The Transitivity of One Disconnecting Arc Spaces

Iftichar Al shraa and Alia›a Hussein
Mathematics Department, College of Education for pure Sciences,
University of Babylon ,Iraq.

Received Date: 31 / 10 / 2016 Accepted Date: 10 / 2 / 2017

الخلاصة

لتكن D فضاء القوس المفصول بنقطة و f:D→D دالة مستمرة في هذا العمل نتوصل الى :

- 1. اذا كانت f دالة متعدية فان مجموعة النقاط الدورية كثيفة .
- 2. f تكون متعدية و تمتلك نقطة دورية فردية الدوار دوارها اكبر من الواحد اذا وفقط اذا f^2 تكون متعدية و f تمتلك نقاط دورية كثفة .
 - 5. f^2 تكون متعدية و f تمتلك نقاط دورية كثيفة اذا وفقط اذا f متعددة كليا .
 - 4. تكون متعددة كليا اذا وفقط اذا f تكون تبولوجي خلط.
- f^n انه جطية رتيبة فان f تكون تبولوجي خلط اذا وفقط اذا لكل قوس $f \subseteq n$, $f \subseteq n$

الكلمات المفتاحية

(النقاط الدورية، تبولوجي التعدي، تبولوجي الخلط، مجموعة الغاية، قوس مفصول بنقطة).

Abstract

Let D be a one disconnecting arc space, $f:D \rightarrow D$ be a continuous map, in this work we get:

- 1- If f is transitive map. Then the set of all periodic points is dense in D.
- 2- If f is transitive and has a point of odd period greater than one if and only if f^2 is transitive and f has dense periodic points.
- 3- f² is transitive and f has dense periodic points if and only if f is totally transitive
- 4- f is totally transitive if and only if f is topologically mixing.
- 5- If f is piecewise monotone Then f is topologically mixing if and only if for every arc $K\subseteq D$, there is an n such that $f^n(K)=D$.

Keywords

Periodic point, topological transitive, topological mixing, limit set, one disconnecting arc.

1. Introduction

A several authors have been studied the transitive maps, periodic points and other chaotic properties on one dimensional spaces for examples (the circle, the real interval and graph maps etc). In [1] Alseda, Kolyada, Llibre and Snoha, (1990) studied if X is connected and a compact topological space and if f a transitive map with one disconnecting arc. In [2] Sabbaghana M., Damerchiloob H., (2011), proved that it is not necessary to assume that X is connected. In this research we will generalize some of the results and theorems on the new space.

2. Preliminary

In this paper, we prove that there are relations between the transitivity and periodicity, also the transitivity with topological mixing.

2.1. Definition [6]

The orbit of p is the set of points $p,f(p),f^2(p),...$ And is denoted by $orb(p)=\{f^n(p)|n\in N_\circ\}$ where $N_\circ=N\cup\{0\}$.

A point $p \in X$ is a periodic point of f if there exists a positive integer $n \in N$ such that $f^n(p)=p$. If p is a periodic point of period n, then we say that orbit of p is a periodic orbit of period n. It is called the period of f. We denote the set of periodic points by per(f) and the set the period of f is denote by p(f).

2.2. Definition

We say that D has one disconnecting arc say J if J is an open subset of D homeomorphic

with an open interval of R and when Y is the connected component of D which contains J, then for all x in J the set Y $-\{x\}$ has exactly two connected components.

2.3. Definition

Let $a,b\in D$, we say that $a\triangleright b$ if a follows counterclockwise to b.

2.4. Definition [3]

We say that the map f is transitive(Do) if $\exists x \in X$ such that the orbit $\{f^n(x)|n\geq 0\}$ is dense in X , that is $\bar{f}(\{f^n(x)|n\geq 0\})=X$.

2.5. Definition [4]

Let $f:X \rightarrow X$ be a continuous map, if f is transitive, we say that f is totally transitive if f^n is transitive for all integers n>1.

2.6. Definition [3]

Let $f: X \to X$ be a continuous map, we say that f is topological mixing if for every pair non-empty open sets U and V in X, there exists a positive integer n such that $f^k(U) \cap V \neq \emptyset$ for every k > n.

