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A New Class of Endo-R.B Module and
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ABSTRACT

This paper gives a definition of a new class of T-module and T-submodule called an Endo-Restricted Bounded module
(submodule) written shortly by Endo-R.B. module (submodule) and present some different approaches to connect this
class of module with other types of modules such as: compressible modules, monoform modules, critically compressible
modules, retractable modules, and quasi-Dedekind modules. One of the main purpose of this work is to introduce a
few new conditions and reveal some properties and corollaries. This paper considered to be another solution or answer
for Zelmanowitz’s problem. In fact, an Endo-R.B. T-module plays an important role to this problem and we say under
what condition compressible T-module would be a critically compressible T-module so we present a positive solution
depend on an Endo-R.B module. The T-homomorphism of compressible and monoform modules join in a nice way with
an endomorphism of a T-module � that we need it for the definition of an Endo-R.B module. Moreover, an Endo-R.B
module gives us directly three different modules and these modules are bounded module, finitely annihilated module,
and retractable module. Finally, polyform and fully polyform modules are involved in this article.

Keywords: Endo-Restricted Bounded module, Compressible module, Monoform module, Retractable module, Quasi-
Dedekind module

1. Introduction

The ring in this paper is commutative with iden-
tity denoted by T and � is a unitary left-T-module.
Motivated by the notion of bounded module that
was introduced by Carl Faith, where a T-module
� is called bounded if there exists x ∈ � such
that annT (x) = annT (�) [1]. Also, the concept of
bounded module studied and expanded in some de-
tails by Al-Ani where a bounded submodule also
defined in the same context so a submodule A of �
is said to be bounded if these exists x ∈ A such that
annT (x) = annT (A) [2]. Moreover, prime modules
and scalar modules both are involved in many prop-
erties as condition to connect an Endo-R.B module
with other modules where a T-module � is called
prime module if for every submodule A of � once we
have annT (�) = annT (A) [3]. A T-module � is called

compressible if it can be embedded in any non-zero
submodule A of � [3] and every compressible is a
prime module [3]. Note that if � is a finitely gen-
erated T-module. Then � is compressible module if
and only if it is uniform and prime module [4]. A
T-module� is called retractable T-module if for every
non-zero submodule A of � we have Hom(�.A) 6=
0. Equivalently, � is called retractable T-module if
there exists a non-zero endomorphism ϕ ∈ End(�)
such that Imϕ ⊆ A for every non-zero submodule A
of � [4]. A retractable T-module � is called a criti-
cally compressible T-module if every non-zero partial
endomorphism of � is a monomorphism [4]. In ad-
dition, a T-module � is said to be multiplication if
submodule A of � there exists an ideal I of T such
that I� = A [5]. Also, there are some properties of
T-module that we need them to show more results
such as torsionless and self-generator modules along
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with the trace of T-module �. � is called torsion-
less T-module if f ∈ Hom(�,T ) such that ∩ f ker f =
0 [6]. Also, a T-module � is said to be self-generator
if A =

∑
ϕ Im ϕ, for every submodule A of � where

ϕ ∈ Hom(�,A) [6] and the trace of T-module � is
denoted by Tr(�) =

∑
ϕ ϕ(�), ϕ ∈ Hom(�,T ).

In this paper, we introduce a new class of module
called an Endo-R.B and this class of module properly
contain the concept of bounded module in sense of
Carl Faith’s definition, which means that every Endo-
R.B module is bounded. Also, we came up with some
certain analogies between an Endo-R.B module and
other types of modules such as compressible, mono-
form, retractable, and more. In this works, we give
several properties and provide many conditions that
play a crucial role to concrete these relationships.
The paper is organized as follows: In Section 2, some
related notions are reviewed and an Endo-R.B module
is presented with some properties in Section 3. In Sec-
tion 4, some significant relationships and compartion
with other modules are given while in Section 5 we
prove some further properties that are related with
different prospective.

2. Preliminaries

Definition 2.1 ([6]): A T-module � is called scalar
if for every ϕ ∈ End(�) there exists r ∈ T such that
ϕ(x) = rx, ∀x ∈ �.

