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ORIGINAL STUDY

Analysis of the Effect of Vaccination, Efficient
Surveillance and Treatment on the Transmission
Dynamics of Cholera

Adedapo C. Loyinmi a,* , Adebisi S. Ajala a , Ijaola L. Alani b

a Department of Mathematics, Tai Solarin University of Education, Ijagun, Ijebu Ode, Ogun State, Nigeria
b Department of Mathematics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

Abstract

In this study, we presented a modified SIR-SI model to investigate the dynamics and potential controls for cholera
transmission, with an incident rate equipped with a saturation factor to investigate the combined impact of three vital
measures which include effective surveillance, vaccination campaign and proper treatment in case severity. We estab-
lished among other things, the qualitative analysis of the model to validate the results. Furthermore, the reproduction
number (R0) was found to be less than unity (1), through the stability analysis. Additionally, finite different scheme was
utilized in solving the differential equations of the model. MATLAB software was used for the numerical simulation to
examine the effect of these control measures on the population density, findings from the graphical solutions depicts that
these measures will aid in flattening the curve Cholera propagation in the population if properly implemented.

Keywords: Cholera, Stability, Endemic, Control strategies, Optimal control

1. Introduction

T he impact of common calamities including
extreme weather, wildfires, earthquakes, heavy

rains, and floods is significant for the human popu-
lation. Aside from these, the global spread of infec-
tious diseases is one of the most significant problems
facing humanity. Numerous people get crippled as a
result of these diseases, and the cost of treating
human health concerns is high [1e3]. The bacteria
Vibrio cholerae is the cause of cholera, a watery
diarrheal illness. The usage of contaminated food,
particularly fish, and water are the primary and most
fundamental causes of the cholera epidemic [4e8].
The transmission of cholera can occur through direct
contact between humans as well as indirect human-
to-environment contact. Household individuals who
are cholera patients are particularly vulnerable to
infection, potentially as a result of contaminated
household water storage containers or contaminated

food preparation [3e11]. A small number of places in
North America and Europe, as well as South Africa,
are home to the majority of cholera cases [12]. Asia
has been the source of seven cholera pandemics that
have struck humanity since 1817. The seventh
cholera pandemic started in 1961 in Indonesia and
lasted over forty years, making it the longest
outbreak in recorded history [13e15]. The first signs
of cholera in patients are loose, watery stools.
Dehydration, a reduction in blood pressure, and
renal failure may result from these. If treatment is
delayed, death might occur in a matter of days. In
recent times, there have been several cholera out-
breaks in South Asia, Africa, and South America. The
World Health Organization (WHO) estimates that
3e5 million cases of illness occur each year in these
regions [16e18]. Any infectious disease's mechanism
can be understood with the use of mathematical
modelling. We can gain a profound understanding of
disease transmission with the help of the relevant
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theoretical framework. It also aids in the accurate
and effective planning of our infection control
approach. The SIR model, which divides the popu-
lation into three compartmentsdsusceptible, infec-
tious, and recovereddis the fundamental model
used to describe the spread of infectious diseases. In
1929, Kermack and McKendrick put out this model
[19]. For a deeper understanding, a plethora of
mathematical models based on the system of ordi-
nary differential equations have been presented for
cholera infection. The cholera model was created in
1979 by Capasso and Paveri-Fontana and consisted
of two ordinary differential equations: the population
of bacteria and the population of infected humans.
They conducted phase space analysis and came to
the conclusion of their results [20e22]. They also
established the minimal requirements for the spread
of endemic and epidemic cholera. A structure based
on hierarchies has been utilized to describe the in-
fluence on natural factors, such as meteorological or
climate-related variables, in Refs. [23e25]. Jensen
and colleagues examined the function of bacterio-
phages in managing cholera outbreaks. Patients
suffering from cholera are split into two groups:
those infected with V. cholerae only and those infec-
ted with both V. cholerae and phage. They discovered
that bacteriophage induction can lessen the intensity
of a cholera outbreak and aid in its decline [26e30].
Longini et al. talked about using oral vaccine (re-
hydration treatment) to manage prevalent cholera
[31e33]. Three interventions were introduced by
Neilan et al. to construct the optimum control
problem: rehydrating and treating cholera patients
with antibiotics; immunizing vulnerable individuals;
and maintaining water sanitation. For both asymp-
tomatic and symptomatic people, the effectiveness of
single and combination controls has been visually
displayed in Refs. [34e37]. The cholera disease
model was qualitatively analyzed in 2011 by Mwasa
et al., both with and without public health in-
terventions. These interventions consist of immuni-
zation drives, educational campaigns, and the care of
contagious people. They identified the prerequisites
for reducing the fundamental reproduction number
that is brought about by education, immunization,
and therapy [38e42]. In 2017, Lemo-Paia}o et al.
investigated the model of cholera disease propaga-
tion by assuming that treatment control was carried
out on isolated patients. In this investigation, the
assumption of contaminated person isolation has
been made [43,44] (see Fig. 1).
Many studies on Cholera propagation abound but

the present ravaging manner by which Cholera
springs up unexpectedly around the globe despite
existing measures implies continuous study on

taming this killer infection cannot be over empha-
sized. Many part of the globe still don't have access
to quality drinkable water and sanitized environ-
ment, hence we hereby further investigate the ef-
fects of measures and combination of measures on
the transmission dynamics of this deadly infection
with a modified SIR-SI epidemic model between
host and vector, solving the system of equations
numerically using finite difference element method.

2. Model description

The current model for cholera transmission is
based on the division of the entire population, rep-
resented by the variable (N), into two distinct
groups: (Nh) for humans and (Nf) for flies. This di-
vision allows us to study the dynamics of the disease
separately within these two major groups.
In this model, ðNhÞ represents the human popu-

lation, which includes individuals susceptible to
cholera, those who have been infected and recov-
ered human ðSh; Ih;Rh). On the other hand, Nf rep-
resents the flies' population. Additionally, the rates
at which flies and humans are recruited into the
system through immigration or birth are GH and GF,
respectively as the rate of transmission of the
cholera bacterium to humans and flies is J1 to J2,
respectively, when they come into contact with an
infected person's stools.

