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Abstract

It is arbitrary that, Fredholm Integral Equations have got many variable
applications in different scientific domains. So, such brand of equation has attracted
many scientists’ and researchers’ attention in mathematics science.

Then, in this research, the researcher will produce new authentic method to
solve the second kind inhomogeneous Fredholm Integral Equation whose name
is Adomian Decomposition Method. The procedural steps of this method will be
produced and explained with its original as well as its modified modes in terms of

solution process through multiple kinds of examples.

Keywords
Fredholm Integral Equations, Adomian Decomposition Method, Modified

Decomposition Method.
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1. Introduction

It is evident that, Fredholm Integral Equ-
ation exists in many fields of scientific app-
lications. For example, Newton’s law, stating
that, the rate of change of the momentum of a
particle is equal to the force acting on it, can
be translated into mathematical language as
a differential equation. Similarly, problems
arising in electric circuits, chemical kineti-
cs, and transfer of heat in a medium can all
be represented mathematically as differential
equations. These differential equations can be
transformed to the equivalent integral equati-
ons of Fredholm types.In mathematic field of
science, Fredholm came to the prominence as
a Swedish scientist who established the brand
of (Integral Equation) in the applications mat-

hematical domain.

In this sense, this scientist was enabled to
convert the boundary value problems into in-
tegral Equations which coined lately by his
name. In the last years of previous century,
this mode of equation (Fredholm Integral
Equations) was employed effectively in vari-
able fields of physical and chemical problems,
accodingly. Consequently, the scientific cont-
ribution of such Equation engaged many rese-
archers to study it deeply.

The researcher will produce the method to
solve these problems which is termed Adomi-
an Decomposition Method. This method was

discovered by the scientist Adomian in 1990.
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It 1s well known that, Adomian De-
composition Method has been used by many
scientists and engineers in order to solve high-
ly nonlinear integral equations which can not
be solved by other methods. But this method
has been used globally to solve the second
kind from Volterra integral equations and Fre-
dholm integral equations and it is impossible
to be used regardimg to solve the first kind

from these two equations.

Haifa Ali and Fawzi Abdelwahid have
been published a scientific article under a tit-
le (Modified Adomian Techniques Applied to
Non-Linear Volterra Integral Equations) in
(Open Journal of Applied Sciences) in 2013
to explain Adomian Decomposition Method
to solve Volterra integral equations. On the
other hand, I explained the mechanism and
procedures this method regarding to deal with
Fredholm integral equations.

2. Basic Definitions

It 1s understood that, some definitions have
been selected in order to help us to understand
integral equations and their types generally as
well as to understand Fredholm integral equa-
tions, specificly.

Definition 1. [1]An integral equation is an
equation that involves the unknown function
u(x) that appears inside of an integral sign.
The most standard type of an integral equation
in u(x) is of the form
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h(x)
u(x)= f(x)+ 1 J.K(x,t)u(t)d

g(x)

(2.1)

Definition 2. [2] If the function f(x)=0
in equation (2.1), then equation (2.1) is called
homogeneous. Otherwise it is called inhomo-

geneous.

Definition 3. [3] If the limits of the inte-
gral in equation (2.1) are fixed so, is called a
Fredholm integral equation.

These types of equations are classified into
two types, the general form of Fredholm inte-

gral equation of the first kind is
b
fE)=A[K(xpu@d @2

where, the unknown function u(x) appears
inside the integral sign.

The second kind given by
b
u(x)= f(x)+ A j K(x,Hu)d (23)

a
where, the unknown function u(x) appears

inside and outside the integral sign.

3. The Adomian decomposition method

Polyanin and Manzhirov conclude that,
this method arises to work for linear, nonli-
near integral equations, differential equations
and integro-differential equations.

