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ORIGINAL STUDY

Functions Approximation by Spectral Graph Wavelets

Hawraa A. Almurieb a,*, Ali S. ALmshlab b

a Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
b Sayid ALbulagha School, Dhi Qar Education Directorate, Nasiria, Iraq

Abstract

Approximating function by using Spectral Graph Wavelets is an interesting direction in approximation theory. We
essential to well choosing the space of functions that are approximated by Spectral Graph Wavelets. Lp spaces of
functions are fantastic choices to study It is more interesting to take the value 0<p< 1. In this paper, new formulas of
Spectral Graph Wavelets were constructed and proved to get good rates of approximation. Fundamental properties of Lp

Graph Wavelets transform s (Lp GWT) are studied, such as, inversion, scaling Limit and approximation Wavelets.
Finally, existence of best approximation can be concluded here for Graph functions in terms of SGWT.

Keywords: Approximation, Spectral Graph, Wavelets, Lp

1. Introduction

I n many papers, authors define many formulas of
Spectral Graph continuous Wavelet Transform.

For examples, continuouswavelet transformhasbeen
introduced in L2ðRÞ by [1]. When a new formula is
defined, it should have the appropriate properties to
best fit the target function. Note that the graphwe use
in this paper is the simple undirected graph, which
implies a symmetric adjacency matrix. Moreover we
consider non-negative weights for the graph we
define Lp; p< 1 wavelet transform, for a given func-
tion defined on the vertices of a weighted graph, we
need to define jðsxÞ. For this purpose, we need to go
back to fourier transform to construct a basis for the
spectral graph wavelet transform. Now, we begin
defining Graph Fourier Transform,

Definition 1.1. Graph Fourier Transform
For a given function f : V/R on vertices of a graph ,
we define�Lf�ðmÞ¼

X
m�n

am;n
�
f ðmÞ� f ðnÞ� ð1Þ

For all adjacent vertices m and n:
Beginning with the graph Laplacian L ¼ D� A is a
real symmetric matrix, has a set of eigenvectors,

denote by cl for l ¼ 0; : : : ; N � 1, with set of ei-
genvalues ll

Lcl ¼ll cl ð2Þ
For any function f2RN defined on the vertices of

G, its graph Fourier transform bf is defined by

bf ðl Þ¼XN
n¼1

c*
l ðnÞf ðnÞ; l ¼ 0;…;N � 1 ð3Þ

Where the inverse transform is

f ðnÞ¼
XN�1

l ¼0

bf ðl Þcl ðnÞ ;n¼ 1;…;N ð4Þ

2. Lp spectral graph wavelet transform

Lp SGWT can be defined in term of the choice of a
kernal function g : Rþ/Rþ that satisfies

gð0Þ¼0 and lim
x/∞

gðxÞ¼0 ; ð5Þ
In particulardTgf ðl Þ¼gðll Þbf ðl Þ where Tg¼gðl Þ ð6Þ

With inverse fourier transform,

Tgf ðnÞ¼
XN
l ¼0

gðll Þbf ðl Þcl ðnÞ ð7Þ

Wavelet at scale t is
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Tg
t¼gðtLÞ ð8Þ

Applying the above operators at each vertex
gives

jt;n¼Tt
g dn; ð9Þ

Where dn is the location of j w.r.t vertex n
For a given mother function jt;n, with scale t and

location n, we define Lp SGWT in Lp space, with p<
1, by a kernel g as follow

jt;nðmÞ¼
XN
l ¼0

��gðtll Þc*
l ðnÞcl ðmÞ ��p ð10Þ

where n;m ¼ 1;…;N
Also, set

wf ðt;nÞ¼
�
Tt

gf
�
ðnÞ¼

XN
l ¼0

��gðll Þbf ðl Þcl ðnÞ
��p ð11Þ

to be the wavelet coefficient.

3. Properties of Lp SGWT

In this section, some properties are studied for Lp

SGWT. We first estimate an inverse formula for the
transform under admissible condition.