J1¼ b1IH
1þFIH

þ b2IF
1þFIF

ð1Þ

J2¼ b3IF
1þFIF

ð2Þ

Fig. 1. Cholera schematic diagram.
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3. The cholera model

In order to describe the dynamics of the bacte-
rium, the following system of ordinary differential
equations has been developed, based on the
detailed description and basic assumptions of the
model:

dSH

dt
¼ GH þ rRH � ðJ1 þ mHÞSH

dIH
dt

¼J1SH � ðaþmH þ dÞIH
dRH

dt
¼ aIH � ðrþ mHÞRH

9>>>>>>>=
>>>>>>>;

ð3Þ

dSF

dt
¼ GF � ðJ2 þ mFÞSF

dIH
dt

¼J2SF � mFIF

9>>=
>>; ð4Þ

3.1. Mathematical analyzing the cholera model

3.1.1. Existence and uniqueness of solution
Using the Lipschitz condition, from the systems of

equations (3) and (4)

G1 ¼ GH þ rRH � ðj1 þ mHÞSH

G2 ¼ j1SH � ðaþ mH þ dÞIH
G3 ¼ aIH � ðrþ mHÞRH

G4 ¼ GF � ðj2 þmFÞSF

G5 ¼ j2SF � mFIF

ð5Þ

Theorem 1. Let K denote the region 0 � c � M, then
the systems of equation (5) possess a unique solu-
tion if and only if vGi

vbj
are continuous and bounded in

K, for isj
Proof
We need to establish the partial derivative (5) with
respect to the state variables which yield;

����vG1

vSH

����¼j� ðJ1þmHÞ

j < ∞;

����vG1

vIH

����¼j0j < ∞;

����vG1

vRH

����¼jrj<∞;

����vG2

vSH

����¼jJ1j < ∞;

����vG2

vIH

����¼j� ðaþmH þdÞ

j < ∞;

����vG2

vRH

����¼j0j<∞;

����vG3

vSH

����¼j0j < ∞;

����vG3

vIH

����¼jaj < ∞;

����vG3

vRH

����
¼j� ðrþmHÞj<∞;

����vG4

vSF

����¼j� ðJ2þmFÞj < ∞;

����vG4

vIF

����¼j0j<∞;

����vG5

vSF

����¼jJ2j < ∞;

����vG5

vIF

����¼j�mFj<∞

Clearly from the partial derivative above of sys-
tem (5), the solutions to the systems of equations
exist, unique and remains bounded.

3.1.2. Positivity and boundedness of the solution
In this section, we demonstrate that the variables

representing population compartments maintain
non-negative throughout the simulation. Addition-
ally, we establish that the total population remains
constant at all time. This implies that from the
human population NH]SH þ IH þ RH is written as;

dNH

dt
¼dSH

dt
þ dIH

dt
þ dRH

dt

And putting in each state variable accordingly we
obtain

dNH

dt
¼GH � mFNH � dHðIHÞ ð6Þ

Furthermore, for the reservoir's system, where (4)
and the corresponding differential equations are
given as follows:

dNF

dt
¼GF � mFNF ð7Þ

Theorem 2. Let (SH , IH , RH , SF , IF)be the solution of
the cholera system equation (3) and (4) with the
initial conditions in a feasible region P ¼ PH � PF

where:

PH ¼ðSH ; IH ;RHÞ2R3
þ : NH � GH

mH
ð8Þ
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And

PH ¼ðSF; IFÞ2R2
þ :NF � GF

mF
ð9Þ

Then P is positive invariant.
Solving (6), with the method of integrating factor,

we have

dNH

dt
¼GH � mHNH

Where dF ¼ 0 at DFE

As t/∞;NHðtÞ � GH

mH
ð10Þ

Similarly, by applying the use of integrating on
(7), we obtain:

dNF

dt
¼GF � mFNF

As t/∞NHðtÞ � GH

mH
ð11Þ

Here, we are able to establish that the model is well
posed mathematically for time (t).

3.2. Presence of the cholera-free equilibrium state

The term “cholera-free equilibrium state” de-
scribes a stable situation in which the population
under consideration is resistant to the illness.
Thus S0Hs0; S0Fs0
For S0Hs0; I0H ¼ 0;R0

H ¼ 0; and S0Fs0; S0F ¼ 0;
Then, the systems (10) and (11) become

GH � mHS
0
H ¼ 0

GF �mFS
0
F ¼ 0

Thus gives

S0
H ¼

GH

mH

S0
F¼

GF

mF
ð12Þ

This gives us the DFE point for the human and the
flies’ population,

E0 ¼ ðS0H ; I0H ;R0
H ; S

0
F; I

0
F ; Þ ¼

�
GH
mH
; 0; 0; GF

mF
; 0
�

is the
DFE points for the proposed system.

3.3. Basic reproduction number

The basic reproduction number of the cholera bac-
teria, was denoted as Rn is a critical epidemiological
parameter that signifies the potential for the disease to
spread in a population without any immunity.
Mathematically, the basic reproduction number

Rn was calculated based on the parameters of the
disease transmission and progression. This basic
reproduction number Rn provides valuable infor-
mation about the potential severity and speed of an
outbreak. The accurate estimation of this our Rn is
crucial for public health officials to understand the
dynamics of an outbreak and design effective con-
trol measures to prevent and contain the spread of
the cholera bacteria. From the system of ODEs,
equation (3) and (4). And by utilizing the next gen-
eration matrix method.
To calculate the reproduction number, we only

consider the terms related to infected compartments.

Rn¼D
�
FV�1

� ð13Þ

Where F is the matrix of new infection and V is the
matrix of other transfer terms infection D is the
spectral radius of FV�1

F¼

2
66664
J1SH

J2SF

0
0
0

3
77775;V¼

2
66664

ðaþ mH þ dÞIH
mF

�GH � rRH þ ðj1 þ mHÞSH

�GF þ ðj2 þ mFÞSF

�aIH þ ðrþ mHÞRH

3
77775 ð14Þ

Solving 14 using (13)
The spectral radius for both human and fly pop-

ulation is;

R0H ¼ b1SH

ðaþ mH þ dÞð1þFIHÞ2
;R0F¼ b3SF

mFð1þFIFÞ2

Rn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0HR0F

p
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Rn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2b3GHGF

m2
FmHðaþ mH þ dÞð1þFIHÞ2ð1þFIFÞ2

s
ð15Þ

3.4. Stability analysis

3.4.1. Local stability

Theorem 3. If R0 < 1, then the system (3, 4) is
locally asymptotically stable (LAS), and unstable
otherwise

Proof
We establish the above theorem by calculating the
Jacobian matrix of system in (3, 4) at DFE point

E0¼ �S0
H ; I

0
H ;R

0
H ;S

0
F; I

0
F ;
�¼�GH

mH
;0;0;

GF

mF
;0
	

It is necessary for the computation of the stability
JðSH; IH;RH; SF; IFÞ of the system which is given as;

Now at DFE

After necessary simplification on (17), we obtain the
Eigen Values as;

l1¼ � mH ;l2¼ � ðmH þrÞ;

l3¼ �
�
ðaþmH þ dÞ � b1GH

mH

	
;l4¼ � mF;l5¼mH ;

l5¼ � mF þ
b3GF

mF

From l3 ¼ �
�
ðaþmH þdÞ � b1GH

mH

�
and l5 ¼ � mF þ

b3GF
mF

R0H ¼ b1SH

ðaþ mH þ dÞð1þFIHÞ2
R0F¼ b3SF

mFð1þFIFÞ2

l3¼ �
�
ðaþmH þdÞ � b1GH

mH

	
From l3 we can write that

l3¼ � ðaþmH þdÞ
 
1� b1SH

ðaþ mH þ dÞð1þFIHÞ2
!