We shall explain the technique of this met-
hod by expressing u(x) in equation (2.3) in

the form of a series

u(x)= iun (x) (3.1

or equivalently,
u(x)=uy(x)+u, (x)+u,(x)+... (3.2)

Where the elements of, u,(x) n>0 will be
identified redundantly. The mode of the Ado-
mian decomposition method links itself with
finding the elements u,,u,,u,, .... singly. The
setting of these elements or components can
be solved in a fair easy way through a redun-
dant relation which includes normally simp-
le integrals which in turn can be evaluated,

simply [4].

However, Collians maintains that, firstly,
we set the value of u,(x) as the term outside
the integral sign of equation (2.3)

uy(x) = f(x)

To found the redundant relation, we substi-
tute (3.1) into the Fredholm integral equation
(2.3) to obtain [5]:

0 b 0
>u,(x)=f(x)+4 j K(x,t)(Zun (x)
n=0 a n=0
or equivalently, .
1y () 2, () 11, () + . = £ () + A K (0 0)[ug (6) + 14, (0) +.
Usman and Zubair state that, we can get

u, (x)

wey U, (x) ... of the unknown function

the value of the components u,(x)

u,(x)

u(x) as follows:
iy (x) = f(x)

u, (x) =4 j K (x,0)u,(1)d
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that, we identify the zeroth component by all

terms that are not included under the integral
sign. Therefore, we obtain the following re-

e, () =x[t () k=0,
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b
1w, (x) = in(x,t)ul(t)d
b currence relation
u,(x) = A j K (x,0)u,(t)d 4y (X) =" —x,
b
t,, ()= A[ K(x,t e, (0, n=0. (33) Hence. °

Then, we can get the solution u(x) by
u(x) =uy(x) +u, (x)+uy(x) +uy(x) +...

that converges to a closed form solution [6].

3.1. Some Applications

I have chosen these group of examples
which are employed to explain the Adomian
decomposition method clearly and compre-
hensively as compared with other modes of

examples.

Example (1):
To Solve the following Fredholm integral

equation

1
u(x)=e" —x+xju 0 . (3.4)

Here, Wazwaz sees that, the Adomian
decomposition method assumes that, the so-
lution u(x) has a series form given in (2.1).
Substituting the decomposition series (3.1)
into both sides of (3.4) gives [7]

o0 1 00
Zun (x)=e" —x+xft2und . (3.5)
n=0 o n=0

or equivalently,

1

uy(x)+u, (X)+u,(x)+...=¢" —x+xIt[u0(t)+ul(t)+...]d

It i1s understood that, Hosseini explains

u,(x)=e" —x,

u,(x)= xju (d = xjt(e’ —-1)d :Ex,

1 1
2 2
w,(xX)=x|u ()d =x|=t’d ==
2 .([ 1 03 9
1 1
u3(x)=xJ.u ,()d —xf%ﬁd = 22
0 0
1 1 2 2
u,(x)=x|t ,(t)d =x|—t’d =——x,
! ! ’ !z 281

and so on [§].

Using (3.1) gives the series solution

=e' — +z 1+l+l+L+
u(x)=e" —x 3x 379 7 ) e

It is clearly that, the infinite geometric se-
ries at the right side has @, =1, and the ratio
r=— . The sum of the infinite series is there-
fore given by

b

3
S= 1—5, (3.7)

1—
3

substituting (3.7) into (3.6) gives the exact
solution
u(x)=e".
Example (2):
To Solve the following Fredholm inte-
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gral equation

z 7’ ~
2 u(x)=sinx—x+(1——jx+(———)x
u(x) =sinx—x+xJ.u(t)d. (3.8) 8 8§ @
° 4 6 6 8
It is knowledgeable that, Porter and Stir- +|Z % | |2 % |4 .
& s12) (512 409 (3.10)

ling maintain that, by substitute the decompo-
sition series (3.1) into both sides of (3.8) we

find By canceling the identical terms with op-
3. posite signs in (3.10), we will obtain the exact
Zu (x)=sinx—x+ xIZu d.(3.9) solution
0 n=0 u(x)=sinx.