2.7. Definition [5]

Let X be a metric space, and let $f: X \to X$ be a continuous map. The ω -limit set of $x \in X$, denoted by $\omega(x,f)$, is the set of cluster points of the forward orbit $\{f^h(x)\}_{n \in N}$ of the iterated functionf. Hence, $y \in \omega(x,f)$ if and only if there is a strictly increasing sequence of natural numbers $\{n_k\}_{k \in N}$ such that $f^{h_k}(x) \to y$ as $k \to \infty$. Another way to express this is $\omega(x,f) = \bigcap_{n \in N} \{f^k(x) \in X \}$

(x)|k>n where A denotes the closure of the set A.

2.8. Proposition [6]

A continuous map $f:X \rightarrow X$ of a compact metric space into itself is transitive if and only if there exists a point $x \in X$ such that $\omega(x,f)=X$.

2.9. Lemma [2]

Let X be a topological space and let $f: X \to X$ be a transitive map. If X has a connected component with nonempty interior, then X has only a finite number of connected components and they form a regular periodic decomposition. That is, $\bigcup_{i=0}^{n-1} D_i$ where for each 0 < i < n-1, D_i is the closure of an open set and for every $0 \le i < j \le n-1$, $D_i \cap D_j$ is nowhere dense and for each positive integer k, $f^k(D_i) \subseteq D_{i+k(modn)}$.

The set $D = \{ D_0, D_1, ..., D_{n-1} \}$ is called a regular periodic decomposition for f on X.

2.10. Lemma [6]

If $f:X \rightarrow X$ is a continuous map, then the following statements are equivalent:

- 1) f is transitive.
- 2) for every non-empty open set W in X , $\bigcup_{n=1}^{\infty} f^{n}(W)$ is dense in X.
- 3) for every pair of non-empty sets U and V in X , there is a positive integer k such that $f^k(U) \cap V \neq \emptyset$.
- 4) for every non-empty open set W in X $\bigcup_{n=1}^{\infty} f^n(W)$ is dense in X.
- 5) for every proper closed invariant subset of X has empty interior.

2.11. Theorem [2]

Let X be a compact space and let X have a disconnecting interval. Let also $f:X \to X$ be a transitive map. Then the set of all periodic points of f is dense in X.

3. Main Result:

Some theorems and lemmas are proved, we generalize the results of the spaces from R to R to maps from the one disconnecting arc space to itself:

3.1. Proposition

Let $f:D \rightarrow D$ be transitive map and the set of all limit points of f of a point x in D is D. Then exactly one of the following conditions holds:

- 1) the set of all limit points of f's of a point x in D is D, for every positive integer s.
- 2) there exist non-degenerate closed arcs J and K with JUK=D and J \cap K={y} where y is a fixed point of f such that f(J)=K and f(K)=J.

Proof:

Let r be an arbitrary integer and $B_r = \omega(f^k(x), f^r)$ and for $0 \le k < r$. Since $B_0 \cup B_1 \cup \cup B_{r-1} = D$ at least of B_k has nonempty interior. Moreover since the orbit of x cannot folding the arc to the a point. Since $f(B_k) = B_{k+1}$ for $0 \le k < r$ and $f(B_{k-1}) = B_0$, it follows that each B_i . We claim that if the interior of B_k and B_j intersect then $B_k = B_j$. To see that suppose that $B_k^\circ \cap B_j^\circ \ne \emptyset$. Then for some positive integer n $f^{n+i}(x) \in B_k^\circ \cap B_j^\circ$

It follows that $B_k \subseteq B_j$. Since B_j is f^{t-} in $(\{f^{2n+1}(x)|n \in N_o\})$. invariant and $B_{\nu} = \omega(f^{kn+i}(x), f^{r})$. Since k,j can be interchanged.

Let A denote the collection of subsets of D which are component of int(B_L) for some $k \in \{0,...,r-1\}$. Then by Lemma 2.9 D has n connected components. Since A is finite. We may assume that has one connected component say E_1 . Then $F_1 = (E_1)$. So we have $B_k = D$ for k = 0, ..., r-1. Since f is transitive, then by proposition 2.8 $\omega(x,f)=D$.

Now suppose that A have two connected components E_1 and E_2 such that $F_1 = (E_1)$ and $F_2 = (E_2)$. Let y be a fixed point. If $y \in E_1, E_2$. Then $f(F_1)=F_1$ and $f(F_2)=F_2$, which is impossible. If y cannot to be endpoint of arc in D. The only possibility y is that y is a common endpoint of F_1 and F_2 . Then $f(F_1)=F_2$ and $f(F_2)=F_1$. Thus we have (2) satisfy and hence f² is not transitive. Since r is arbitrary, this proves that (1) satisfied if f^2 is transitive and (2) satisfied if is not.