J¼

2
666666666666666664

�mH
b1GH

mH
r 0 �b2GH

mH

0
b1GH

mH
� ðaþ mH þ dÞ 0 0

b2GH

mH

0 a �ðrþ mHÞ 0 0

0 0 0 �mF
b3GF

mF

0 0 0 0
b3GF

mF
� mF

3
777777777777777775

ð16Þ

Now, the eigenvalue yields:

jJ� lIj¼

2
666666666666666664

�mH � l
b1GH

mH
r 0 �b2GH

mH

0
b1GH

mH
� ðaþ mH þ dÞ � l 0 0

b2GH

mH

0 a �ðrþ mHÞ � l 0 0

0 0 0 �mF � l
b3GF

mF

0 0 0 0
b3GF

mF
� mF � l

3
777777777777777775

ð17Þ
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l3¼ � ðaþmH þdÞ
 
1� b1SH

ðaþ mH þ dÞð1þFIHÞ2
!

��ðaþmH þdÞð1�R0HÞ
ð18Þ

And

l5¼ � mF

 
1� b3SF

mFð1þFIFÞ2
!

l5¼ � mF

 
1� b3SF

mFð1þFIFÞ2
!

��mFð1�R0FÞ ð19Þ

Since (18) and (19) remain negative (stable) then
R0H <1 and R0F <1. Hence Theorem 2 has been
established.

3.5. Global stability of disease-free equilibrium
(DFE) Theorem 4

The positive equilibrium point of system (3, 4) is
globally stable, if R0 < 1.
Proof
Using the method of Lyapunov function to

establish stability at E0, the following Lyapunov
function was constructed.

GðSH ; IH ;RH ;SF; IFÞ¼
�
SH � S0

H � S0
H log

S0
H

SH

	

þ
�
IH � I0H � I0H log

I0H
IH

	

þ
�
RH �R0

H �R0
H log

R0
H

RH

	

þ
�
SF � S0

F � S0
F log

S0
F

SF

	

þ
�
IF � I0F � I0F log

I0F
IF

	

ð20Þ

By direct calculation and solving for the derivative
of G along the system path of (3, 4) we obtain;

dK
dt

¼
�
SH � S0

H

SH

	
dSH

dt
þ
�
IH � I0H

IH

	
dIH
dt

þ
�
RH �R0

H

RH

	
dRH

dt
þ
�
SF � S0

F

SF

	
dSF

dt

þ
�
IF � I0F
IF

	
dIF
dt

ð21Þ

Expanding (21), representing the positive and
negative terms with X and Y respectively, we have;

dK
dt

¼X�Y

P¼
�
1� S0

H

SH

	
ðGH þrRHÞþ

�
1� I0H

IH

	
J1SH

þ
�
1�R0

H

RH

	
aIH þ

�
1� S0

F

IF

	
GF þ

�
1� I0F

IF

	
J2SF

ð22Þ
Similarly,

N¼
�
SH � S0

H

�2
SH

ðJ1þmHÞþ
�
1H � 10H

�2
IH

ðaþmH þdÞ

þ
�
RH �R0

H

�2
RH

ðrþmHÞþ
�
SF � S0

F

�2
SF

ðJ2þmFÞ

þ
�
IF � I0F

�2
IF

mF

ð23Þ
If X<Y, then dK

dt will be negative definite along the
system (solution) path. And so, means only at
Cholera bacteria free system (E0) would dK

dt � 0. This
simply means the system is stable globally at the
Cholera bacteria disease free system.

3.6. Existence of the endemic equilibrium points
(cholera present state)

Here, we examine the presence of endemic equi-
librium points which refers to the presence of stable
solutions in the model where the cholera bacteria is
persistently present in the population. These equi-
librium points represent the stable disease states
where the number of infected individuals and other
compartments reaches a steady state. Mathemati-
cally, we find the endemic equilibrium points by
setting the time derivatives of the model variables to
zero and solving the resulting system of equations.
These equilibrium points represent the stable solu-
tions of the model where the disease persists over
time, and they provide important clues about the
long-term dynamics of the cholera disease in the
population.
The endemic equilibrium points are defined as

ðSH*ðtÞ; 0; SF*ðtÞ; 0Þ satisfying S*H ; I
*
H ;R

*
H ; S

*
F;I

*
H ¼ 0

Equating (3) and (4) to zero gives;

GH þ rRH � ðJ1 þ mHÞSH ¼ 0
J1SH � ðaþ mH þ dÞIH ¼ 0
aIH � ðrþ mHÞRH ¼ 0

ð24Þ

GF � ðJ2 þ mFÞSF ¼ 0
J2SF � mFIF ¼ 0

Where
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J1¼ b1IH
1þFIH

þ b2IF
1þFIF

andJ2 ¼ b3IF
1þFIF

Simplify the equation accordingly we have

R*
H ¼

ðJ1 þ mHÞðaþ mH þ dÞðrþ mHÞ �GHaJ1

raJ1

S*
H ¼

ðaþ mH þ dÞðrþ mHÞR*
H

aJ1

I*H ¼
ðrþ mHÞR*

H

a
ð25Þ

S*
F¼

GF

ðJ2 þ mFÞ

I*F ¼
J2GF

mFðJ2 þ mFÞ
From (25) it shows that the proposed population

possesses a distinct endemic point which existed
only when R0 < 1.