or equivalently,

z Example (3):
uo(x)+u1(x)+u2(x)+...=sinx—x+x.f[u(,(t)Jru1 ) +.. 1 To Solve the following Fredholm integral
' equation

Then, we set all terms that are not included
under the integral sign as the zeroth compo-

4 |
=x+e ——+|u()d.
nent u(x)=x+e 3 _([ d . (3.11)

Malrknejad and Mahmoudi state that, sub-
uy(x) =sinx—x, stituting (3.1) into both sides of (3.11) gives

e, (¥)=x[u (Ve k> 0. i” (x):x+ex—i+jtiud
Hence, We obtain that, =" 3 9 !
or equivalent,

1

uy(x)=sinx—x, o (x) + 1, (x) + 11, (X) +... = x + " —§+It SO+ )+ H
2 2 2 ’
. V4
ul(x)zxj.uo(t)d =xI(s1nx—x)d =x—?x, Then, we set
0 0
2 PR > T uy(x)=px+e' ——,
u,(x)=x|u,@)d =x|(x—x)d =—x——2x,
(%) ! () l( s T e P, 0 =x[u, 0 20,
s v O
2 3 g2 p pu s Hence, 4
uy(x)= xjuz(t)tl =xj.(?x—6—x)d =6—x—ﬁx, uo(x)=x+ex .

4 6 6 8
T T T

z 1 1
h . 4 2
1, (x) = x| us (1)l _xj(—x—sz 0 ==, ”1(X)='([uo(f)d zit(ﬁe _E)d =5

and so on [9].

1 1
Hence, by using (3.1) gives the series solu- u,(x)= J.u (Hd = J}(%)d - %)
tion 0 0
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()= [u0d =[1)d =
w=Juod =[icha = 1.

0
and so on [10].
By using (3.1) we obtain,
. 402 1 1 1
u(x)=x+e' ——+—| l+—+—+—+.... |
3 3 2 8

4
(3.12)

It is clear that, the inﬁnite1 geometric series
has g, =1, and the ratio » =—. Therefore, the
sum of the infinite series is given by

1

S=——-=2.

1

-
2

The series solution (3.12) converges to the

closed form solution

u(x)=x+e*

4. The modified decomposition method

If the function f(x) consists of a mixture
of two or more of trigonometric functions, hy-
perbolic functions, polynomials, and others,
the evaluation of the components u,, ;>0
requires long time and difficult work.

Henceforth, Ali and Abdelwahid accept
that, we can set the function f(x) as the sum
of two partial functions, such as f,(x) and
f,(x) In other words, we can set,

F)= £+ f,(x)

we identify the component u,(x) by one
part of f(x) to minimize the size of calculati-
ons. We will use the other part of f(x) to find
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the value of the component u,(x) In other
words, the modified decomposition method

introduces the modified recurrence relation

uy(x) = f,(x)

u, (x)=f, + ﬂiK(x,t)uo (tHd

u,, (x)= A4 j K(x,Hu, (O)d . (4.1)

We can get the exact solution u(x) by cor-
rect selection of the functions f,(x) and f,(x)
and by using very few iterations, and some-
times by evaluating only two or three com-
ponents. The success of this method depends
only on the correct choice of f;(x) and f,(x)
and this can be made through experience only.
A rule that may help for the correct choice of
f;(x) and £, (x) could not be found until now.

We can not use this method if f(x) con-
sists of one term only, in this case the standard

decomposition method can be used [11].

4.1. Some Applications
Example (1):
To Solve the Fredholm integral equation

by using the modified decomposition method:

u(x)=e* -1+ j u(d . (42)

Firstly, we v&(l)ill solve this equation by the
“standard decomposition method” as compa-
red with modified decomposition method.