3.2. Lemma

Let $f:D \rightarrow D$ be transitive. Then of the following holds:

- 1) f^2 is transitive in which $f^r(r+1)$ is transitive $\forall r \ge 1, l \ge 0$.
- 2) f^2 is not transitive in which case $D = (\{f^2 n \})^2$ $(x)|n\in N_{\circ}\})\cup (\{f^{2n+1}(x)|n\in N_{\circ}\})$ and $(\{f^{2n}\})$ $(x)|n\in N_{\circ}\})\cap (\{f^{2n+1}\})$ $(x)|n\in N \circ \}\neq \emptyset$ and $f((\{f^{2n}(x)|n\in N_{\circ}\}))=(\{f^{2n+1}(x)|n\in N_{\circ}\}))$ and $f(\bar{\ }(\{f^{2n+1}\ (x)\ \big|\ n{\in}N_{\circ}\ \}\)){=}\bar{\ }(\{f^{2}n\ (x)|n{\in}N_{\circ}\}).$ Moreover $\forall l \ge 1$, $\{f^2 \ln (x) | n \in \mathbb{N}_{\circ}\}$ is dense in $(\{f^{2n}(x)|n\in\mathbb{N}_{\circ}\})$ and $\{f^{2ln+1}(x)|n\in\mathbb{N}_{\circ}\}$ is dense n=2. Notice that the integer n depend on s. It

Proof:

Let r be an integer, $r \ge 1$ and for each integer s ,0 \le s \le r-1, let B_s= $(\{f^{tn+s}(x)|n\in N_{\circ}\})$. Then since $\bigcup_{s=0}^{r-1} \{f^{tn+s}(x)|n\in N_{\circ}\} = \{f^{h}(x)|n\in N_{\circ}\},\$ this implies that $\bigcup_{s=0}^{r-1} B_s = D$. Then there is an s $0 \le s \le r-1$, thus B $\neq \emptyset$. Since f is transitive, so by Lemma 2.9 $D=\bigcup_{s=0}^{r-1} B_s$, for each $0 \le s \le r-1$ and $\forall \ 0 \le i, j \le r-1$, $B_i \cap B_i$ is nowhere dense and for each positive integer k, $f^{k}(B_{r})\subseteq B_{r+kmodn}$.

Now we must prove that if $B_i \cap B_i \neq \emptyset$, then $B_i = B_i$.

If $B_i \cap B_i \neq \emptyset$, then there is a positive integer n , so that $f^{2n+i}(x) \in B_i^{\circ} \cap B_i^{\circ}$, and there is a sequence n_1, n_2, n_3, \dots of positive integer such that $f^{n_k r+j}(x) \rightarrow f^{rn+i}(x)$. Then for every integer m>0 we have $f^{r(n_k+m+j)}(x) \to f^{r(n+m)+j}(x)$.

This implies that $(\{f^{rn+i}(x), f^{r(n+m)+i}(x), .\})$ $\subset B_{_{j}}$ and hence that $B_{_{i}}{\subset}B_{_{j}}{\cup}\{f^{\,i}\,(x),\,f^{\,r{+}i}(x),...,$ $f^{(n-1)r+i}(x)$. Then $B_i^{\circ} \subset B_i^{\circ}$. In the same way we can prove that $B_i \circ \subset B_i^\circ$, and so $B_i \circ = B_i^\circ$.

Let h be a component of B_s such that $H=\{h|\text{for some }s,0\leq s\leq r-1\}$. Since D has n of components. Then $H=\{h_1, h_2, ..., h_n\}$. Let $F_i = (h_i)$. Since h_i is finite, and so F_i is finite and hence the set $\{F_1, F_2, ..., F_n\}$ is finite. By transitivity, we get the set $\{F_1, F_2, ..., F_n\}$ is permuted by f. We next prove that $n \le 2$. Let p be a fixed point of f. If $p \in nF_i^{\circ}$, then $f(F_i) = F_i$ which is impossible unless n=1. In the same way, if p is an endpoint of D, then n=1. If p is a common endpoint of F_i and F_i , then $f(F_i) = F_i$ and $f(F_i) = F_i$ which is satisfied only if

follows that we will refer n as n(r).