3.7. Sensitivity analysis of the flies-human model

Here, we examine the sensitivity analysis of the
flies-human bacteria model which involves studying
how changes in the model's parameters affect the
model's output or predictions. The goal is to un-
derstand which parameters have the most signifi-
cant influence on the model's behavior and which
ones have a lesser impact. This analysis helps in
identifying the critical parameters that should be
accurately.
So, the reproduction number analysis was per-

formed R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0HR0F

p
of the model which checks for

the effect of a parameter on R0 when increased or
decreased.
Using the normalized Forward-Sensitivity Index

of a variable R, on Y we obtain:

XR
Y ¼

vR
vb

:
Y
R

ð26Þ

The normalized sensitivity index of b1 obtained
as:

XRn
b1
¼vRn

vb1
:
b1

Rn
ð27Þ

Rn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2b3GHGF

m2
FmHðaþ mH þ dÞð1þFIHÞ2ð1þFIFÞ2

s

Solving and computing the derivatives in (27)
gives;

vRn

vb1
¼ 1
2b1

Rn: Then XRn
b1

¼ vRn

vb1
:
b1

Rn
¼ 1
2b1

Rn:
b1

Rn

XRn
b1
¼ þ 0:5

Thus we obtain the sensitivity index b1. In the
same procedure, we evaluate the sensitivity indices
for the parameters that made up of the reproduction
number, the sensitivity indices of the parameters are
given in the table below:

4. Interpretation of sensitivity indices

This analysis aids in determining which parame-
ters have a significant impact on our investigation's
findings. Nonetheless, some elements that are not
very important in the real process of disease trans-
mission are purposefully left out of the sensitivity
analysis. For instance, parameters related to natural
births and deaths in both humans and non-human
primates are excluded because their impact on dis-
ease transmission is relatively minimal compared to
other critical factors. Focusing on the most influen-
tial parameters allows us to gain greater under-
standing of the dynamics of the disease and better
target control strategies for more effective disease
management (see Table 1).
The estimated sensitivity indices for parameter Rn,

are presented in Table 2. From the table, we observe
that an increase in the values of parameters
mH ;mF; d; and a leads to a decrease in the value of
the parameter Rn. Conversely, a decrease in the
values of parameters b1, b2, GH, and GF results in an
increase in the number of cholera cases.

Table 1. The table includes human and flies state variables and
parameter descriptions.

variables Description

SH humans Susceptible
I H humans Infected
RH humans Recovered
SF Susceptible flies
IF Infected flies
GH Humans' recruitment rate
GF Flies' recruitment rate
b1 Fies contact rate to humans
b2 Human to humans contact rate
b3 Flies to flies contact rate
mH Humans' natural death rate
mF Flies' natural death rate of flies
d The disease-induced rate for humans
r Rate of being re-susceptible
j1 Humans' rate of force of infection
j2 Flies' rate of force of infection
a humans Recovery rate
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This sensitivity analysis will help researchers to,
identify key parameters, and assess robustness:
optimize control strategies, and quantify uncertainty.
Overall, this sensitivity analysis provides valuable

insights into the model's behavior and improves our
understanding of the cholera disease dynamics in
the flies-human system.

4.1. Optimal control strategies for cholera virus

The transmission rate is lowered by (1� K1), where
K1 denote implementing efficient surveillance and
early detection in affected regions to increase im-
munity in the population and reduce the risk of
cholera outbreaks; k2 denote vaccination campaign
and K3 connotes treatment: Implementing these
three techniques to reduce the severity of outbreaks.

dSH

dt
¼ GH þ rRH � ð1�K1ÞðJ1 þ mHÞSH

dIH
dt

¼ ð1�K2ÞJ1SH � ðaþ mH þ dÞk3IH
dRH

dt
¼ k2IH � ðrþ mHÞRH

9>>>>>>>=
>>>>>>>;

ð28Þ

dSF

dt
¼ GF � ðJ2 þ mFÞSF

dIH
dt

¼J2SF � mFIF

9>>=
>>; ð29Þ

5. Analysis of the model incorporating
preventive measures

Let L ¼ fC1;C2;C3g2L be Lebesgue measurable
on ½0; 1� where 0 � CðtÞ � 12½0; 1�; i ¼ 1; 2; 3
The objective function, Ο is given by

ΟðK1;K2;K3; Þ¼
Zk
0

�
T1RH þT2IH þ1

2

�
U1K2

1 þU2K2
2

þU3K2
3

�	
dt

Constraint to

dSH

dt
¼ GH þ rRH �

�
ð1�K1ÞðJ1 þmHÞSH

dIH
dt

¼ ð1�K2ÞJ1SH � ðaþ mH þ dÞk3IH
dRH

dt
¼ k2IH � ðrþ mHÞRH

9>>>>>>>=
>>>>>>>;

dSF

dt
¼ GF � ðJ2 þ mFÞSF

dIH
dt

¼J2SF � mFIF

9>>=
>>; j

The point of terminal is represented by the value
K, where T1, T2 represent the weight constants
attributed distinct group with the virus. Further-
more, our investigation extends to encompass an
analysis of the social cost U1K2

1, U2K2
2 and U3K2

3. In
order to establish the control problem, let

ðK1*ðtÞ;K2*ðtÞ K3*ðtÞÞ; such thatOðK1*ðtÞ;k2*ðtÞ;
K3*ðtÞÞ¼minfOðKÞ; ðKÞ2Lg

ð30Þ

6. Control analysis

We denote the control measures as k1; k2 and k3.
And assume d is the infection probability, then the
model equations become;

dS1
HðtÞ ¼ GH þ eRH � ð1� k1Þdb1IHSH

1þ4IH
� mHSH

dI1HðtÞ ¼
ð1� k2Þdb1IHSH

1þ4IH
� ðaþ mH þ dÞIH

dR1
HðtÞ ¼ aIH � ðeþ mHÞRH þ k3IH

ð31Þ

7. Quantitative analysis of the model with
control measures (t)

Using the maximum principle of Pontrgagin and
creating an objective function, we present the
presence of the control option in an analytical viable
region [0, 1] signifying reduction in the transmission
of the disease with k ¼ fk1; k2; k3 3kg measurable in

Table 2. Values of sensitivity indices for model parameters in Reproduction Number.

