since a lower statistical correlation resists security threats successfully.

414 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

TABLE XI. COMPARISON OF AVERAGE CC VALUES FOR VARIOUS CIPHER IMAGES

Cipher image

Algorithm

Average value

Horizontal Vertical Diagonal Average

Tree 256

PMIE-MLP 0.001669 0.004325 0.000943 0.002313

Ref. [12] 0.005952 0.007854 0.009093 0.007633

Ref. [6] 0.012633 0.005567 0.010967 0.009722

Lenna 256

PMIE-MLP 0.001899 0.000759 0.003090 0.001916

Ref. [12] 0.027389 0.008922 0.004550 0.013620

Ref. [15] 0.001799 0.002613 0.002387 0.002266

Ref. [17] 0.000913 0.004870 0.001780 0.002521

Lenna 512

PMIE-MLP 0.000511 0.000939 0.001751 0.001067

Ref. [10] 0.0009 0.0019 0.0009 0.001233

Ref. [14] 0.010333 0.015233 0.011833 0.012466

Ref. [8] 0.002800 0.005700 0.003700 0.004067

Peppers 512

PMIE-MLP 0.001482 0.001109 0.001633 0.001408

Ref. [11] 0.004100 0.003167 0.003000 0.003422

Ref. [12] 0.010380 0.004716 0.013437 0.009511

Ref. [14] 0.004833 0.019400 0.006367 0.010200

Ref. [8] 0.006767 0.004533 0.004567 0.005289

Baboon 512

PMIE-MLP 0.001599 0.000773 0.001735 0.001369

Ref. [11] 0.002967 0.004200 0.003267 0.003478

Ref. [12] 0.006587 0.010245 0.006484 0.007772

Ref. [14] 0.013633 0.020400 0.019067 0.017700

Ref. [16] 0.0063 0.0156 0.0072 0.009700

Ref. [8] 0.003233 0.005033 0.001333 0.003200

Peppers 256
PMIE-MLP 0.003864 0.003070 0.002818 0.003250

Ref. [6] 0.003100 0.009767 0.003900 0.005589

Baboon 256
PMIE-MLP 0.003064 0.003778 0.001359 0.002734

Ref. [6] 0.001767 0.008700 0.008667 0.006378

Fruits 512×480
PMIE-MLP 0.000963 0.001076 0.001418 0.001152

Ref. [12] 0.015292 0.011114 0.012482 0.012963

San Diego 1024×1024
PMIE-MLP 0.000548 0.001072 0.000716 0.000779

Ref. [11] 0.002000 0.003933 0.002567 0.002833

4.4 Analysis of the Entropy

It is a crucial metric that primarily assesses the randomness and unpredictability of data and frequently gauges the level of

disorder in images. The information entropy value is determined by determining how spread out the pixels are in the three

channels of the image. The higher the value is, the more evenly distributed the pixels are, the more random the data are, and

the more robust the data are against statistical attacks. The information entropy value for both plaintext and cipher images
can be formulated via Equation (43) [29].

E(x) = − ∑ P (xi) log2

255

i=0

P (xi) (43)

where E(x) is the information entropy and where P (xi) signifies the probability that pixel xi is present. To withstand the

statistical attack, the cipher images' entropy value should approximate an ideal value of 8 [33].

TABLE XII. INFORMATION ENTROPY VALUES FOR VARIOUS PLAINTEXT AND CIPHER COLOR IMAGES

Image

Plaintext image Cipher image

Red Green Blue Red Green Blue

Tree 256 7.210437 7.413611 6.920742 7.9974 7.9973 7.9972

Lenna 256 7.241727 7.576708 6.917058 7.9975 7.9974 7.9976

Peppers 512 7.338827 7.496253 7.058306 7.9993 7.9995 7.9994

Baboon 512 7.706672 7.474432 7.752217 7.9993 7.9994 7.9993

Table XII explains the values of entropy for the three channels of the assorted plaintext and cipher images of varying

dimensions. As shown in Table XII, the average entropy value for each encrypted image exceeds 7.9972 and 7.9992,

respectively, and is very close to the ideal value of 8. This finding indicates that the PMIE-MLP effectively randomizes the

415 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

distribution of the pixels of the original image, rendering it infeasible for an attacker to extract any information regarding the

original image from its encrypted counterpart. Moreover, Table XIII compares the average entropy values for the various

cipher images used in this research, showing that the PMIE-MLP produces average entropy values that are either somewhat

higher or quite similar to those in some recent studies. proving that the PMIE-MLP exhibits competitive performance in

comparison to other approaches, achieving almost ideal entropy values, suggesting that it can withstand statistical attacks.