Corollary 2.2 ([6]): If � is finitely generated multi-
plication T-module, then � is a scalar T-module.

Proposition 2.3 ([6]): Let� be a torsion-free scalar
T-module where (T is an integral domain). Then every
element ϕ ∈ End(�) is a T-monomorphism.

Remark 2.4 ([6]): If � is an injective scalar T-
module, then A is a scalar submodule of �.

Definition 2.5 ([7]): A T-module� is called finitely
annihilated T-module if there exists a finitely gener-
ated submodule A of� such that annT (�) = annT(A).

It is clear that every an Endo-R.B module is a
finitely annihilated since every bounded module is
finitely annihilated.

Proposition 2.6 ([7]): If � is multiplication T-
module, then � is finitely annihilated module if and
only if � is finitely generated.

Definition 2.7 ([8]): A T-module � is called mono-
form if every non-zero submodule A of � is dense
and a submodule A of � is said to be dense if for any
x, y ∈ �with x 6= 0 there exists r ∈ T such that ry ∈ A
and rx 6= 0.

Equivalently, a T-module � is called monoform if
for every non-zero submodule A of � and for every
non-zero homomorphism ϕ ∈ H(A, �) implies that ϕ
is monomorphism [9]. Note that if � is monoform
module, it is uniform and prime module [9]. Also,
from monoform module we infer that annT (�) is
prime ideal of T.

Definition 2.8 ([10]): A T-module � is called
quasi-Dedekind if every non-zero submodule A is
quasi-invertible where a non zero-submodule A is said
to be quasi-invertible if Hom(�A , �) = 0. Equivalently,
a T-module � is called quasi-Dedekind if for each
non-zero endomorphism of � is a T-monomorphism.

Proposition 2.9 ([11]): Let � be a retractable T-
module. If every non-zero ϕ ∈ End(�) is a monomor-
phism, then � is a compressible module.

Proposition 2.10 ([11]): Let � be a retractable T-
module. Then � is critically compressible module if
and only if every non-zero partial endomorphism of
� is a monomorphism.

Definition 2.11 ([11]): A T-module� is called fully
retractable if for every non-zero submodule A of and
each non-zero homomorphism h ∈ Hom(A, �) implies
that Hom(A, �)h 6= 0.

Proposition 2.12 ([11]): Let � be a fully re-
tractable T-module such that End(�) is a domain.
Then � is polyform.

Proposition 2.13 ([11]): Let � be a retractable
T-module such that End(�) is a domain. Then � is
critically compressible module if and only if it is
polyform.

3. Endo-R.B modules

A new class of a T-module will be established in this
section with some examples and remarks. In order to
do that we need firstly give a definition of an Endo-
R.B submodule. Throughout the paper, we will use
the symbol End(�) as the set of all endomorphism of
T-module � and “< or ≤” for proper submodule of�.



IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2025;6:203–209 205

Definition 3.1: A proper T-submodule A of � is
said to be Endo-R.B if there exists an endomor-
phism ϕ of � and ϕ(x) ∈ A for some x ∈ � such that
annT (ϕ(x)) = annT (A).

Example 3.2:

1) Suppose that � = Z3 ⊕ Z, T = Z and let A =
〈0̄〉 ⊕ 3Z. Then we can find ϕ : Z3 ⊕ Z → Z3 ⊕

Z defined by ϕ(ā, b) = (0̄, b). It is clear that
ϕ is an endomorphism. Now, let x = (1̄,3) ∈
� Then ϕ(1̄,3) = (0̄,3) ∈ A, and hence we see
that annT(0̄,3) = annT(A) = 〈0̄〉. We conclude
that a submodule A is an Endo-R.B submodule
of �.

2) Assume�= Z4 as Z-module and A=〈2̄〉. Define ϕ :
Z4 → Z4 as ϕ(ā) = 0̄, ∀ ā ∈ Z4 and ϕ is endomor-
phism. Then ϕ (ā) ∈ A, but annZ(A) = annZ〈2̄〉 =
2Z is not equal to annZ(ϕ(3̄)) = annZ(0̄) = Z.
Therefore, A is not Endo-R.B submodule.