Theorem 3.1.
Suppose that Lp SGWT with kernel g satisfies the
admissibility condition

Z∞
0

jgðxÞj2p
x

dx¼Cg < ∞

and gð0Þ ¼ 0; then

1
Cg
�
p
�XN�1

n¼1

Z∞
0

wf ðt;nÞjt;nðmÞ dt
t
� f ðmÞ�bf ð0Þc0ðmÞ

Proof:
By (10) , (11) and admissibility condition, we have

1
Cg

XN�1

n¼1

Z∞
0

wf ðt;nÞjt;nðmÞ dt
t

¼ 1
Cg

Z∞
0

1
t

X
n X

l

��gðtll Þbf ðl Þcl ðnÞ
��pX

l 0

��gðtll 0 Þc*
l 0 ðnÞcl 0 ðmÞ��p!dt

� C
�
p
�

Cg

Z∞
0

1
t X

l ;l 0¼0

��gðtll 0 Þgðtll Þbf ðl Þcl 0 ðmÞ��pX
n

c*
l 0 ðnÞcl ðnÞ

!
dt

Since of orthonormality of the cl , we get

1
Cg

XN�1

n¼1

Z∞
0

wf ðt;nÞjt;nðmÞ dt
t

�C
�
p
�

Cg8<:XN�1

l ¼1

0@Z∞
0

jg2ðtll Þjp
t

dt

1Abf ðl Þcl ðmÞþbf ð0Þc0ðmÞ
9=;

¼ f ðmÞ � bf ð0Þc0ðmÞ
Since gð0Þ ¼ 0; and admissibility condition on

ðtll Þ .

Lemma 3.2.
Let G be a weighted graph, L the graph Laplacian
(normalized or non-normalized) and s> 0 an
integer. For any two vertices m and n, if dGðm; nÞ> s
then ðLsÞm;n ¼ 0.
If two kernels g and ~g are close to each other in some
sense, then the resulting wavelets should be close to
each other. More precisely, we have the following
theorem

Theorem 3.3.
Let jt;n ¼ Tt

gdn and ~jt;n ¼ T
~g
tdn be the wavelets at

scale t generated by the kernels g and ~g. If
gðtlÞ � ~g ðtlÞp � CðtÞ for all
l2½0; lN�1� ; then jt;nðmÞ � ~jt;nðmÞp � Cðt; pÞ for
each vertex m.
Proof: First recall (10)

jt;nðmÞ¼
X
l

��cl ðmÞgðtll Þc*
l ðnÞ

��p
Thus,

kjt;nðmÞ � ~jt;n ðmÞkpp

¼
�����X

l

��cl ðmÞgðtll Þc*
l ðnÞ

��p�X
l

��cl ðmÞ~gðtllÞc*
l ðnÞjp

�����
p

p

68 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2022;1:67e71



¼
X
l

�����
�����X

l

cl ðmÞðgðtll Þ � ~g ðtlÞÞc*
l ðnÞ

�����
p�����

p

� C
�
t;p
�X

l

jcl ðmÞcl ðnÞ*jp
2

� C
�
t;p
�X

l

jcl ðmÞcl ðnÞ*jp

� C
�
t;p
�

The following theorem we show that any two
kernels of conditions of Theorem 3.3, such kernels
can be approximated by a single monomial for small
scales.

Theorem 3.4.
Let g2LKþ1

p ; g be K þ 1 times continuously differ-
entiable, satisfying

gð0Þ¼0 ;gðrÞð0Þ ¼ 0 f or all r<K ;and gðKÞð0Þ ¼ Cs0:

Assume that there is some t1 > 0 such that
gðtlÞp � B for all l2½0; t1lN�1�. Then, for ~gðtlÞ ¼
ðC =K!ÞðtlÞK we have

CðtÞ¼gðtlÞ� ~gðtlÞp � B
tKþ1lKþ1

N�1

ðKþ 1Þ!
for all t< t1.
Proof:
By hypothesis of first K � 1 derivatives of g we
conclude Taylor expansion at tl as follow,

gðtlÞ¼C
ðtlÞK
K!