TABLE XIII. COMPARISON OF AVERAGE ENTROPY VALUES FOR VARIOUS CIPHER IMAGES

Cipher image Algorithm Average

Lenna 256

PMIE-MLP 7.9975

Ref. [12] 7.9973

Ref. [15] 7.9970

Ref. [17] 7.9966

Ref. [18] 7.9895

Lenna 512

PMIE-MLP 7.9993

Ref. [10] 7.9992

Ref. [13] 7.9993

Ref. [14] 7.9993

Ref. [8] 7.9930

Peppers 512

PMIE-MLP 7.9994

Ref. [11] 7.9993

Ref. [12] 7.9992

Ref. [14] 7.9993

Ref. [8] 7.9990

Baboon 512

PMIE-MLP 7.9993

Ref. [11] 7.9993

Ref. [12] 7.9993

Ref. [14] 7.9992

Ref. [16] 7.9992

Ref. [8] 7.9970

Peppers 256

PMIE-MLP 7.9972

Ref. [15] 7.9967

Ref. [17] 7.9972

Ref. [6] 7.9971

Baboon 256

PMIE-MLP 7.9973

Ref. [15] 7.9969

Ref. [17] 7.9965

Ref. [6] 7.9973

Fruits 512×480
PMIE-MLP 7.9993

Ref. [12] 7.9992

San Diego 1024×1024
PMIE-MLP 7.9998

Ref. [11] 7.9998

4.5 Analysis of Differential Attack

Differential attacks involve assessing the security and resistance of encryption algorithms to differential attacks. This type of

analysis involves making few alterations to the original image and comparing the resulting ciphered images before and after

the alterations. The aim is to determine whether an attacker can find the relationship between the plaintext image and the

encrypted image through comparison and analysis [13][34]. For a secure encryption algorithm, a one-bit change in pixels

between two plaintext images leads to a significant alteration between the two encrypted images, E1 and E2. The number of

pixels change rate (NPCR) and the unified average changing intensity (UACI) indicate how well a system can withstand a

differential attack. The NPCR and UACI formulas are defined by Equations (44–46) [33].

D(i, j) = {
0, E1(i, j) = E2(i, j)

1, E1(i, j) ≠ E2(i, j)
 (44)

416 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

NPCR(E1, E2) =
1

u × n
 ∑ ∑ D(i, j) × 100% (45)

n

j=1

u

i=1

UACI(E1, E2) =
1

u × n
 (∑ ∑

|E1(i, j) − E2(i, j)|

255
 × 100%

n

j=1

u

i=1

) (46)

where u and n denote the rows and columns of the image, respectively; E1 denotes the original cipher image; and E2 denotes

the cipher image after changing only one bit pixel value in the plain image. The best values for the NPCR and UACI are

99.6094 % and 33.4635 %, respectively [20].

TABLE XIV. NPCR (%) AND UACI (%) VALUES FOR VARIOUS CIPHERED IMAGES

NPCR (%) UACI (%)

Image Red Green Blue Average Red Green Blue Average

Tree 256 99.6231 99.6140 99.6582 99.6318 33.5739 33.5131 33.3626 33.4832

Lenna 256 99.6170 99.6445 99.5758 99.6124 33.4217 33.5807 33.5432 33.5152

Peppers 512 99.6307 99.6189 99.6246 99.6248 33.4398 33.5703 33.5543 33.5214

Baboon 512 99.6349 99.6212 99.6243 99.6268 33.4759 33.4627 33.5580 33.4989

Lenna 512×512 99.6216 99.6201 99.6136 99.6184 33.5302 33.5490 33.4585 33.5126

Peppers 256×256 99.6155 99.6384 99.5941 99.6160 33.4030 33.6282 33.4158 33.4823

Baboon 256×256 99.6094 99.6017 99.6582 99.6231 33.6430 33.4183 33.4991 33.5201

House 512×512 99.5968 99.6155 99.6323 99.6148 33.4467 33.5011 33.5722 33.5067

Fruits 512×480 99.6285 99.6269 99.6175 99.6243 33.4814 33.4942 33.4312 33.4689

Boats 787×576 99.6120 99.6140 99.6228 99.6162 33.4607 33.5164 33.4656 33.4809

San Diego 1024 99.6077 99.6233 99.6065 99.6125 33.4748 33.4819 33.4519 33.4696

Average 99.6201 33.4963

To test against differential attacks, we selected a set of different color images, assigned a random location from one of the

three channels, changed the pixel value of that location by one bit, and then encrypted this modified plaintext image via