Parameters Sensitivity indices (S.I) Value of indices Values Sources

b1 þ þ0.5 0.04 Loyinmi et al., 2021
b3 þ þ0.5 0.005 Loyinmi et al., 2021
GH þ þ0.5 1.2 Estimated
GF þ þ0.5 0.70 Estimated
mH e �0.50311 0.0003465 Assumed
mF e �1 0.00261026
dH e �0.0200378 0.01710615
a e �0.4765122240 0.4 Assumed
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Lebesque terms [0, 1], 0 � kj � 13½0;T�, where j ¼
1; 2; 3.We present the objective function to be:

Mðk1;k2;k3Þ¼
Z 


L1SþL2Iþ1
2

�
U1k21þU2k22þU3k23

��
dt

ð32Þ
Equation (32) is constrained to (31) equipped with

positive initial constrains, SHð0Þ_0; IHð0Þ_0 and
RHð0Þ_0, U1;U2 and U3 are fitted functions for the
disease.
To establish the control problem, the function is

implemented as;

M
�
k*1ðtÞ;k*2ðtÞ;k*3ðtÞ

�¼min
�
Mðk1;k2;k3Þ;k1;k2;k33k



ð33Þ

8. Presence of optimal measure (control)

Theorem 4. If we consider (33), setting k to be finite
in (31) with initial constrains at t � 0, then k* ¼
ðk*1ðtÞ; k*2ðtÞ; k*3ðtÞÞ exists in such a way that Mfk*1ðtÞ;
k*2ðtÞ; k*3ðtÞg ¼ minfMðk1; k2; k3Þg; k1; k2; k33 k
Proof
The integral of M to develop k1; k2; k3, the positive
region of the system pertaining to SH ; IH ; RH , thus,
the control to the model exists.
Next is to demonstrate the Hamiltonian (M) and
Lagrangian (L) for the control problem. The
Lagrangian is given by;

L¼ J1Sþ J2Iþ 1
2

�
U1k21þU2k22þU3k23

� ð34Þ
And the Hamiltonian function is;

M¼ J1SH þ J2IH þ
�
U1k21þU2k22þU3k23

�
þaLSH



GH þ eRH � ð1� k1Þdb1IHSH

1þ4IH
� mHSH

�

þaLIH


ð1� k2Þdb1IHSH

1þ4IH
� ðaþmH þdÞIH

�
þaLRH ½aIH � ðeþmHÞRH þk3IH �

ð35Þ

Where aLi ; i2fSH ; IH ; RHg, by applying the con-
straints in theorem 5 to the Hamiltonian function
and also differentiating (35) with respect to the state
variables SH ; IH ;RH , we obtain;

Differentiating (36) and considering (35) with
respect to the control parameters k1; k2 and k3, we
obtain;

dk1
dt

¼U1k1 � aLSH
db1IHSH

1þ4IH
¼00k1¼aLSH

db1IHSH

U1ð1þ4IHÞ
ð37Þ

dk2
dt

¼U2k2 � aLIH
db1IHSH

1þ4IH
¼00k2¼aLIH

db1IHSH

U2ð1þ4IHÞ
ð38Þ

dk3
dt

¼U3k3 � aLRHIH 0 k3 ¼ aLRHIH
U3

ð39Þ

Applying the condition of transversality, we
obtain;

k*1¼minf1;maxf0; c1gg;k*2¼minf1;maxf0; c2gg;
k*3¼minf1;maxf0; c3ggwhere c1¼aLSH

db1IHSH

U1ð1þ4IHÞ;

c1¼aLIH
db1IHSH

U2ð1þ4IHÞ and c3¼aLRHIH
U3

This completes the proof.

8.1. Numerical solution

We approach the sets of differential equations
used numerically by using one of the well-known
method called Finite Difference Scheme (FSD) in
order to achieve numerical values (see Fig. 2).

dSH

dt
¼ GH þ rRH � ðj1 þ mHÞSH

dIH
dt

¼ j1SH � ðaþ mH þ dÞIH
dRH

dt
¼ aIH � ðrþ mHÞRH

dSF

dt
¼ GF � ðj2 þ mFÞSF

dIF
dt

¼ j2SF � mFIF

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð40Þ

SHðtÞ�0; IHðtÞ � 0;RHðtÞ � 0;SFðtÞ � 0; IFðtÞ � 0;

daLSH

dt
¼ J1 þ aLSH


ð1� k1Þdb1IH
1þ4IH

� mH

�
þ aLIH


ð1� k2Þab1IH
1þ4IH

�

daLIH
dt

¼ J2 þ aLSH

"
ð1� k1Þdb1SH

ð1þ4IHÞ2
#
þ aLIH

"
ð1� k2Þdb1SH

ð1þ4IHÞ2
� ðaþ mH þ dÞIH

#

þaLRHðaÞ
daLRH

dt
¼ aLSHðeÞ þ aLRHðeþ mHÞ

ð36Þ
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Using the finite difference as stated earlier (40) can
be decomposed as;

SHðJþ1Þ � SHJ

h
¼GH þ rRHK � ðj1þmHÞSHK

IHðJþ1Þ � IHJ

h
¼j1SHK � ðaþmH þdÞIHK

RHðJþ1Þ �RHJ

h
¼aIHK � ðrþmHÞRHK ð41Þ

SFðJþ1Þ � SFJ

h
¼GF � ðj2þmFÞSFK

IFðJþ1Þ � IFJ
h

¼j2SFK � mFIFK

(41) Can be alternatively be written as;

SHðJþ1Þ ¼SHJ þ hðGH þrRHK � ðj1þmHÞSHKÞ

IHðJþ1Þ ¼ IHJ þ hðj1SHK � ðaþmH þdÞIHKÞ

RHðJþ1Þ ¼RHJ þ hðaIHK � ðrþmHÞRHKÞ ð42Þ

SFðJþ1Þ ¼SFJ þ hðGF � ðj2þmFÞSFKÞ

IFðJþ1Þ ¼ IFJ þ hðj2SFK � mFIFKÞ

Where J ¼ 0; 1; 2; 3; 4; 5:::, h is step size

8.2. Numerical simulation

In this section, we deploy a means to observe the
propagation of the disease with respect time, track
constraints in various parameters, and evaluate the
effectiveness of control plan. The state variables'
initial conditions are as follows:,
SH ¼ 5000, I H ¼ 1000, RH ¼ 100, SF ¼ 1000 and

IF ¼ 500. Also, j1 ¼ 0.091193; j2 ¼ 0.32 and the
parameter values needed for the simulation are
displayed in Table 2

9. Discussion

In Fig. 3 The increase in the human susceptible
class indicate the effect of the combined control
measures in this category of population. This is a
positive outcome as it means that a larger portion of

Fig. 3. Solution trajectories of susceptible population with (out) optimal control.