Substituting the decomposition series (3.1)
into both sides of (4.2) gives
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o0 1 o0
ZMn(x) =e' —1+jt2und . (4.3)
n=0 o n=0

or equivalently,

1

e =1+ [fuy () +u, () + .}

0

uy(x) +u, (x) +u, (x)+...=

we identify the zeroth component by all
terms that are not included under the integral
sign. Therefore, we obtain the following re-

currence relation
U, (x)=e* =1, u, (x) = juk(z)d k> 0.
Hence,

uy(x)=e" -1,

u, (x) = ju (O = jt(ef ~1)d

0

u (x) = d@—D—g}

0-31- [_1]-0_

uxm=juxnd=j%

u,(x) = {%} :%

0

uy(x) =

0= a0 =L

uy(x) = |:%} :%

0

174

0| —

0= [0 =]

u,(x)= {%ﬁ| = é

and so on [10].
By using (3.1) we obtain,

_er ] 1+1+1+1+
u(x)—e E E Z g el (4.4)
It is clear that, the infinite geometric series
has a, =1, and the ratio » =—. Therefore, the

sum of the infinite series is given by

S= % =2.
1——
2

The series solution (4.4) converges to the
closed form solution

u(x)=e"

To solve equation (4.2) by using the mo-
dified decomposition method, Wazwaz sees
that, first, we set

J(x)

hence,

filx)=e", f,=—

By using (4.1) we obtain,

=e" —1

~ i) =¢'
ul(x)=—1+ju D,
ul(x)=—1+je d ,
u](;c)=—1+[ef(t—1)]1

u,(x) = —1+|e'(0)— e’ (0~ 1)

uy(x) = =1+[0—(-1)]
u,(x)=-1+1

u(x)=0

It is clearly that, each component of
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u,, k=1
is zero. So the exact solution given by [12]
u(x)=e".

Obviously, we got the solution for the equa-
tion (4.2) in a standard Adomian method after
we got the value of four components. While,
we were able to get the solution after we got
the value of two components when we used
the modified Adomian decomposition meth-
od. This mode of solution “ modified Adomian
decomposition method” has been employed to
reduce the mathematical calculations as com-
pared with the standard technique.

Example (2):
To Solve the Fredholm integral equation
by using the modified decomposition method:

1
u(x)=3x+e“—6i(1r +3e*)+ju (t)d .
0

Almazmumy and Hendi conclude that,

first, we set,
f(x)=3x+e" —%(17 +3e")

hence,

f=3xre™ ol 43¢)
By using (4.1) we obtain,

Uy =f1(x):3x+e4x,

ul(x):—()i(lz +3e4’)+ju0(z)d,

u, (x) = —%(17 +3e4’)+jt(3z+e4f)i ,
0

Ali yasir Hammood Altameemi

1
ul(x):—dsi(l’ +3e4’)+J.(3t2 +e "W,
0

1

1 (313 ¥
=—— (T +3e")+| —+—(4r-1
() === +3¢%) 363( )}

0

u, (%) =—6i(7 +3e*)+ 1+;_4(3)}{_L}

1 b 3et T
u(x)=—@0 +3e")+—+—
1 (%) 5 ( ) t s

u (x)=0

It is clearly that, each component of

u,, k=1

is zero. So the exact solution given by [13]

u(x)=3x+e*.

Example (3):

To Solve the Fredholm integral equati-

on by using the modified decomposition met-
hod:

2
u(x)= sinx—x+xfu ) .

0
Davies states that, first, we set
f(x)=sinx—x

hence,
fi(x)=sinx, f,=—x

By using (4.1) we obtain,

u, = f(x)=sinx

u,(x)=—t +tju D .

1
ul(x)z—t+tftsintd,

0 =
2

u, (x) =~ +t[tsint —t cost]
0
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u, (x) =t + t[l - %(0)} ~[o-o0@)]

u, (x) =~ +1[1-0]

u (x)=—t+t

u,(x)=0

It is clearly that, each component of
u, k=1

is zero. So the exact solution given by [14]
u(x) =sinx.

5. Conclusion

It is clear that, the integral Equations have
got many applications in the fields of scienc-
es and to help us understanding the natural
phenomena in terms of design for instance.
In these papers, we produce and explain new
authentic and dependable method which is
called (Adomian Decomposition Method) in

order to solve (Fredholm integral Equations).