PMIE-MLP. We then calculate the results of the UACI and NPCR for two types of encrypted images, as presented in Table

XIV. As we can see from Table XIV, all values of the UACI and NPCR are higher than the best values, and the average
values of the UACI and NPCR for all cipher images are 99.6201 and 33.4963, respectively, indicating that the PMIE-MLP

is highly sensitive to a single bit difference in the original image and is very resistant to differential attacks. Furthermore,

Table XV lists the performance comparisons of the average values of the UACI and NPCR of the PMIE-MLP and some

other studies on various cipher images. According to Table XV, the average NPCR values of the PMIE-MLP for all cipher

images are consistently approximately 99.61 %, slightly greater than or matching those of the other studies and higher than

the ideal value of 99.6094 %. Moreover, the average UACI values for the PMIE-MLP are predominantly near 33.5 %,

marginally surpassing those of other studies and higher than the best value of 33.4635 %. This suggests a powerful diffusion

impact in the ciphered images and demonstrates sufficient strength against differential attacks for diverse image sizes.

TABLE XV. COMPARISON OF THE AVERAGE NPCR AND UACI VALUES FOR VARIOUS CIPHER IMAGES

Cipher image Algorithm Average NPCR (%) Average UACI (%)

Tree 256

PMIE-MLP 99.6318 33.4832

Ref. [12] 99.6231 33.3059

Ref. [6] 99.6068 33.4564

Lenna 512

PMIE-MLP 99.6184 33.5126

Ref. [10] 99.6189 33.4501

Ref. [14] 99.6195 33.4312

Peppers 512
PMIE-MLP 99.6248 33.5214

Ref. [11] 99.6157 33.4632

417 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

Ref. [12] 99.6036 33.4629

Ref. [13] 99.6124 33.4655

Ref. [14] 99.5984 33.3374

Baboon 512

PMIE-MLP 99.6268 33.4989

Ref. [11] 99.6172 33.4663

Ref. [12] 99.6078 33.4557

Ref. [13] 99.5994 33.4649

Ref. [14] 99.6181 33.5120

Ref. [16] 99.6046 33.4936

Lenna 256

PMIE-MLP 99.6124 33.5152

Ref. [15] 99.6198 32.3493

Ref. [17] 99.6254 30.5681

Peppers 256

PMIE-MLP 99.6160 33.4823

Ref. [15] 99.5271 33.4173

Ref. [6] 99.5946 33.4464

Baboon 256

PMIE-MLP 99.6231 33.5201

Ref. [15] 99.5880 33.5620

Ref. [6] 99.6277 33.5293

Fruits 512×480
PMIE-MLP 99.6243 33.4689

Ref. [12] 99.6132 33.4381

San Diego

1024×1024

PMIE-MLP 99.6125 33.4696

Ref. [11] 99.6137 33.4656

4.6 Analysis of the Key's Sensitivity

A secure image encryption technique should demonstrate a high level of sensitivity to the secret key, meaning that even a

slight alteration in the key would result in complete distortion in the ciphered image. To test the sensitivity of the baboon (256

× 256) image to the key, we use some of the initial parameters (x0 = 0.780395507812500, y0 = 0.384399414062500, z0 =

0.753051757812500, μ = 3.722665637060787, δ = 0.018781081662647, β = 0.013885550641593, M = 0.025, K = 0.025, s1

= 5.8, s2 = 0.825, f1 = 1.85, f2 = 10, a0 = 1, b0 = 3, c0 = 1, d0 = − 0.7, and MSK =

743B5A203B1F8EDF6C0FB0D7497CB2E228689AD00F57F8953B5C6127E1C26053) as an example, leaving the rest of

the keys unchanged. Figure 13 (a) illustrates the ciphered image with the correct initial values of the keys. Figure 13 (b)-(f)

shows the results of decrypting the Baboon image with slightly different initial values of the keys. The slight difference in

some of the initial values of the keys is as follows: (b) y0 = 0.384399414062501; (c) β = 0.013885550641594; (d) M = 0.026;

(e) s1=5.9; and (f) MSK = 743B5A203B1F8EDF6C0FB0D7497CB2E228689AD10F57F8953B5C6127E1C26053. After the

test results are analysed, the plaintext image can be recovered only through the original key used in the encryption process.