For more information about an Endo-R.B T-
submodule and its properties see [12].

Now, we are ready to give the definition of Endo-
R.B module with some examples that explain the
structure of the definition.

Definition 3.3: A T-module � is called Endo-R.B
module if every proper submodule of � is Endo-R.B
submodule.

Example 3.4:

i) ZP as Z-module is Endo-R.B where P is prime num-
ber since (0̄) is the only proper submodule of ZP and
to show that take an endomorphism ϕ ∈ End(�)
as ϕ : Z3 → Z3 such that ϕ(ā) = 3ā, ∀ ā ∈ Z3 then
ϕ(ā) ∈ (0̄) and annT (〈0̄〉) = annT (ϕ(ā)) = Z.

ii) Let � = Z4 ⊕ Z2 as Z-module. Define ϕ : �→

� as ϕ(ā, b̄) = (ā,0), ∀(ā, b̄) ∈ �. Then if we
take A = Z4 ⊕ (0̄) we have that ϕ(ā, b̄) ∈ A. Thus
we conclude that � is not Endo-R.B Z-module
since if we let x = (2̄, 0̄), then 4Z = annZ(A) 6=
annZ(2̄, 0̄) = 2Z.

Remark 3.5: (1) Every Endo-R.B.T-module is
bounded but the converse is not true and to show that.

Let � = Z2 ⊕ Z2 as Z-module and let Let A = Z2 ⊕

(0̄). Define ψ : �→ � by ψ (ā, b̄) = (0̄, 0̄).
Since ψ (ā, b̄) = (0̄, 0̄) ∈ A but 2Z = annZ(A) 6=

annZ(0̄, 0̄) = Z. Therefore, � is not Endo-R.B
while � is bounded T-module since there
exists an element x = (0̄, 1̄) ∈ Z2 ⊕ Z2 such that
2Z = annZ(�) = annZ(0̄, 1̄) = 2Z.

(2) Every proper submodule of Endo-R.B module is
also an Endo-R.B.

4. Endo-R.B modules and related modules

In this section, compressible and monoform mod-
ules play a major role in order to obtain an
Endo-R.B module. Also, a retractable module and
quasi-Dedekind module both are related to an Endo-
R.B module and we shall show this relationship.

Proposition 4.1: Let � be a compressible T-
module, then � is an Endo-R.B. T-module.

Proof: Let ϕ ∈ End(�) and define ϕ : �→
� as ϕ(x) = rx, x ∈ �. Since � is a compressible
module, then for each non-zero submodule N of
� there exists a monomorphism ψ : � → N. Put
ϕ = i ◦ ψ where i is the inclusion map.

Thus ϕ(x) = (iψ )(x) = i(ψ (x)) = ψ (x) ∈ N. Now,
let t ∈ annT (ϕ(x)) implies that tϕ(x) = 0, ∀x ∈ �.
Then tψ (x) = 0, ∀x ∈ � so that ψ (tx) = 0, ∀x ∈ �.
Hence, ψ (tx) = ψ (0) implies that tx = 0, ∀ x ∈ �.
Therefore, t ∈ annT (�) = annT (N) since � is prime
module. Hence, annT (ϕ(x)) = annT (N).

Corollary 4.2: Let� be a finitely generated T-module,
then every uniform prime T-module is an Endo-R.B
module.

Proof: Since � is finitely generated T-module, then �
is compressible module. Thus by previous proposition
the result we get the result.

Proposition 4.3: Let� be a multiplication injective
T-module. Then � is an Endo-R.B module if and only
if � is a compressible module.

Proof: Suppose that � is an Endo-R.B module, then
� is finitely annihilated module and Proposition 2.6
� is finitely generated. Thus, by Corollary 2.2, we
conclude that � is scalar module. Now, Let N < �,
then N is scalar T-submodule and thus there exists
ϕ ∈ End(�) such that ϕ : �→ � define as follow
ϕ(x) = rx, ∀ x ∈ N. Consider the following diagram:

N0

N

g

Ω

Fig. 1. �− In ject ive.
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Then there exists a T-homomorphism g such that
g ◦ i = ϕ. See Fig. 1. It remains to prove that g is
monomorphism.