Fig. 2. Solution trajectories of human population without control.
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the population is gaining immunity against cholera.
By increasing immunity, the risk of cholera out-
breaks is reduced. The susceptible individuals who
become immune via the cumulative effect of these
controls are no longer at risk of contracting cholera,
leading to a decline in the number of cases. Also the
increase in the human susceptible class also suggest
that early detection, vaccination measures and suc-
cessfully identifying and treating cholera cases.
When cholera cases are promptly identified and
treated, the infected individuals are less likely to
contribute to the spread of the disease, as they are
no longer in the susceptible category. Efficient sur-
veillance, Vaccination campaign and treatment can
break the chain of transmission and limit the
severity of cholera outbreaks. In summary, the in-
crease in the human susceptible class in Fig. 3 in-
dicates that the three optimal control measures,
vaccination campaigns efficient surveillance and
treatment, are effectively reducing the susceptibility
of the population to cholera. This, in turn, leads to a
positive impact on cholera control by decreasing the
likelihood of outbreaks and reducing the severity of
the disease when cases do occur.
Fig. 4 shows that the decrease in the human

infected class indicates that the implementation of

these three optimal control measures is effective in
reducing the number of people infectedwith cholera.
This is a positive outcome, as it signifies a lower
disease burden in the population. The decline in the
human infected class suggests that these control
measures are successful in curbing the transmission
of cholera within the population. Efficient surveil-
lance and vaccination campaigns help increase im-
munity, while early treatment prevent the disease
from spreading rapidly. The decrease in the number
of infected individuals has a positive impact on
public health. It means fewer people are getting sick,
leading to lowermorbidity and, hopefully, a decrease
in cholera-related mortality. The effectiveness of
these control measures in reducing the human
infected class underscores the importance of timely
and proactive intervention strategies. Early detection
and treatment are critical in preventing severe out-
breaks. In summary, Fig. 4 shows that implementing
these three control measures have a positive impact
on reducing cholera infections in the population.
These control measures are effective in decreasing
the spread of the disease and improving public
health outcomes by reducing the burden of cholera.
In Fig. 5, in the human recovered class (recovery

from cholera) increases from (0e10 days). This

Fig. 4. Solution trajectories of susceptible population with (out) optimal control.

Fig. 5. Solution trajectories of population with (out) optimal control.
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suggests that the efficient surveillance and vacci-
nation campaigns are effectively increasing immu-
nity in the population, which results in a higher
number of individuals recovering from cholera
more quickly. The positive impact of this control
measure is that it helps to reduce the number of
people who become infected with cholera and, as a
result, the duration of illness. This ultimately leads
to a decrease in the number of people suffering from
cholera and its associated complications. The
human recovered class increases from 0 to 10 days,
indicating that early detection, vaccination and
prompt treatment are effective in reducing the
duration of cholera in infected individuals, the
positive impact of this control measure is that it
helps identify cholera cases early, enabling timely
treatment, which is crucial for reducing the severity
of the disease and preventing further transmission.
Overall, based on Fig. 5, it appears that these control
measures have a positive impact on reducing the
severity and duration of cholera cases in the popu-
lation up to a certain point (10 days) and beyond, the
impact of the surveillance and treatment measure
may decrease, but it's still essential for managing the

outbreak effectively. These control measures are
crucial in mitigating the impact of cholera and
preventing its rapid spread (see Fig. 6).
In Fig. 7. Saturation was introduced in fly popu-

lation as a form of control which could be in form
pesticide and any other form to combat fly popula-
tion which acts as the carrier, as this factor decrease
the flies' infected class and increase the susceptible
class. This can be considered a positive outcome,
meanwhile, it indicates that the control measures
are primarily affecting the human population, which
is the intended target. You don't want the fly pop-
ulation to increase as it can act as a vector for
cholera transmission. These control measures are
designed to reduce the human-to-human trans-
mission of cholera and enhance early detection and
treatment. If the fly population were affected, it
might imply unintended consequences or ecological
disruptions. The key goal of these control measures
is to reduce the severity of cholera outbreaks in the
human population, by increasing immunity through
proposed control techniques, these measures can
effectively reduce the number of cholera cases and
associated human suffering.

Fig. 6. Solution trajectories of fly population without saturation.

Fig. 7. Solution trajectories of fly population with (out) saturation.
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10. Conclusion

In conclusion, the findings presented in this
research paper underscore the effectiveness of three
critical control measures in the battle against cholera:
effective surveillance, vaccination campaigns and
treatment. The various figures and analyses
throughout the study reveal the positive impact of
these interventions on reducing the susceptibility,
infection rate, severity, and duration of cholera cases
within the human population. Fig. 3 demonstrated
that an increase in the human susceptible class sig-
nifies a greater portion of the population gaining
immunity against cholera through vaccination and
efficient surveillance. This not only reduces the risk of
cholera outbreaks but also limits the severity of the
disease when cases do occur. Treatment break the
chain of transmission, further minimizing the impact
of outbreaks. Fig. 4 illustrated a decrease in the
human infected class, indicating the successful
reduction of cholera cases through these control
measures. This outcome is significant, as it implies a
lower disease burden, lower morbidity, and, ulti-
mately, a decrease in cholera-related mortality. Fig. 5
provided insights into the rapid recovery of in-
dividuals from cholera, up to a certain point (10 days),
thanks to vaccination campaigns, early detection and
treatment. The timely identification of cholera cases
and treatment remains crucial for reducing the
severity of the disease, even as recovery rates might
decrease after a specific time frame. Fig. 7 demon-
strated that these control measures do not signifi-
cantly impact the fly population, thus preserving
ecological stability. However saturation factor works
as a form of control in fly population which reduces
infected class, as it indicates that the controlmeasures
effectively target human-to-human transmission
routes without unintended ecological consequences.
Overall, this research paper's findings highlight

the crucial role of vaccination campaigns, efficient
surveillance and treatment in controlling cholera.
These measures contribute to the reduction of sus-
ceptibility, infection, severity, and duration of
cholera cases in the human population, ultimately
leading to improved public health outcomes. By
minimizing the impact of outbreaks and preventing
rapid disease transmission, these interventions offer
hope in the ongoing fight against cholera, show-
casing their value in safeguarding the well-being of
affected communities.

11. Future work and limitations

In order to localize response, we do aim to expand
the study to small geographical scale spatial
modeling of the disease in the future. However,

obtaining precise and reliable data is a hurdle in
developing a model that is based on real data. This
allows us to concentrate on creating predictive
models that can estimate the possible course of the
epidemic, allowing for the early deployment of re-
sources and measures to inhibit the disease's
spread.

Data availability

No datasets generated during and/or analyzed
during the current study.

Acknowledgement

Mrs Adetoun Loyinmi is appreciated for her
support.

References

[1] Hethcote HW. The mathematics of infectious diseases. SIAM
Rev 2000;42(4):599e653.