This demonstrates that the PMIE-MLP is extremely sensitive to the key.

(a) (b) (c)

418 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

(d) (e) (f)

Fig. 13. Decrypted Baboon images. (a) Decrypted image with the correct key. (b)-(f) Decrypted images

with a tiny difference in the initial values of the keys.

Additionally, the NPCR can be utilized to assess the key's sensitivity by detecting the discrepancies between two decrypted

images generated by distinct keys. Table XVI clearly demonstrates that all average differences surpass 99.6047 %, indicating

that the PMIE-MLP is highly sensitive to the key. The high values of the NPCR indicate that a single-pixel modification in

the original image causes widespread changes in the encrypted image, ensuring strong key sensitivity.

TABLE XVI. THE NPCR BETWEEN TWO DECRYPTED IMAGES WITH TWO DIFFERENT KEYS

Channel (a)- (a) (a)- (b) (a)- (c) (a)- (d) (a)- (e) (a)- (f)

Red 0 % 99.6063 % 99.6033 % 99.6002 % 99.5880 % 99.6246 %

Green 0 % 99.6338 % 99.5667 % 99.6033 % 99.6338 % 99.6490 %

Blue 0 % 99.6185 % 99.6475 % 99.6109 % 99.6399 % 99.6552 %

Average 0 % 99.6195 % 99.6058 % 99.6048 % 99.6206 % 99.6429 %

4.7 Analysis of the Quality Measure

From the concept of image encryption, numerous statistical attacks aim to compromise the integrity of the encrypted image's

quality. Consequently, standard metrics are utilized to evaluate the quality comparison between the plaintext and encrypted

images [20].

4.7.1 Mean Square Error (MSE)

The MSE assesses the performance of the encryption system and is computed between the plaintext and the ciphered image

via Equation (47). Elevated MSE values signify an effective encryption system [35].

MSE =
1

u × n
 ∑ ∑(P(i, j) − E(i, j))

2
 (47)

n

j=1

u

i=1

where u and n are the rows and columns of the image, respectively; P(i, j) is the plaintext image; and E(i, j) is the cipher

image.

4.7.2 Peak signal-to-noise ratio (PSNR)

The PSNR is another metric that relies primarily on the MSE. It is also calculated between the plaintext and encrypted

image. The quality of the encryption system is high when the PSNR value is less than 10 dB between the plaintext and

encrypted images, and it can be calculated mathematically via equation (48) [35].

PSNR = 10 log10 (
Pmax

2

MSE
) (48)

where Pmax is the highest pixel value, specifically 255.

Table XVII shows the MSE and PSNR values for various images, where the result of each quality measure between the

plaintext and the encrypted image is the average of the three color channels.

TABLE XVII. THE AVERAGE MSE AND PSNR VALUES

Image MSE PSNR (dB)

Tree 256 9958.0310 8.1491

Lenna 256 8868.1628 8.6525

Peppers 512 10131.502 8.0741

Baboon 512 8615.7119 8.7779

419 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

The data presented in Table XVII indicate that the average MSE values are relatively elevated, whereas the average PSNR

values are notably low, falling below 10 dB. The encrypted image exhibits considerable distortion, indicating the efficacy of

the PMIE-MLP in safeguarding image data. Additionally, Table XVIII presents comparisons with some recent studies that

report MSE and PSNR values. It is evident that the average values of MSE and PSNR calculated for titled images via the

suggested approach are either better or on par with results from the references [15] and [17].

TABLE XVIII. COMPARISON OF THE AVERAGE MSE AND PSNR VALUES FOR VARIOUS CIPHER IMAGES

Image Algorithm Average MSE Average PSNR (dB)

Lenna 256

PMIE-MLP 8868.1628 8.6525

Ref. [15] 8888.8821 8.7051

Ref. [17] 8983.7886 8.6510

Peppers 256

PMIE-MLP 10054.3810 8.1073

Ref. [15] 10092.3268 8.1400

Ref. [17] 10033.0116 8.1624

Baboon 256

PMIE-MLP 9517.2557 8.3457

Ref. [15] 8295.2068 8.9575

Ref. [17] 8349.5506 8.9283

4.8 Analysis of the robustness

Robustness is a critical characteristic denoting an encryption algorithm's capacity to withstand interference. Images are

vulnerable to noise or loss during transmission. Consequently, an effective encryption approach must demonstrate a degree

of resilience to withstand interference on cipher images, facilitating the recovery of plain images with little modification

[36]. We assess the resilience of our method against noise and occlusion assaults.