þ gðKþ1Þ ðx*Þ ðtlÞ
Kþ1

ðKþ 1Þ!
For some x*2½0; tl�. Now fix t< t1. For any l2 ½0;

lN�1�, we have tl < t1lN�1, and so the correspond-
ing x*2½0; t1lN�1�, we get

gðtlÞ� ~gðtlÞp�C
ðtlÞK
K!

þgðKþ1Þ ðx*Þ ðtlÞ
Kþ1

ðKþ 1Þ!
� C
K!

ðtlÞKðtlÞp

B
tKþ1lKþ1

ðKþ 1Þ! � B
tKþ1lKþ1

N�1

ðKþ 1Þ!
For all l2½0; lN�1�

For any kernel g satisfies theorem 3.3 , we get the
following main result about localization,

Theorem 3.5.
Let G be a weighted graph with Laplacian L. Let m
and n be vertices of G such that dGðm; nÞ>K. Then

jt;nðmÞ
kjt;nkp

�Dt

For some t;D s.t.t<minðt1; t2Þ:
Proof:
Set ~gðlÞ ¼ gðKÞð0Þ

K! lK and ~jt;n ¼ T~g
tdn . We have

~jt;nðmÞ¼gðKÞð0Þ
K!

tK
X��~gðtll Þc*

l ðnÞcl ðmÞ ��p¼0

by Lemma (3.2), as dGðm; nÞ>K. By Theorems
(3.3).and (3.4).we have

jt;nðmÞ� ~jt;nðmÞ¼jt;nðmÞ � tKþ1 lKþ1
N�1

ðKþ 1Þ!B

Also, we have

k~jt;nkp¼ tK
gðKÞð0Þ
K!

��LKdn
��
p

and we have from Theorem (3.4)

kjt;n � ~jt;nkp � tKþ1 lKþ1
N�1

ðKþ 1Þ!B

By quasi-triangle inequality we get

kjt;nkp � C
�
kjt;nkp�kjt;n � ~jt;nkp

�

� tK
�
gðKÞð0Þ
K!

��LKdn
��
p
� t

lKþ1
N�1

ðKþ 1Þ!B
	

On the other hand,

kjt;nkp � Ckjt;n � ~jt;nkp
Hence,

jt;nðmÞ
kjt;nkp

� C
t lKþ1

N�1
ðKþ1Þ!B

gðKÞð0Þ
K!

��LKdn
��
p
� t lKþ1

N�1
ðKþ1Þ!B

An elementary calculation shows

lKþ1
N�1

ðKþ1Þ! t
gðKÞð0Þ

K!

��LKdn
��
p
� t lKþ1

N�1
ðKþ1Þ!B

�
2 lKþ1

N�1
ðKþ1Þ!

gðKÞð0Þ
K!

��LKdn
��
p

t

If
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t � C
gðKÞð0Þ

K!

��LKdn
��
p

2 lKþ1
N�1

ðKþ1Þ!B

The proof completes with

D¼C
2 lKþ1

N�1
ðKþ1Þ!BK!

gðKÞð0Þ��LKdn
��
p

and t2¼
gðKÞð0Þ��LKdn

��
p
ðKþ 1Þ

2lKþ1
N�1B

D¼C
2 lKþ1

N�1
ðKþ1Þ!BK!

gðKÞð0Þ��LKdn
��
p

and t2¼
gðKÞð0Þ��LKdn

��
p
ðKþ1Þ

2lKþ1
N�1B

Now, we study frames of wavelete (11) with Sf ðnÞ,
with kernel h and bounds A, B

Theorem 3.6.
Given a set of scales ftjgJj¼1, the set F ¼ ffngNn¼1 ∪
fjt j ;ngJ N

j¼1 n¼1
forms a frame

A
��f��

p
���Wf ðt;nÞ

��
p

��Sf ðnÞ
��
p
� B

��f��
p

for any scaling function coefficients Sf ðnÞ, with
kernel h and bounds A;B given by