[2] Loyinmi AC, Gbodogbe SO. Mathematical modeling and
control strategies for Nipah virus transmission incorporating
Bat e to e pig eto e human pathway. EDUCATUM J Sci,
Math Technol 2024;11(1):54e80. https://doi.org/10.37134/
ejsmt.vol11.1.7.2024.

[3] Loyinmi AC, Gbodogbe SO, Idowu KO. On the interaction of
the human immune system with foreign body: mathematical
modeling approach. Kathmandu Univ J Sci Eng Technol
2023;17(2):1e17. https://journals.ku.edu.np/kuset/article/
view/137.

[4] World Health Organization. Prevention and control of
cholera outbreaks: WHO policy and recommendations.
WHO position paper on prevention and control of cholera
outbreak, vol. 1; 2009. p. 12. http://www.who.int/cholera/
technical/prevention/control/en/index.html.

[5] Loyinmi AC, Idowu KO. Semi eanalytical approach to
solving Rosenau-Hyman and Korteweg-de Vries equations
using integral transform. Tanzan J Sci 2023;49:26e40. https://
doi.org/10.4314/tjs.v49il.3.

[6] Agbomola J, Loyinmi A. A mathematical model for the
dynamical behavior of Ebola in human-bat population:
implication of immediate discharge of recovered individuals.
Preprints 2022. https://doi.org/10.21203/rs.3.rs-1399224/v1.

[7] Loyinmi AC, Lawal OW, Sottin DO. Reduced differential
transform method for solving partial integro-differential
equation. J Niger Assoc Math Phys 2017;43:37e42.

[8] Loyinmi AC, Oredein AI, Prince SU. Homotopy adomian
decompositionmethod for solving linear and nonlinear partial
differential equations. Tasued J Pure Appl Sci 2018;1:254e60.

[9] Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A.
Cholera transmission: the host, pathogen and bacteriophage
dynamic. Nat Rev Microbiol 2009;7(10):693e702.

[10] Loyinmi AC, Akinfe TK, Ojo AA. Qualitative analysis and
dynamical behavior of a Lassa haemorrhagic fever model with
exposed rodents and saturated incidence rate. Scientific Afri-
can 2021;14:e01028. https://doi.org/10.1016/j.sciaf.2021.e01028.

[11] Loyinmi AC, Oredein AI. The unsteady variable viscosity
free convection flow on a porous plate. J Niger Assoc Math
Phys 2011;19:229e32. https://www.ajol.info/index.php/
jonamp/article/view/91459.

[12] World Health Organization Media centre, Cholera factsheet
N107. [Accessed on 23 August 2018]. Available at: http://
www.who.int/mediaBcentre/factsheets/fs107/en/b.

[13] Ryan ET. The cholera pandemic, still with us after half a
century: time to rethink, PLOS Neglect. Trop Diseases 2011;
5(1):e1003.

106 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;5:94e107

https://doi.org/10.37134/ejsmt.vol11.1.7.2024
https://doi.org/10.37134/ejsmt.vol11.1.7.2024
https://journals.ku.edu.np/kuset/article/view/137
https://journals.ku.edu.np/kuset/article/view/137
http://www.who.int/cholera/technical/prevention/control/en/index.html
http://www.who.int/cholera/technical/prevention/control/en/index.html
https://doi.org/10.4314/tjs.v49il.3
https://doi.org/10.4314/tjs.v49il.3
https://doi.org/10.21203/rs.3.rs-1399224/v1
https://doi.org/10.1016/j.sciaf.2021.e01028
https://www.ajol.info/index.php/jonamp/article/view/91459
https://www.ajol.info/index.php/jonamp/article/view/91459
http://www.who.int/mediaBcentre/factsheets/fs107/en/b
http://www.who.int/mediaBcentre/factsheets/fs107/en/b


[14] Loyinmi AC, Erinle-Ibrahim LM, Adeyemi AE. The new
iterative method (NIM) for solving telegraphic equation.
J Niger Assoc Math Phys 2017;43:31e6.

[15] Lawal OW, Loyinmi AC, Arubi DA. Approximate solutions
of higher dimensional linear and nonlinear initial boundary
problems using new iterative method. J Niger Assoc Math
Phys 2017;41:35e40.

[16] World health organization (WHO). web page, www.who.org;
2015.

[17] Lawal OW, Loyinmi AC. The effect of magnetic field on
MHD viscoelastic flow and heat transfer over a stretching
sheet. Pioneer J Adv Appl Math 2011;3:83e90.

[18] Loyinmi AC, Ijaola AL. Fractional order model of dynamical
behavior and qualitative analysis of Anthrax with infected
vector and saturation. Preprints 2024. https://doi.org/
10.20944/preprints202403.0632.v1.

[19] Kermack WO, McKendrick AG. A contribution to the
mathematical theory of epidemics. Proc R Soc Lond - Ser A
Contain Pap a Math Phys Character 1927;115(772):700e21.

[20] Capass V, Paveri-Fontana SL. A mathematical model for the
1973 cholera epidemic in the European Mediterranean re-
gion. Revue d’e�pide�miologie et de Sante�Publique�1979;27(2):
121e32.

[21] Erinle-Ibrahim LM, Adewole AI, Loyinmi AC, Sodeinde OK.
An optimization scheme using linear programming in a
production line of rites food limited, Ososa. FUDMA J Sci
2020;4:502e10.

[22] Idowu OK, Loyinmi AC. Qualitative analysis of the trans-
mission dynamics and optimal control of covid-19. EDU-
CATUM J Sci, Math Technol 2023;10(1):54e70. https://
doi.org/10.37134/ejsmt.vol10.1.7.2023.

[23] Lipp EK, Huq A, Colwell RR. Effects of global climate on
infectious disease: the cholera model. Clin Microbiol Rev
2002;15(4):757e70.

[24] Lawal OW, Loyinmi AC, Sowumi SO. Homotopy perturba-
tion algorithm using Laplace transform for linear and
nonlinear ordinary delayed differential equation. J Niger
Assoc Math Phys 2017;41:27e34.

[25] Lawal OW, Loyinmi AC. Application of new iterative method
for solving linear and nonlinear initial boundary value prob-
lems with non-local conditions. Sci World J 2019;14:100e4.

[26] Jensen MA, Faruque SM, Mekalanos JJ, Levin BR. Modeling
the role of bacteriophage in the control of cholera outbreaks.
Proc Natl Acad Sci USA 2006;103(12):4652e7.

[27] Lawal OW, Loyinmi AC, Hassan AR. Finite difference solu-
tion for Magneto hydrodynamics thin film flow of a third
grade fluid down inclined plane with ohmic heating. J Math
Assoc Niger 2019;46:92e7.