4.8.1 Analysis of the noise attack

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. Noise attack test. (a)-(d) Decrypted images subsequent to the introduction of Salt & Pepper noise at densities of 0.01,

0.05, 0.10, and 0.20, respectively, to the encrypted images. (e)-(h) Decrypted images subsequent to the introduction of

Gaussian noise with variances of 0.0001, 0.001, 0.01, and 0.02, respectively, to the encrypted images.

The color "Lenna" image with a size of 512 × 512 is selected as the plaintext PMIE-MLP. Salt and pepper noises with

densities of 0.01, 0.05, 0.10, and 0.20 and Gaussian noises with variances of 0.0001, 0.001, 0.01, and 0.02 are added to the

encrypted Lenna images. The PMIE-MLP is subsequently utilized for deciphering these attacked images, and the test results

are shown in Figure 14. Figure 14 clearly demonstrates that when the encrypted image encounters noise attacks, such as salt

and pepper noise and Gaussian noise, a significant portion of the original image's information can be effectively recovered,

indicating that the PMIE-MLP exhibits strong robustness.

420 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Occlusion attack test. (a)-(d) Cropped encrypted images of Lenna by eliminating blocks of dimensions 64 × 64, 128 ×

128, 256 × 256, and 512 × 256, respectively. (e)-(h) decrypted images of (a)–(d).

4.8.2 Analysis of the Occlusion Attack

Another type of test is to further assess the robustness of the given encryption approach. The cipher image of Lenna with a

size of 512 × 512 is cropped by removing blocks of sizes 64 × 64, 128 × 128, 256 × 256, and 512 × 256, as explained in

Figure 15 (a)-(d). As shown in Figure 15(e)-(h), all the decrypted images can still be recognized even at various levels of

cropping attacks. Thus, our encryption algorithm exhibits robust resistance against cropping attacks.

4.9 Complexity and time analysis

Suppose that N = u × n is the total number of pixels. Most steps in the algorithm—such as generating sequences, channel

separation, substitution, diffusion, XOR operations, and reshaping—are accomplished in linear time, i.e., O(N). However,

the key generation step requires processing an array of size N, which has a complexity of O (N log N). Therefore, the overall

computational complexity of the algorithm is dominated by this process, making it O (N log N).

Time analysis is used to assess the complexity of the PMIE-MLP and its appropriateness for real-time applications.

TABLE XIX. TIME ANALYSIS RESULTS

Image
Encryption

Time (s)

Decryption

Time (s)

Tree 128 0.8431 0.8456

Tree 256 3.4208 3.4147

Lenna 256 3.4137 3.4074

Peppers 256 3.4350 3.4130

Baboon 256 3.4188 3.4140

Lenna 512 14.8122 14.8189

Peppers 512 14.7718 14.7557

Baboon 512 14.8173 14.8322

Table XIX shows the encryption and decryption times for a set of images at different dimensions. The encryption time ranges

from 0.8431 to 14.8173 s, whereas the decryption time ranges from 0.8456 to 14.8322 s, which is very efficient, especially

for environments that require a high level of security.

Furthermore, Table XX presents a comparison of the encryption time between the PMIE-MLP and other related methods.

Importantly, numerous factors influence the execution time, such as the algorithm's structure, the programming environment

in which the algorithm is designed, and the specifications of the device executing the algorithm, such as memory and

421 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

processing power. According to Table XX, the encryption time of the PMIE-MLP is slightly slower than that of the other

devices because of the device's low specifications. Therefore, the encryption time of the PMIE-MLP algorithm can be

optimized efficiently by developing device specifications.

TABLE XX. COMPARISON OF THE ENCRYPTION TIMES

Image Algorithm
Encryption

Time (s)

Machine Specifications (CPU and

RAM)
Software Platform

Lenna 256 × 256

PMIE-MLP 3.4137 2.3 GHz Intel® CoreTM i5, 4 GB MATLAB (R2021a)

Ref. [15] 2.582389 2.9 GHz Intel® CoreTM i9, 32 GB Wolfram Mathematica

Ref. [17] 2.750966 3.4 GHz Intel® CoreTM i7, 8 GB NaN

Ref. [12] 1.911 1.10 GHz Intel® CoreTM i7, 32 GB MATLAB (R2020b)

Peppers 256 × 256
PMIE-MLP 3.4350 2.3 GHz Intel® CoreTM i5, 4 GB MATLAB (R2021a)