(g ◦ i)(x) = g(x) = ϕ(x). Let g(x1) = g(x2), then
ϕ(x1) = ϕ(x2) implies that rx1 = rx2 so x1 = x2.

Therefore, g is a T-monomorphism and we conclude
that � is compressible module. Conversely, using
Proposition 4.1.

Proposition 4.4: Every monoform T-module is an
Endo-R.B. T-module.

Proof: Since � is monoform module, it is uni-
form prime module and every non-zero submodule
A of � is dense. Let ϕ ∈ End(�) and define ϕ :
� → � as follow ϕ(x) = rx 6= 0, 0 6= x ∈ �, 0 6= r ∈
T . Then rx ∈ A since � is uniform module. Thus
we have that annT (A) ⊆ annT (ϕ(x)). Now, let t ∈
annT (ϕ(x)) implies that t (rx) = 0 and tr(x) = 0, but
r /∈ annT (x) since A is dense submodule and annT (�)
is prime ideal of T so t ∈ annT (x) = annT (�) ⊆
annT (A). Therefore, annT (ϕ(x)) = annT (A) and � is
an Endo-R.B module.

Proposition 4.5: Let � be a torsion-free multiplica-
tion T-module where (T is an integral domain). Then
� is an Endo-R.B module if and only if� is monoform
module.

Proof: Suppose that � is an Endo-R.B module,
then by Corollary 2.2 � is scalar module and us-
ing Proposition 2.3 we have that every 0 6= ϕ ∈
End(�) is a monomorphism. Let ϕ : �→ � be an
T-homomorphism and consider the inclusion map
i : N→ �. Then the composition ϕ ◦ i : N → � is
monomorphism and this implies that � is monoform
module.

Conversely, assume that � is monoform module,
then by Proposition 4.4 � is an Endo-R.B.

The Proposition 4.5 was proved with multiplica-
tion torsion-free module condition in order to obtain
monform module. However, we need just torsion-free
module as condition to prove that � is a monoform
module in term of the density of its submodules.

Proposition 4.6: Let � be a torsion-free T-module.
Then � is an Endo-R.B module if and only if � is
monoform.

Proof: Let A be any non-zero submodule of �. Since
� is a torsion-free module, then for every x ∈ � there
exists 0 6= r ∈ T such that rx = 0, we have x = 0. �
is an Endo-R.B module, then there exists ϕ ∈ End(�)
and define ϕ(y) = ry, y ∈ M. Thus, ry ∈ A. Now let

0 6= x ∈ � so it remains to show that rx 6= 0. Suppose
that rx = 0 and this implies that x = 0 since � is
torsion-free module which is a contradiction. Thus,
rx 6= 0. Since A is an arbitrary non-zero submodule,
we conclude that � is monoform module.

Proposition 4.7: Let � be a cyclic quasi-Dedekind
T-module, then � is an Endo-R.B. T-module.

Proof: Let ϕ ∈ End(�) and define ϕ : �→ � as
ϕ(x) = rx, x ∈ �. Let A be a proper submodule of
�, then A is a cyclic submodule such that A =
Tx for some x ∈ � since � is cyclic. Therefore,
ϕ(x) ∈ A implies annT (A) ⊆ annT (ϕ(x)). Now, let t ∈
annT (ϕ(x)) so tϕ(x) = 0, then ϕ(tx) = 0, but � is
quasi-Dedekind module. Thus tx = 0 impies that t ∈
annT (x) = annT (�) = annT (A).

Proposition 4.8: Let � be an Endo-R.B quasi-
Dedekind module, then � is monoform module.

Proof: It is enough to that every non-zero submodule
of � is dense. Let N be any non-zero submodule of
� and define ϕ : �→ � as ϕ(y) = ry, ∀y ∈ �. Let
0 6= x ∈ �, then since � is an Endo-R.B module we
have ry ∈ N. Now, it remains to prove that rx 6= 0.
Suppose rx = 0 so ϕ(x) = 0 implies that x ∈ kerϕ,
but � is quasi-Dedekind module means that ϕ is
monomorphism. Thus x = 0 which is a contradic-
tion. Therefore, rx 6= 0 and N is dense submodule and
hence � is monoform.