The researcher produced and explained ac-
cordingly, the procedural mechanism of this
method in terms of its original mode as well
as its modified one through variable sets of

examples.
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Abstract
possibility measure as a set function £ : 3 —[0,1] where S is @
-field. Possibility variable is measurable function of possibility space to set
of real number, in this paper we called possibility measure as # -measure and
possibility variable is # -variable.
In this paper we discuss the kind of convergence in © -measure and study

relations between them by prove some important theorem.

Keywords

0 -field, measurable space, © -measure, convergence , © -variable.
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1-Introduction

Possibility theory is mathematical theory
with certain kind of uncertainty and is substi-
tutional to probability theory [1], possibility
measures were introduced by Zadeh [2] in
1978.

In this paper we study the kinds of con-
verge in # -measure first almost everywhere.
We called almost everywhere £ -almost ev-
erywhere . After that define almost uniform-
ly, uniform convergence is a kind of conver-
gence stronger than point wise convergence.
It is clear from these definitions that uniform
convergence imply pointwise convergence for
every, and define converge in

P - measure many author discuss converge
in measure (see [3,4,5]) in this paper we dis-
cuss converge in another measure is called #
- measure .

In [6] discussion convergence in another
measure.

After that discussion of kinds of converge
in possibility variable as converge almost
surely, converge in mean and converges in dis-

tribution, and prove some properties theory.

2.Preliminaries

2.1. Definition [1]

A family 3 of subsets of
called a o-field on a set X if

(1) Xe3

Q) If A€ 3 ,then 4°€J

(3)If 4, €3,n=12,. then |J4,6 €T

n=l1

a set X is

Firas Hussean Maghool and Zainb Hassan Radhy

(X, ) is a measurable space, where X is
asetand 3J is o -field on X

a subset A of X is called measurable to
the o-field I, forall 4e J is called a mea-
surable set.

2.2. Definition [5]

Let (X,3) is a measurable space, the set
function p : 3 —»[0,1]is called p- measure
if it is holds the following axioms:

(HpX)=1, p(¢)=0

(2) For every sequence{4,} in F, we have

p@ A))=max{p(4,}

1<n<o

a space is a tripe (X, 3, p) where X isa
set, 3 is o - field, p- measure on J.

2.3. Definition [3]
Let (X,S,p) is a p- measure. A func-
tion & : X — R is said
a p-variable if X isa Borel measurable
: i.e.
ElA)={X ed }=({x eX :&(x)ed |e
Let & bea p-variableon (X.3. 0).The
p - distribution 9 defined as *x ‘R = 0] of
any p -variable &, (x) = p{we X : £(w) < x}

forany xe R.

2.4. Definition [3]
Let Xisa p- variable on (X,3, p), then
the expected value of X is defined as

E(X)= T piX =rd — f piX <rid
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2.5. Theorem
Let (X,3, p) be p-measure space, then
(1) 0< p(A)<1.

(2) p(d4 UAy) < p(A) + p(dy)
(3 If 4,4,eFand
p(A4) < p(4y) .

4) If 4, 4,..

p(U4y) < maxip(4,)}.
k=l 1<k<n

O pJa <Y o)

k=1 i=1
(6) p(A N Ay) < minip(;) p(4y)
(7) (2Am lA)pZI _(2A)p+(1A)p

A, c A4,then

LA eF, then

(8)If 4,4, € F, then. p(A-A )>p(A))-
p(A)

In the following definition we define the
kind of converge by p - measure by using the
definition in [1]and [6] that was use converge

another measure

2.6. Definition

Let (X,3, p) p-measure space, sequence
(f, )of real-valued measurable function on
X said be

1- converge p-almost everywhere to a.e
real —valued measurable function / denoted
by f, a—if if for each £ >0 and x € X ex-
istaset £e3J and a natural number N such
that p(E)<¢ and
andeachn> N .