Ref. [6] 1.1677 3.6 GHz Intel® CoreTM i9, 32 GB MATLAB (R2022b)

5. CONCLUSION

This research presents a novel image cryptographic system for enhancing the security of images, which uses a dynamic

Mealy machine-based protein sequence, a novel 3D-AS scrambling, and a chaotic system. An encryption structure consists

of key generation and six stages of protection: substitution, four layers of diffusion, and confusion. To achieve the greatest

possible unpredictability and increase the efficiency of the PMIE-MLP, the pixel positions in the image are shuffled more

than once (four layers of diffusion) without changing its value, and the image becomes unknowable. To support the

proposition of the theoretical framework, various types of experimental analyses and security assessments are conducted.

The experimental results presented in this research demonstrate that the key space used in the PMIE-MLP is (21488);

therefore, it is evident that this algorithm presents a very high level of security for brute force attacks. The visualization of

cipher images is shown by the histogram of image pixels with equal distributions, and the values of the correlation coefficient

are almost zero for the encrypted images, which indicates that the PMIE-MLP does not allow the attacker to launch a

statistical attack. The average entropy for the cipher images is very close to the ideal entropy value, which ensures the

effectiveness of the PMIE-MLP in randomizing the pixel distribution of the original image so that the attacker cannot obtain

any information from the encrypted image. The PMIE-MLP has very high sensitivity to the plaintext image and to the key,

which should have enough immunity to differential attacks. The encryption algorithm is vulnerable to most attack types,

including occlusion attacks and noise attacks. In addition, when all the PMIE-MLP metrics are compared, the security

performance of the PMIE-MLP is equivalent to or even greater than that reported in prior studies. The analysis of the test

results demonstrates that the superior performance is illustrated by the parameters of the key space, chi-square values,

correlation coefficient values, and image resistance to differential attacks; therefore, the offered PMIE-MLP encryption

algorithm serves practical uses in real-world security through its protective functions for image communications across

medical imaging systems, military networks and secure storage systems.
While the PMIE-MLP algorithm demonstrates strong security performance, several factors require further consideration.
The compatibility of the encryption process with common image compression techniques needs to be explored. The study
does not explicitly address potential limitations, such as its suitability for resource-constrained environments, energy
consumption, or computational complexity. Additionally, future research could focus on optimizing the execution speed,
improving resistance against new attack vectors, or adapting the method for real-time applications in constrained devices.

Conflicts of interest

The authors of this work report no conflicts of interest.

Funding

No funding.

422 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

References

[1] R. M. Al-Amri, D. N. Hamood, and A. K. Farhan, “Theoretical Background of Cryptography,” Mesopotamian J.

CyberSecurity, vol. 2023, pp. 7–15, 2023, doi: 10.58496/MJCS/2023/002.

[2] R. R. N. Alogaili et al., “AntDroidNet Cybersecurity Model: A Hybrid Integration of Ant Colony Optimization

and Deep Neural Networks for Android Malware Detection,” Mesopotamian J. CyberSecurity, vol. 5, no. 1, pp.

104–120, 2025, doi: 10.58496/MJCS/2025/008.

[3] X. Wei, L. Guo, Q. Zhang, J. Zhang, and S. Lian, “A novel color image encryption algorithm based on DNA

sequence operation and hyper-chaotic system,” J. Syst. Softw., vol. 85, no. 2, pp. 290–299, 2012, doi:

10.1016/j.jss.2011.08.017.

[4] C. Zhu, Z. Gan, Y. Lu, and X. Chai, “An image encryption algorithm based on 3-D DNA level permutation and

substitution scheme,” Multimed. Tools Appl., vol. 79, no. 11, pp. 7227–7258, 2020.

[5] X. Liu, X. Tong, M. Zhang, and Z. Wang, “A highly secure image encryption algorithm based on conservative

hyperchaotic system and dynamic biogenetic gene algorithms,” Chaos, Solitons and Fractals, vol. 171, no.

February, p. 113450, 2023, doi: 10.1016/j.chaos.2023.113450.

[6] Q. Wang, X. Zhang, and X. Zhao, “Color image encryption algorithm based on bidirectional spiral transformation

and DNA coding,” Phys. Scr., vol. 98, no. 2, 2023, doi: 10.1088/1402-4896/acb322.
[7] L. Huang, S. Wang, J. Xiang, and Y. Sun, “Chaotic Color Image Encryption Scheme Using Deoxyribonucleic Acid

(DNA) Coding Calculations and Arithmetic over the Galois Field,” Math. Probl. Eng., vol. 2020, 2020, doi:

10.1155/2020/3965281.