Proposition 4.9: Every Endo-R.B module is re-
tractable module.

Proof: Let N be a non-zero submodule of an Endo-
R.B � module, then there exists 0 6= ϕ ∈ End(�) and
T-homomorphism ϕ : �→ � define as follow ϕ(x) =
rx, 0 6= x ∈ � such that ϕ(x) ∈ N and annT (ϕ(x)) =
annT (N). Suppose that Hom(�,N) = 0 and consider
the inclusion map i : N→ �. Then ϕ = i ◦ f where
f : �→ N, f = 0. Therefore, ϕ(x) = (i ◦ f )(x) =
i( f (x)) = 0 implies that annT (ϕ(x)) 6= annT (N) which
is a contradiction. Thus Hom(�,N) 6= 0 for every
non-zero submodule of �. Hence � is a retractable
T-module.

As a result, we can say that if� is an Endo-R.B mod-
ule then H(�,A) 6= 0 for every non-zero submodule
A of �.

The converse of Proposition 4.9 is not true in gen-
eral, as we will show that in the next example.

Example 4.10: Consider � = Z4 as Z-module and let
N = (2̄). Let ϕ ∈ End(�) and define ϕ : Z4 → Z4 as
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ϕ(ā) = 0, ∀ ā ∈ �. Then we can see that � is a re-
tractable module since ϕ(ā) ∈ N, ∀ ā ∈ � implies that
imϕ ⊆ N. On the other hand, we see that annZ(N) =
annZ(2̄) = 2Z is not equal to annZ(ϕ(3̄)) = annZ(0̄) =
Z. Therefore, � is not an Endo-R.B module.

The next proposition is consider to be an equivalent
to Proposition 4.3 using retractable module in the
proof.

Proposition 4.11: Let � be multiplication torsion-
free T-module where (T is an integral domain). Then
the following statements are equivalent:

1) � is an Endo-R.B module
2) � is compressible module.

Proof: (1)⇒ (2)
Suppose that � is an Endo-R.B module, then by

Corollary 2.2 � is scalar module and every ϕ ∈

End(�) is monomorphism. Now, by the assumption,
� is retractable module, then for every non-zero sub-
module N of� there exists a non-zero homomorphism
h : �→ N and let i : N→ � be a inclusion map. Thus
the composition i ◦ h = ϕ is a monomorphism and
clearly h is a monomorphism. Therefore, � is com-
pressible module.

(2)⇒ (1) By Proposition 4.1 �

Proposition 4.12: Let � be a retractable quasi-
Dedekind T-module, then � is an Endo-R.B module.

Proof: Since � is a quasi-Dedekind module, then ev-
ery T-homomorphism ϕ ∈ End(�) is monomorphism.
Thus by Proposition 2.9 � is compressible module
and by Proposition 4.1 � is an Endo-R.B module.

Proposition 4.13: Let � be a retractable self-
generator T-module, then � is an Endo-R.B module.

Proof: Since � is self-generator, then A =∑
ψ ψ (�), ψ ∈ Hom(�,A) so let ψ : �→ A be a

non-zero homomorphism. Consider the inclusion
homomorphism i : A→ �, then ϕ = i ◦ ψ : �→ �

is an endomorphism of �. Now, ϕ(x) = (i ◦ ψ )(x) =
i(ψ (x)) = ψ (x) ∈ A, ∀ x ∈ A and this implies
that annT (A) ⊆ annT (ϕ(x)). Let t ∈ annT (ϕ(x)),
then t ∈ annT (ψ (x)), ∀ ψ ∈ Hom(�,A). Thus,
t ∈ annT (

∑
ψ ψ (�)) = annT (A).

[10].

Proposition 4.14: Let � be an Endo-R.B torsion-
free T-module, then � is critically compressible
T-module.

Proof: By Proposition 4.6 we get that � is mono-
form T-module and hence every non-zero partial
homomorphism is a monomorphism. Thus, applying
Proposition 2.10 we conclude that� is critically com-
pressible T-module.