2- converge p-almost uniformly to an a.e

real —valued measurable function / denoted by
f, - f ifforeach & > 0 thereisaset £ € 3
and a natural number N such that p(EF) < &

and

fu= 11, =sup
xeE*¢

fi0)-f@|<e, n=N

3- converge in p-measure to an a.c

real —valued measurable function f de-
P

noted by f, —f if for each &>0

lim p(x € X : f, (¥) - f(x)|2&)=0.

2.7. Definition [7]

Let (X,S3, p) p-measure space is called
complete if I contains all subsets of measure
zero. Thatis, if He 3,p(H)=0 and AcH
then A € 3.

2.8. Proposition
Let (X,3,p) complete
space and f =g a.e if f is measurable on

p -measure

He3 aswell g

Proof

Let e Rand N ={xe H : g(x) # f(x}
then N € 3 and p(N) =0

Now

{xeH:g(x)>y}={xeH|N:g(x)>y}U{xe N:g(x) >y}

={xeH[N: f(x)>ytU{xeN:g(x)>y}

2.9. Proposition
Let (X,3,p) complete
space, f, is sequence of measurable func-

p- measure

tionon HeJ is convergesto f a.e, then

f, ()= f@|<e. X€E® ¢ismeasurable on H.

2.10 . Theorem

Let (X,3, p) is p-measure space and
f, is sequence of
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real-valued measurable functions on X,
if asequence f, converge
p - almost uniformly , then itis converge

in the p-measure to f.

Proof
"+ the sequence f, converges p-al-

most uniformly to 1,

there exist measurable set H and a natural
number N such that

p(E)y<gand , €>0

and
L@~ f@)<e . v
and n>N.

now , forall n>N.

{xe X: fn(x)—f(x)‘ZE}cH

Then YV neN
pUxeX:|f,(0)-f)]2e) <&.

xeX|H

2.11. Theorem

Let (X,3, p) p-measure space, f, isa
sequence of a.e real-valued measurable func-
tion on X , if a sequence fn converges p
-almost uniformly, then itis converges p -al-

most everywhere.

Proof

Let fn converges p - almost uniformly to
f, then for each n € N there is

a measurable set An for ,o(An)<l such
that f, — f uniformly of "

X |4, , Let A=O(X|An) then

pX 1 4) = p()4) < p4,) = 0

n=1

Thatis p(X | A)=0

Firas Hussean Maghool and Zainb Hassan Radhy

Then , for each x€ 4, f (x)— f(x) as
n — oo we gate fn—}f

2.12. Theorem
Let (X,3,p) is

space and f, is a sequence of a.c real-val-

a finite p-measure

ued measurable function on X . If the se-
quence f, converges
p -almost everywhere to f, then it is con-

verges p-almost uniformly to f.

2.13. Theorem

Let (X,3, p) is a p-measure space and
f, is a sequence of a.e

real-valued measurable function on X,
if asequence f, converge in

p-measure to f, then there exist a sub-
sequence f, to f, is converges p-almost
everywhere to f.

Proof
Let n, € N such that for all n = n,

1
plxeX:|f,()-fz) <=
Now , choose n, € N such that n, 2 n,

and forall n = n,

£, - ()| %) < 21

Next , choose 7, € N such that n; > n,
and for all n 2 n,

£, = ()] %) < 21

Continue this process obtaining an in-

olxeX:

plxeX:

creasing sequence (71, ) of natural numbers

PUXEX S, - F(0]2 ) <o
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For cach k € N et p -almost surely (a.s) to

4, ={xeX:

p- variable ¢ if exists an event S with
p{B}=1such that lim|¢,(x)—¢(x)|=0 , for
allxe B. S

2- a sequence ¢, 1s said to be conver-

.

s for all keN, p(4,)< 21 have

gent in  p-measure to a p-variable ¢ if
>g4=0,forall ¢>0.