Now we satisfy the conclusion of the Lemma, so we first suppose that f^2 is transitive. Let r be an integer, $r \ge 0$ and suppose that n(r)=2. Then there are closed arcs F_1 and F_2 with $F_1 \cup F_2 = D$, $F_1 \cap F_2 = \{pt\}$, $f(F_1) = F_2$ and $f(F_2) = F_1$.

Suppose that $x \in F_2$, we see that, for each m, $f^2m(x) \in F_2$ and hence $\{f^{2n}(x) | n \in N_\circ\} \cap F_1^\circ \neq \emptyset$. Which is contradiction with the fact that f^2 transitive, and hence n(r)=1. Then $\forall s, 0 \le s \le r-1$, $B_s = D$. Then $(\{f^{rn+s}(x) | n \in N_\circ\}) = D$ and so f^{r+s} is transitive. This implies that for any integer $l \ge 0$, f^{r+l} is transitive.

Next suppose that f^2 is not transitive. Let r=2. Since f^2 is not transitive $B_{\circ} \neq D$ and so n(2)=2. Now let j be an integer, $j \ge 1$. Then for each integer k, $\{f^{2jn+k}(x) \mid n \in \mathbb{N}_{\circ}\} \subset \{f^{2n+k}(x) \mid n \in \mathbb{N}_{\circ}\}$, and since $(\{f^2 \mid n \mid (x) \mid n \in \mathbb{N}_{\circ}\}) \neq D$, we have n(2j)=2.

Since the common endpoints of F_1 and F_2 is the only fixed point for the map f.Then the arcs F_1 and F_2 which we construct for r=2j are independent of j. Since by assumption $x \in F_2$, we have $F_2 = (\{f^2n (x) \mid n \in N_\circ\})$, $F_1 = (\{f^{2n+1} (x) \mid n \in N_\circ\})$ for each integer $l \ge 1$, $m \in N_\circ\}$ for each integer $l \ge 1$, $m \in N_\circ\}$ if $m \in N_\circ\}$ for each integer $m \in N_\circ\}$ if $m \in N_\circ$ if m

In the same way the proof of Theorem 2.11, we can prove that the next Theorem:

3.3. Theorem

Let $f:D \rightarrow D$ be transitive map. Then the set of all periodic point is dense in D.

3.4. Theorem

f2 is transitive and f has dense periodic points if and only if for each arc K in Dand each pair a, $b \in D^{\circ}$, there is an integer M such that n>M then $[a,b] \subset f^{n}(K)$.

Proof:

Suppose that f^2 is transitive and f has a dense periodic points. Let K be an arc in D. Since the periodic points of fare dense, there is a periodic point $q \in K^\circ$. Suppose that q has a periodic point of period f. Let $g=f^{-1}$. Let $f=f^{-1}$. Let $f=f^{-1}$. Let $f=f^{-1}$ is a closed arc. Let $f=f^{-1}$ is transitive. Thus from Lemma 3.2, we get $f=f^{-1}$ is transitive. Thus from Lemma 3.2, we get $f=f^{-1}$ is dense in $f=f^{-1}$. This implies that $f=f^{-1}$ is transitive. Hence $f=f^{-1}$.

We will prove that if q is aperiodic point such that $orb(q) \subset D^{\circ}$, then there is an integer t such that $orb(q) \subset f(K)^{t}$.

To see that, suppose that q is a periodic point with period 1 and $orb(q) \subset D^{\circ}$. Let $p_1 \in orb(q)$ such that p_1 is the nearest point of begin point of D and let $p_2 \in orb(q)$ such that p_2 is the furthest point of begin point of D.

Suppose that $p_1 \neq q$. Since $\bigcup_{n=0}^{\infty} g^n(K) = D^{\circ}$, there is an integer r such that $[p_1,q] = g^s(K)$. Let $h = g^s$ and observe that $h^1(p_1) = p_1$, $h^1(q) = q$. By Lemma 3.2, there is a point $y \in [p_1, q]^{\circ}$ such that $\{h^l n(y) | n \in N_{\circ}\}$ is dense in D, and hence h^l is transitive.