Corollary 4.15: Let � be an Endo-R.B module, then
the following statements are equivalent:

1) � is critically compressible module.
2) Every non-zero partial endomorphism of � is

monomorphism.

Proof: Since every Endo-R.B module is retractable,
then by Proposition 2.10 we obtain the result.

Proposition 4.16: Let � be an Endo-R.B duo mod-
ule, then � is fully retractable module.

Proof: Since � is an Endo-R.B module there exists a
non-zero endomorphism ϕ of � such that ϕ(x) ∈ N
and annT (N) = annT (ϕ(x)) where N is a non-zero
submodule of �. Since � is duo, then for every
ϕ ∈ End(�), we have ϕ(N) ⊆ N which implies that
the partial endomorphism of � is not zero and this
means that 0 6= ϕ : N→ �. By Proposition 4.9 � is a
retractable T-module so there exists a non-zero homo-
morphism h : �→ N. Therefore, h ◦ ϕ 6= 0 and hence
we conclude that � is a fully retractable module.

Recall a T-module � is called polyform if every
essential submodule A of � is dense [13]. Here, we
can apply all previous propositions that are related to
a monoform module since every monoform module is
a polyform.

Proposition 4.17: Let � be an Endo-R.B duo mod-
ule and End(�) is a domain. Then � is a polyform
Module.

Proof: Suppose that� is an Endo-R.B module, then by
Proposition 4.16, � is fully retractable module. Now,
using Proposition 2.12, we obtain the result.

Proposition 4.18: Let � be an Endo-R.B uniform T-
module and End(�) is a domain. Then � is polyform
if and only if � is critically compressible.

Proof: Suppose that � is polyform and since � is
uniform, then by [13], � is monoform module. Since
� is an Endo-R.B, then � is retractable. Therefore,
by Proposition 2.13, we have that � is critically
compressible.

Conversely, assume that � is critically compress-
ible, then by Corollary 4.15 � is monoform module
and hence it is polyform.
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Recall a T-module � is called fully polyform if ev-
ery P-essential submodule of � is dense [13] and a
submodule A is said to be P-essential wherever every
pure submodule B with A ∩ B = (0) implies that B
= (0) [13]. Also, if � is a uniform T-module, then
polyform and fully polyform are identical [13].

Corollary 4.18: If � is an Endo-R.B uniform T-
module and End(�) is a domain. Then � is fully
polyform if and only if � is critically compressible.

Proof: Since� is uniform, then by [13], polyform and
fully polyform are equivalent.

5. Further results and discussion

In this section, we present some properties and give
some characterization of Endo-R.B module. Also, we
point out some conditions in order to obtain Endo-R.B
module.

Proposition 5.1: Let � be a quasi-Dedekind
T-module and A ≤ �. If ϕ(�)  ∩ψ kerψ , ϕ ∈

Hom(�,T ), ψ ∈ Hom(T,A). Then � is an Endo-R.B.
T-module.

Proof: Suppose that ϕ(�)  ∩ψ kerψ , then there ex-
ists ψ◦ : T → A such that 0 6= ψ◦ ◦ ϕ ∈ Hom(�,A).
Therefore, � is a retractable T-module and since �
is quasi-Dedekind module, then � is an Endo-R.B
module by Proposition 2.16.

Proposition 5.2: Let N be a torsionless submodule
of T-module � such that Tr(�) 6= 0, then � is re-
tractable module.

Proof: Suppose that � is not retractable, then there
exists a zero homomorphism f : �→ N where N is
a non-zero submodule of �. Thus f (m) = 0, ∀m ∈ �.
Define ψ : N → T as follow ψ (y) = r, ∀ r ∈ T and
clearly it is well-defined and homomorphism. There-
fore, f (�) ⊆ ∩ψ kerψ and N is torsionless. Hence,
the composition 0= ψ ◦ f = ϕ : �→ T implies that
Tr(�) = 0 and this is a contradiction. Thus � is re-
tractable module.

Proposition 5.3: Let � be an Endo-R.B. T-module
and N ≤ �, then 0 6= Tr(�)  annT (A).