A¼ min
l2½0;lN�1�

GðlÞ;and

B¼ max
l2½0;lN�1�

GðlÞ;

where

GðlÞ¼ jhðll Þjp þ
X
j

��g�tj l���p
Proof:

Let f2LpðRNÞ be any vertex function then by (11)

��Wf ðt;nÞ
��p
p
¼
XN
n¼1

��Wf ðt;nÞ
��p

¼
XN
n¼1

XN�1

l ¼0

��gðtll Þcl ðnÞbf ðl Þ��p

� C
XN�1

l ¼0

jgðtll Þjp
��bf ðl Þ��p

Similarly, for any scaling function coefficients Sf ;
generated by h we have

��Sf ðnÞ
��p
p
¼
XN
n¼1

��Sf ðt;nÞ
��p

¼
XN
n¼1

��hðll Þcl ðnÞbf ðl Þ��p

� C
XN�1

l ¼0

jhðll Þjp
��bf ðl Þ��p

Combining terms together, we get

A
XN�1

l ¼0

��bf ðl Þ��p�C
XN�1

l ¼0

 
jhðll Þjpþ

XJ
j¼1

��g�tjll ���p!
��bf ðl Þ��p¼C

XN�1

l ¼0

Gðll Þ
��bf ðll Þ��p�B

XN�1

l ¼0

��bf ðl Þ��p

4. Approximation by Lp SGWT, application in
approximation theory

In this section, we benefit from the construction of
Lp SGWT to find a best approximation of vertex
functions out of space of Lp SGWT. As the approx-
imation began with polynomials, we approximate
the kernel g with a polynomial p in a way that leads
to the approximation of their corresponding wavelet
operators in Lp spaces. The following theorem
shows that the degree of approximation between the
two wavelets is at most the degree of approximation
between their generators.

Theorem 4.1. Polynomial Approximation:
For any upper bound of L , that is , lmax � lN�1 and
fixed t> 0, let Pn be a polynomial best approximant
of gðtxÞ with degree of approximation EnðgÞp ¼ B for
the space of polynomials of degree at most n. Then
the approximate wavelet coefficients
~wf ðt; nÞ ¼ ðPðLÞf Þn satisfies��wf ðt;nÞ � ~wf ðt;nÞ

��
p
� C

��f��
p

Proof.
By using (11) we get

��wf ðt;nÞ � ~wf ðt;nÞ
��p
p
¼
�����X

l

��gðtllÞbf ðlÞclðnÞ
��p

�
X
l

��PðtllÞbf ðlÞclðnÞ
��p�����

p

p

¼
�����X

l

��ðgðtllÞ �PðllÞÞbf ðlÞclðnÞ
��p�����

p

p
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� C
�
p
�X����ðgðtllÞ �PðllÞÞbf ðlÞclðnÞ

��p��p
p

� C
�
p
�
Bp
��f��p

p

The last step follows from the orthonormality of
the cl

5. Existence of best approximation

In order to approximate vertex functions by
wavelets of spectral graph type, here is a theorem
that confirm the possibility of existence of best
approximation of vertex functions out of the space of
Lp SGWT, namely U:

Theorem 5.1.
For any f2LpðRNÞ, then there exist wf2U of the
from (11) that is generated by a graph G and a
kernel g s.t��f �wf ðt;nÞ

��
p
� 3

Proof:
Set ~wf2U, with a polynomial P, that satisfies The-
orem (4.1), so that��wf � ~wf

��
p
<C
�
p
�
B
��f��

p

Also, set��f � ~wf ðt;nÞ
��
p
� 3

2

which is true by WEIERSTRASS Theorem, then by
Quasi-Triangle Inequality, we get the desired result��f �wf ðt;nÞ

��
p
� C

h��f � ~wf ðt;nÞ
��
p
þ��wf � ~wf

��
p

i

� C
h3
2
þB

��f��
p

i
� 3

By choosing the constant B; that satisfies

B� 3

2
��f��< 3
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