Therefore there is an integer r such that $p_2 \triangleright h^1 r$ (y). Then we have $h^1 r$ (q)=q, $h^1 r$ (p₁)= p₁, and $p_2 \triangleright h^1 r$ (y). This implies that $orb(q) \subset [p_1, p_2] \subset f^1 r$ (K). Thus for r=1.r.s.j, we have $orb(q)=f^1(K)$. Then if $r \ge t$, $orb(q) \subset f^r(K)$.

Now suppose that $a,b \in D^\circ$ and that $a \triangleright b$. Let c and d be periodic points such that $[a,b] \subset [c,d]$ and $orb(c) \cup orb(d) \subset D^\circ$. Then there are a positive integer r_1 and r_2 such that $orb(c) \subset f^{r_1}$ (K) and $orb(d) \subset f^{r_2} = (K)$. Let $N = max\{r_1, r_2\}$. Then if n > N, $[a,b] \subset [c,d] \subset f^n$ (K).

Suppose that for each arc K in D and each pair $a,b\in D^\circ$, there is a positive integer N such that if n>N, then $[a,b]\subset f^n(K)$. We must prove that f is transitive. Let U be an open arc in D, and let $x\in U$. We will prove that $\bigcup_{n=0}^{\infty} f^n(x)$ is dense in D. If not, there is a closed arc K such that $K\cap \bigcup_{n=0}^{\infty} f^n(x)=\emptyset$. But by the condition, there is a positive integer k such that $x\in f^k(K)$. Hence, there is a point $y\in K$ such that $f^k(y)=x$. Then $y\in K\cap \bigcup_{n=0}^{\infty} f^{-n}(x)$. Thus $\bigcup_{n=0}^{\infty} f^n(x)$ is dense in D. Since $x\in U$, and so $\bigcup_{n=0}^{\infty} f^n(U)$ is dense in D. Then by Lemma 2.10 f is transitive. Since f is transitive. Then there is a point $y\in D$ such that $\{f^n(y)|n\in N_o\}$ is dense in D.

If f^2 is not transitive. Hence $\{f^2n(y)|n\in N_\circ\}$ is not dense in D, then this implies that there are closed arcs F_1 and F_2 in D such that $F_1\cup F_2=D$, $F_1\cap F_2=\{pt\}$, $f(F_1)=F_2$ and $f(F_2)=F_1$.

Let $a \in F_1^\circ$, $b \in F_2^\circ$ and let K be F_1 . Then for each positive integer $[a,b] \not\subset f^n$ (K). This is contradiction the assumption that $[a,b] \subset f^n$ (K). Since f is transitive, then by Theorem 3.3 f has dense periodic points and hence f^2 has a dense orbit .This implies that f^2 is transitive and this is establishes the theorem.

3.5. Theorem

If f² is transitive and f has a dense periodic

points then f has a point of odd period.

Proof:

Let K and L be arcs in D such that $K \cap L = \emptyset$. Then by Theorem 3.3, there is a positive integer N such that if n > N, then $(K \cup L) \subset f^n$ $(K) \cap f^n$ (L). Let r be a positive integer which is prime and larger than 2N+2. Let i=((r-1))/2, j=(r+1)/2. Then i>N, j>N, and i+j=r.

Now, since $K \subset f^i(L)$, there is an arc L_1 of L such that $f^i(L_1) = K$. Then $L_1 \subset f^j(K) = f^{i+j}(L_1) = f^r(L_1)$. Then there is a point $y \in L_1$ such that $f^r(y) = y$. Since $y \in L_1$, $f^j(y) \in K$, and $K \cup L = \emptyset$., this implies that $f(y) \neq y$. Since r is prime we have the period of y is r. This establishes Theorem.

In [7] coven proved that the following theorem for maps from R to itself. We will generalize the same theorem to maps from D to itself.

3.6. Proposition

Let $f:D \rightarrow D$ be a continuous map. Then f is transitive and has a point of odd period greater than one if and only if f^2 is transitive and f has dense periodic points.

Proof:

Suppose that f is transitive and has a point of odd period greater than one. Since f is transitive. Then by Proposition 3.2, f^2 is transitive and by Theorem 3.5 f has a dense periodic point.

Now Suppose that f^2 is transitive and f has a dense periodic point. Since f^2 is transitive.

Then by Definition 2.4, f is transitive .Since f² is transitive and f has a dense periodic point. Then by Theorem 3.4 f has a point of odd period.