[8] Q. Li and L. Chen, “An image encryption algorithm based on 6-dimensional hyper chaotic system and DNA

encoding,” Multimed. Tools Appl., vol. 83, no. 2, pp. 5351–5368, 2024, doi: 10.1007/s11042-023-15550-3.

[9] A. S. Almasoud, B. Alabduallah, H. Alqahtani, S. S. Aljameel, S. S. Alotaibi, and A. Mohamed, “Chaotic image

encryption algorithm with improved bonobo optimizer and DNA coding for enhanced security,” Heliyon, vol. 10,

no. 3, p. e25257, 2024, doi: 10.1016/j.heliyon.2024.e25257.

[10] Q. Cun, X. Tong, Z. Wang, and M. Zhang, “A new chaotic image encryption algorithm based on dynamic DNA

coding and RNA computing,” Vis. Comput., vol. 39, no. 12, pp. 6589–6608, 2023, doi: 10.1007/s00371-022-02750-

5.

[11] X. Gao, B. Sun, Y. Cao, S. Banerjee, and J. Mou, “A color image encryption algorithm based on hyperchaotic map

and DNA mutation,” Chinese Phys. B, vol. 32, no. 3, 2023, doi: 10.1088/1674-1056/ac8cdf.

[12] F. Meng and Z. Gu, “A Color Image-Encryption Algorithm Using Extended DNA Coding and Zig-Zag Transform

Based on a Fractional-Order Laser System,” Fractal Fract., vol. 7, no. 11, 2023, doi: 10.3390/fractalfract7110795.

[13] H. Lu, L. Teng, and L. Du, “Image encryption with 1D-MS chaotic systems and improved zigzag disambiguation,”

Eur. Phys. J. Plus, vol. 139, no. 4, pp. 1–16, 2024, doi: 10.1140/epjp/s13360-024-05146-7.
[14] M. Abdul-Hameed, H. El-Metwally, S. Askar, A. M. Alshamrani, M. Abouhawwash, and A. A. Karawia,

“Advanced color image encryption using third-order differential equations and three-dimensional logistic map,”

AIP Adv., vol. 14, no. 7, 2024, doi: 10.1063/5.0214794.

[15] W. Alexan, M. ElBeltagy, and A. Aboshousha, “Rgb image encryption through cellular automata, s-box and the

lorenz system,” Symmetry (Basel)., vol. 14, no. 3, p. 443, 2022.

[16] T. Zhang and S. Wang, “Image encryption scheme based on a controlled zigzag transform and bit-level encryption

under the quantum walk,” Front. Phys., vol. 10, pp. 1–12, 2023, doi: 10.3389/fphy.2022.1097754.

[17] W. Alexan, M. Elkandoz, M. Mashaly, E. Azab, and A. Aboshousha, “Color Image Encryption Through Chaos

and KAA Map,” IEEE Access, vol. 11, no. October 2022, pp. 11541–11554, 2023, doi:

10.1109/ACCESS.2023.3242311.

[18] X. Wang, X. Zhang, M. Gao, Y. Tian, C. Wang, and H. H. C. Iu, “A Color Image Encryption Algorithm Based on

Hash Table, Hilbert Curve and Hyper-Chaotic Synchronization,” Mathematics, vol. 11, no. 3, 2023, doi:

10.3390/math11030567.

[19] R. J. Kadhim and H. K. Khafaji, “Unprecedented Security Analysis Results for a Novel Steganography Approach

Based on Protein Sequences,” Int. J. Intell. Eng. Syst., vol. 16, no. 2, pp. 464–476, 2023, doi:

10.22266/ijies2023.0430.37.

[20] P. N. Lone, D. singh, and U. H. Mir, “Image encryption using DNA coding and three-dimensional chaotic systems,”
Multimed. Tools Appl., vol. 81, no. 4, pp. 5669–5693, 2022, doi: 10.1007/s11042-021-11802-2.

[21] P. N. Khade and P. M. Narnaware, “3D Chaotic Functions for Image Encryption,” Int. J. Comput. Sci. Issues

(IJCSI), vol. 9, no. 3, pp. 323–328, 2012.

[22] X. Ma, J. Mou, L. Xiong, S. Banerjee, Y. Cao, and J. Wang, “A novel chaotic circuit with coexistence of multiple

attractors and state transition based on two memristors,” Chaos, Solitons and Fractals, vol. 152, p. 111363, 2021,

423 Kadhim et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 395–423

doi: 10.1016/j.chaos.2021.111363.