[28] Lawal OW, Loyinmi AC. Magnetic and porosity effect on
MHD flow of a dusty visco-elastic fluid through horizontal
plates with heat transfer. J Niger Assoc Math Phys 2012;21:
95e104.

[29] Idowu KO, Loyinmi AC. Impact of contaminated surfaces on
the transmission dynamics of corona virus disease (Covid-
19). Biomed J Sci Tech Res 2023;51:42280e90. https://doi.org/
10.26717/BJSTR.2023.51.008046.

[30] Idowu KO, Loyinmi AC. The analytical solution of non-linear
Burgers- Huxley equations using the Tanh method. Al-Bahir
J Eng Pure Sci 2023;3:68e77. https://doi.org/10.55810/2312-
5721.1038.

[31] Longini Jr IM, Nizam A, Ali M, Yunus M, Shenvi N,
Clemens JD. Controlling endemic cholera with oral vaccines.
PLoS Med 2007;4(11):e336.

[32] Lawal OW, Loyinmi AC, Erinle-Ibrahim LM. Algorithm for
solving a generalized Hirota-Satsuma coupled KDV equa-
tion using homotopy perturbation transformed method. Sci
World J 2018;13:23e8.

[33] Agbomola JO, Loyinmi AC. Modelling the impact of some
control strategies on the transmission dynamics of Ebola
virus in human-bat population: an optimal control analysis.
Heliyon, 8:e12121. https://doi.org/10.1016/j.heliyon.2022.
e12121.

[34] Neilan RLM, Schaefer E, Gaff H, Fister KR, Lenhart S.
Modeling optimal intervention strategies for cholera. Bull
Math Biol 2010;72(8):2004e18.

[35] Lawal OW, Loyinmi AC, Ayeni OB. Laplace homotopy
perturbation method for solving coupled system of linear
and nonlinear partial differential equation. J Math Assoc
Niger 2019;46:83e91.

[36] Lot S, Lawal OW, Loyinmi AC. Magnetic field's effect on two
phase flow of Jeffery and non- Jeffery fluid with partial slip
and heat transfer in an inclined medium. Al e Bahir J Eng
Pure Sci 2024;4(1):71e9. https://doi.org/10.55810/2313-0083.
1054.

[37] Loyinmi AC, Akinfe TK. An algorithm for solving the Bur-
gers-Huxley equation using the Elzaki transform. SN Appl
Sci 2020;2:1e17. https://doi.org/10.1007/s42452-019-1652-3.

[38] Mwasa A, Tchuenche JM. Mathematical analysis of a cholera
model with public health interventions. Biosystems 2011;
105(3):190e200.

[39] Loyinmi AC, Akinfe TK. Exact solution to the family of
Fisher's reaction-diffusion equations using Elzaki homotopy
transformation perturbation method. Eng Reports 2020;2:
e12084. https://doi.org/10.1002/eng2.12084.

[40] Idowu KO, Akinwande TG, Fayemi I, Adam UM,
Loyinmi AC. Laplace homotopy perturbation method
(LHPM) for solving system of N-dimensional non-linear
partial differential equation. Al-Bahir J Eng Pure Sci 2023;3:
11e27. https://doi.org/10.55810/2312-5721.1031.

[41] Loyinmi AC, Lawal OW. The asymptotic solution for the
steady variable-viscosity free convection flow on a porous
plate. J Niger Assoc Math Phys 2011;19:273e6.

[42] Lawal OW, Loyinmi OW. Oscillating flow on a visco-elastic
fluid under exponential pressure gradient with heat transfer.
Pioneer J Adv Appl Math 2011;3:33e82.

[43] Lemos-Pai~ao AP, Silva CJ, Torres DF. An epidemic model for
cholera with optimal control treatment. J Comput Appl Math
2017;318:168e80.

[44] Loyinmi AC. Analysis of two hybrid schemes to solve the
Benjamin-Bona-Mahony (BBM) equation. Kathmandu Univ J
Sci Eng Technol 2024;18:1e15. https://doi.org/10.3126/
kuset.v18i1.67498.

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;5:94e107 107

http://www.who.org
https://doi.org/10.20944/preprints202403.0632.v1
https://doi.org/10.20944/preprints202403.0632.v1
https://doi.org/10.37134/ejsmt.vol10.1.7.2023
https://doi.org/10.37134/ejsmt.vol10.1.7.2023
https://doi.org/10.26717/BJSTR.2023.51.008046
https://doi.org/10.26717/BJSTR.2023.51.008046
https://doi.org/10.55810/2312-5721.1038
https://doi.org/10.55810/2312-5721.1038
https://doi.org/10.1016/j.heliyon.2022.e12121
https://doi.org/10.1016/j.heliyon.2022.e12121
https://doi.org/10.55810/2313-0083.1054
https://doi.org/10.55810/2313-0083.1054
https://doi.org/10.1007/s42452-019-1652-3
https://doi.org/10.1002/eng2.12084
https://doi.org/10.55810/2312-5721.1031
https://doi.org/10.3126/kuset.v18i1.67498
https://doi.org/10.3126/kuset.v18i1.67498

	Analysis of the effect of vaccination, efficient surveillance and treatment on the transmission dynamics of cholera
	Recommended Citation

	Analysis of the effect of vaccination, efficient surveillance and treatment on the transmission dynamics of cholera
	Source of Funding
	Conflict of Interest
	Data Availability
	Author Contributions

	Analysis of the Effect of Vaccination, Efficient Surveillance and Treatment on the Transmission Dynamics of Cholera
	1. Introduction
	2. Model description
	3. The cholera model
	3.1. Mathematical analyzing the cholera model
	3.1.1. Existence and uniqueness of solution
	3.1.2. Positivity and boundedness of the solution

	3.2. Presence of the cholera-free equilibrium state
	3.3. Basic reproduction number
	3.4. Stability analysis
	3.4.1. Local stability

	3.5. Global stability of disease-free equilibrium (DFE) Theorem 4
	3.6. Existence of the endemic equilibrium points (cholera present state)
	3.7. Sensitivity analysis of the flies-human model

	4. Interpretation of sensitivity indices
	4.1. Optimal control strategies for cholera virus

	5. Analysis of the model incorporating preventive measures
	6. Control analysis
	7. Quantitative analysis of the model with control measures (t)
	8. Presence of optimal measure (control)
	8.1. Numerical solution
	8.2. Numerical simulation

	9. Discussion
	10. Conclusion
	11. Future work and limitations
	Data availability
	Acknowledgement
	References