3.7. Proposition

Let $f:D \rightarrow D$ be a continuous map. Then f^2 is transitive and f has dense periodic points if and only if f is totally transitive map.

Proof:

Suppose that f² is transitive and f has a dense periodic point. Then by Proposition 3.2, fⁿ is transitive for every n>0 and hence f is totally transitive.

Now Suppose that f is totally transitive. Then by Definition 2.4 f^2 is transitive and by Theorem 3.5f has dense periodic points.

3.8. Proposition

Let $f:D \rightarrow D$ be a continuous map, f is totally transitive if and only if f is topologically mixing.

Proof:

Case (1): To prove the topological mixing map imply the totally transitive

Assume that f is topologically mixing. Then By Definition 2.4, for every pair of non-empty open sets U and V in X there exists a positive integer n such that $f^n(U) \cap V \neq \emptyset$ and Definition 2.8 implies, there exists a positive integer n such that $f^k(U) \cap V \neq \emptyset$ for every k > n. Hence f^n is transitive for every n > 0 and so f is totally transitive.

Case two (2): suppose that f^n is transitive for every n>0 imply the topological mixing map. Since f^n is transitive for every n>0. Then f^2 and f are transitive. So by Theorem 3.5 f has a dense periodic point. Thus by proof of Theorem 3.3 f is topologically mixing.

3.9. Proposition

Let $f:D \rightarrow D$ be a continuous map and f is piecewise monotone, f is totally transitive if and only if for every arc $K \subseteq D$, there is an n such that $f^n(K)=D$.

Proof:

Assume that f is totally transitive. To prove that for every arc $K\subseteq D$, there is an n such that $f^n(K)=D$. We have two cases:

Case one: there is an arc $L\subseteq D^{\circ}$ such that $f^{\circ}2$ (L)=D. If K is an arc such that $K\subseteq D$. Then by Proposition3.7, $f^{\circ}2$ is transitive and f has dense periodic points and by Theorem 3.3, there is an n such that $L\subseteq f^{\circ}n$ (K). Thus $f^{\circ}(n+2)$ (K)=D.

Case two :assume that $f^2(L) \neq D$ for every arc $L \subseteq D^{\circ}$. Let e_1 be start point in D and e_2 be endpoint in D. Since f is onto, either $f^{\circ}(-1)$ $(e_1) \subseteq \{e_1, e_2\}$ or $f^1(e_2) \subseteq \{e_1, e_2\}$. This implies that either $f^2(e_1) = \{e_1\}$ or $f^2(e_2) = \{e_2\}$. We assume the former. Let q be the smallest turning point of f^2 . Then f^2 has no fixed points in (e_1, q) and $y \triangleright f^2(y)$ for every $y \in (e_1, q)$. (If not, then $y \triangleright f^2(y)$ for every $y \in (e_1, q)$, and hence $[e_1, q]$ is f^2 -invariant). But $f^2(q, e_2) \subseteq [m, e_2]$ for some m > 0. Thus $f^{\circ}(2n) = [q, e_2] \subseteq [m, e_2]$ for every $p \in (e_1, e_2)$ for every $p \in (e_2, e_2)$.

transitive.

Now suppose that for every arc $K\subseteq D$, there is an n such that $f^h(K)=D$. Then immediately f is totally transitive.

Reference:

- [1] Alseda L., Kolyada S., Llibre J., Snoha L., Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc., No. 351, pp, 1551-1573, (1999).
- [2] Sabbaghana M., Damerchiloob H., A note on periodic points and transitive maps, Mathematical Sciences, Vol. 5, No. 3, pp. 259-266, (2011).
- [3] Fotiou A., Deterministic chaos, University of London, MSc Thesis, (2005).
- [4] Banks, J., Regular Periodic Decomposition for Topologically Transitive Maps, Ergodic Theory and Dyn. sys., Vol.17, pp. 505-529, (1997).
- [5] Bae, J. S. and Yang S. , ω -limit Sets for Maps of The Circle, Bull. Korean, Math. Soc., Vol. 25 No.2 pp. 233-242, (1988).
- [6] Block, L. S. and Coppel, W.A., Dynamics in one dimension, Notes in math., No. 1513, Springer-Verlag, Berlin, (1992).
- [7] Coven, E. M. and Mulvey, I., Transitivity and The Centre for Maps of the Circle, Ergod. Th. & Dynam. Sys., 6, PP.1-8, (1986).