[23] P. Garapati and S. Musala, “Moore and Mealy Negative Edge detector A VHDL Example for Finite State

Machine,” Proc. 2020 IEEE Int. Conf. Commun. Signal Process. ICCSP 2020, pp. 1159–1161, 2020, doi:

10.1109/ICCSP48568.2020.9182310.

[24] A. Bhowmik, S. Karforma, and J. Dey, “Symmetric key and artificial neural network with mealy machine: A

neoteric model of cryptosystem for cloud security,” Mach. Learn. Tech. Anal. Cloud Secur., pp. 81–101, 2021, doi:

10.1002/9781119764113.ch5.

[25] B. B. Kodada and D. A. D’Mello, “Symmetric Key Cryptosystem based on Sequential State Machine,” IOP Conf.
Ser. Mater. Sci. Eng., vol. 1187, no. 1, p. 012026, 2021, doi: 10.1088/1757-899x/1187/1/012026.

[26] P. Pavithran, S. Mathew, S. Namasudra, and P. Lorenz, “A novel cryptosystem based on DNA cryptography and

randomly generated mealy machine,” Comput. Secur., vol. 104, p. 102160, 2021, doi: 10.1016/j.cose.2020.102160.

[27] P. Pavithran, S. Mathew, S. Namasudra, and A. Singh, “Enhancing randomness of the ciphertext generated by

DNA-based cryptosystem and finite state machine,” Cluster Comput., vol. 26, no. 2, pp. 1035–1051, 2023, doi:

10.1007/s10586-022-03653-9.

[28] R. J. Kadhim, “Unprecedented Security Analysis Results for a Novel Key Expansion Algorithm Based on Protein

Sequences , Dynamic Mealy Machine , and 3D Logistic Map,” vol. 17, no. 3, pp. 171–188, 2024, doi:

10.22266/ijies2024.0630.15.

[29] W. Xingyuan, Z. Junjian, and C. Guanghui, “An image encryption algorithm based on ZigZag transform and LL

compound chaotic system,” Optics and Laser Technology, vol. 119. 2019. doi: 10.1016/j.optlastec.2019.105581.

[30] University of Southern California, “USC-SIPI Image Database”, [Online]. Available: https://sipi.usc.edu/database/

[31] X. Chai, Z. Gan, K. Yuan, Y. Chen, and X. Liu, “A novel image encryption scheme based on DNA sequence

operations and chaotic systems,” Neural Comput. Appl., vol. 31, no. 1, pp. 219–237, 2019, doi: 10.1007/s00521-

017-2993-9.

[32] H. M. M. Alibraheemi, M. M. A. Al Ibraheemi, and Z. H. Radhy, “Design and Practical Implementation of a Stream

Cipher Algorithm Based on a Lorenz System,” Mesopotamian J. CyberSecurity, vol. 4, no. 3, pp. 136–151, 2024,
doi: 10.58496/MJCS/2024/019.

[33] X. Yan, X. Wang, and Y. Xian, “Chaotic image encryption algorithm based on arithmetic sequence scrambling

model and DNA encoding operation,” Multimed. Tools Appl., vol. 80, no. 7, pp. 10949–10983, 2021, doi:

10.1007/s11042-020-10218-8.

[34] H. Qiu, X. Xu, Z. Jiang, K. Sun, and C. Xiao,“A color image encryption algorithm based on hyperchaotic map and

Rubik’s Cube scrambling,”Nonlinear Dyn.,vol.110, no.3, pp. 2869–2887, 2022, doi: 10.1007/s11071-022-077561.

[35] Q. Lai and Y. Liu, “A cross-channel color image encryption algorithm using two-dimensional hyperchaotic map,”

Expert Syst. Appl., vol. 223, no. November 2022, 2023, doi: 10.1016/j.eswa.2023.119923.

[36] C. Li, Y. Zhang, H. Li, and Y. Zhou, “Visual image encryption scheme based on inter-intra-block scrambling and

weighted diffusion,” Vis. Comput., vol. 40, no. 2, pp. 731–746, 2024, doi: 10.1007/s00371-023-02812-2.

[37] E. Alotaibi, R. B. Sulaiman, and M. Almaiah, “Assessment of cybersecurity threats and defense mechanisms in

wireless sensor networks,” J. Cyber Secur. Risk Audit., vol. 2025, no. 1, pp. 47–59, 2025.