3- a sequence ¢, is called convergent

> p(A,) converges
k=1

Then have p(limsup 4,) =0
in mean to ¢

i ot if lim E[¢, ()~ ()[1=0 , such that
A=limsup 4, =(U4, lim E[|¢, (x) 5(')|] . suck
k=1 j=k ¢,¢1,¢,,... be p- variables with finite ex-
Choose x€ X | A ,then dj e N | pected values.
xeX| A, then 4- a sequence ¢, is said to be convergent

in distribution to ¢ if ¢, — ¢ , atany point ¢
XIA XIU{XGX\fk(x) f(X)\> } o

such that ¢,¢,¢,,... be p- distribution of
ﬂ [X[xe X ‘fk (x) = f(x)‘ = } p-variable ¢£,¢,¢,,..., respectively.

k=g
k i [ee Xelfy 0=/ ()2 } 3.2. Proposition
Then for k> j |, (x)—f(x)‘<l Let £,¢0,¢5,. .be - Vafiable then ¢,
converges a.e to ¢ ifand only if for any £ >0
Let £>0, k, > j such that i <eg WV° havep[ﬁ G{xeX||é’n(x)—é’(x)| 25}0
then forall k > k, k, m=ln=m
3.3. Definition
‘f# (x) —f(x)‘ < % <g Let £,,{,n>1be p- variable defined in
the possibility measure space (X, 3, p). The
Therefore , for all xe X | A, sequence ¢, issaid converges p-uniformly
fi (X) > f(x) a.s to ¢ ifexist A, p(A;)— 0 such that &,
converges p-uniformly to ¢ in I—-A, for
Then f, — f almost everywhere. any k.

3. Relation between converge concept: 3.4. Proposition

3.1 .Definition Let ¢.,¢,,¢5,... be p-variable then ¢,
Let (X, 3, p) is p-measure space converges p - uniformly to ¢ if and only if

1- asequence ¢, issaid to be convergent ; ” X _ Sel=0
Jim o Ut X1[¢,00-¢ (0] 22
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Proof Proof
Let ¢, be converges p -uniformly a.s to ¢ Since ¢, converges p- uniformly a.s to
then for y>0 there exist g such that ¢ then
piB}<y and Jiilgop[U(xeXllé“n(x)—C(X)lzce}O
¢, converges uniformly tolon J|j. =
Then for any ¢ >0 there exists m >0 s.t From proposition 3.3.
€, ()= (x)<e where n>m and xe 3| S o
that G{(x e X[ (0—¢)|2 el B p(ﬂ Utxe X (¢, (0)-¢()]> 8}
n=m m=ln=m
Then < /{ e X 1[6,0-¢()2 e]
p(UCxeX |6, -C|ze) < p(B) <y =
n=m Taking the limit of m — o
Thus o
}}i_r)rgop( G(x e X [|¢,(x) - (x) 2 gJ =0 p(ﬂlu{x € X ¢, (x)=¢(x)|2 e} =0
In the second hand Then ¢, converges a.s to ¢ .
Let
- 3.6 .Theorem
imp( UG X100 - €022 =0 Lt ¢y g be povariable if £, con

verges p- uniformly a.s to ¢ then £, con-

For any &>0 then forany y>0, k21 verges in p- measure to ¢ .

there exists my,

Proof
o 1 y Since ¢, converges p - uniformly a.s to
p[ Ure X116, )~ ) z%] <7 £ then
o 0 1 o
Let ]{L:Jlnynk{x e XS, (x)-<¢(x)|= ;} 1£r010 pL L_J(x e X||g,(x0)-<¢(x)|2 gJ =0

1
Then p{p} <y we have Xi‘;}"ﬂ\; RS A From proposition 3.3.

for any k=1,2,...,and n>m, .
pixe X ||, (x)-¢(x) >}
3.5. Theorem B
Let £,¢,,¢5,... be p-variable if £, con- £p(U(xeX||§n(x)—g“(x)|ng

verges p- uniformly a.s to ¢ then £, con- =

verges a.s to ¢ . then £, converges in p-measure to ¢ .
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