Proof: Suppose that Tr(�) ⊆ annT (A). Since Tr(�) 6=
0, then there exists ϕ 6= 0, ϕ ∈ H(�,T). Define ψ :
R→ A as ψ (r) = rx, ∀x ∈ A, so ψ is well-defined and
T-homomorphism. By our assumption, we have the

following

ϕ (�) A = 0

ϕ (�) x = 0, ∀x ∈ A

(ψ ◦ ϕ)� = 0

(ψ ◦ ϕ) = 0

0 = (ψ ◦ ϕ) : �→ A which is a contradiction since �
is an Endo-R.B and so it is a retractable module.

Proposition 5.4: Let � be an Endo-R.B quasi-
Dedekind T-module and A ≤ �, then annT (�A ) 6=
annT (�).

Proof: Let A ≤ � and suppose that annT (�A ) =
annT (�). Thus [A:T�] = annT (�) = annT (x), ∀x ∈ �
since � is prime. Therefore, for every r that sat-
isfy r� ⊆ A (ry ∈ A) we have rx = 0 with x 6= 0
where x, y ∈ �. This is a contradiction since � by
Proposition 4.8 is a monoform T-module. Therefore,
annT (�A ) 6= annT (�).

Recall a T-module � is called coprime if annT (�A ) =
annT (�) for every proper submodule A of � [14].

Remark 5.5: Let � be an Endo-R.B quasi-Dedekind
T-module, then � is not coprime T-module.

Proof: The proof is a direct result from
Proposition 5.4.

Proposition 5.6: Let � /A be a quasi-Dedekind T-
module where A is a proper submodule of �. Then �
is an Endo-R.B module.

Proof: Let ϕ ∈ End(�) and define ϕ : �→ � as
ϕ(m) = rm, m ∈ �. Since � /A is quasi-Dedekind
module, then we can define ψ : �/A→ �/A as fol-
low ψ (x+ A) = rx+ A, ∀x ∈ �. Then either ψ = 0
or ψ is a monomorphism. Suppose that ψ 6= 0 and
let m+ A ∈ kerψ , then ψ (m+ A) = A implies rm+
A = A and hence m+ A = A, then m ∈ A so that
rm ∈ A, ∀m ∈ A Therefore, annT (A) ⊆ annT (ϕ(m)). If
ψ = 0 we get that rm+ A = A implies that rm ∈ A
and once again we obtain annT (A) ⊆ annT (ϕ(m)).
Now, let t ∈ annT (ϕ(m)), then t (rm) = 0 implies that
t ∈ annT (rm), ∀ rm ∈ A. Therefore, t ∈ annT (A) and
hence we conclude that annT (ϕ(m)) = annT (A). The
proof now is complete.

Proposition 5.7: Let � be an Endo-R.B module,
then r� 6= �.

Proof: Suppose that r� = �. Since � is an Endo-R.B
module, then there exists ϕ ∈ End(�) and defined as
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follow ϕ(x) = rx, ∀ x ∈ �, By Proposition 2.13 � is
retractable module so that imϕ ⊆ A for every non-
zero submodule A of �. Therefore, ϕ(�) ⊆ A implies
that r� ⊆ A, but r� = �, � ⊆ A and this is a contra-
diction. Hence, r� 6= �.

Proposition 5.8: Let � be an Endo-R.B. T-module
and 0 6= ϕ ∈ End(�), then ϕ is not epimorphism,

Proof: Let 0 6= ϕ ∈ End(�). Since � is an Endo-R.B
module, � is retractable T-module and so for every
non-zero submodule A of� there exists a non-zero ho-
momorphism g : �→ A. Consider the inclusion map
i : A→ �. Thus, ϕ = i ◦ g : �→ �. Therefore, it is
clear that ϕ is not an epimorphism.

6. Conclusion

In this research article, we have introduced a
new class of module called Endo-Restricted Bounded
and explain how this type of module is stronger
than bounded module provided with some exam-
ples. In addition, we present several nicely properties
that join an Endo-R-B module with other important
modules such as compressible modules, monoform
modules, quasi-Dedekind modules, and retractable
modules. Also, using an Endo-R.B. T-module as as-
sumption lead us to come up with some statements
that will be very useful for other researchers who
want to search in this topic.
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