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ORIGINAL STUDY

The Analytic Solution of Non-linear BurgerseHuxley
Equations Using the Tanh Method

Kabir O. Idowu a,*, Adedapo C. Loyinmi b

a Department of Mathematics, Purdue University, USA
b Department of Mathematics, Tai Solarin University of Education, Ijagun, Ogun State, Nigeria

Abstract

The emergence of the BurgerseHuxley equation (which involves the famous Burgers equation and the Huxley
equation) to predict response systems, dispersion moves, and nerve charge transmission in traffic patterns, sound,
turbulent conditions theory, hydrodynamics has attracted the attention of scientists to provide reliable and efficient
solutions to the problem.
The present work employed the Tanh method to solve the BurgerseHuxley nonlinear partial differential equations. In

contrast to previous results with complicated and laborious solution characteristics, this method is accurate, efficient, and
requires little computational work. In showing this, we solved four BurgerseHuxley case study problems using the Tanh
approach and obtained the exact solution. The solutions of the four cases were presented graphically. In addition, the
findings demonstrate that the Tanh method is an effective and robust approach for constructing the exact solution of
nonlinear differential equations.

Keywords: Tanh methods, BurgereHuxley equation, Nonlinear partial differential equation, Analytic methods

1. Introduction

P artial differential equations (PDEs) are crucial

for numerically modelling many processes in
science and technology [1,2]. Understanding them is
essential to gaining a thorough understanding of the
actions of natural and artificial processes [3e6].
Because of its complexity [7], researchers are
constantly searching for computational and analyt-
ical techniques to solve nonlinear differential
equations [8,9]. Particularly, there are various ap-
proaches in the research for locating the numerical
and exact solution to non-linear partial differential
equations [10e17]. Numerous scholars have exten-
sively researched nonlinear PDE, resulting in it
becoming pervasive [18e21].
In 1915, Bateman proposed the Burgers' equation,

which he later changed to the Burgers' equation
[22,23]. The Burgers' equation is widely used in

engineering and science, particularly when dealing
with nonlinear equations [24]. Mathematicians and
researchers are doing increasingly important and
interesting things with Burgers' equation [25]. As a
nonlinear partial differential equation, the
BurgerseHuxley equation is essential for compre-
hending the connection among formation processes,
flow effects, and dispersion processes [26e28]. The
BurgerseHuxley equation is in the form

Ut¼Uxx�aUdUx þ bUð1�UdÞðUd�gÞ: ð1Þ
In time past, various methods have been used

to solve the BurgerseHuxley equation such as the
homotopy perturbation method [29], elzaki trans-
form method [27], adomian decomposition method
[30], spectral collocation method [31], G'/G-Expan-
sion method [32], homotopy analysis method [33],
etc. However, the Tanh method has not been used
to solve the BurgerseHuxley equation [34,35]. The
Tanh method is an effective approach for searching
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the wave propagation of one-dimensional dynam-
ical waves and transformation equations [34,36e38].
In this view, this research work seeks to solve the

BurgerseHuxley equation using the Tanh approach
and confirm the accuracy and efficiency of the
method. The paper is presented under the following
sections: Section 2 describes the method of the so-
lution, Section 3 presents the application of the
method with four examples, Section 4 presents the
graphical solution, and Section 5 presents the
conclusion.

2. Method of solution

The complex wave and evolutionary models we
want to study (for convenience, through space) are
often expressed as

Ut¼GðU;Ux;Uxx; :::Þ orUtt¼GðU;Ux;Uxx; :::Þ: ð2Þ
The aim is to determine a possible exact

dynamical solution to (1) and provide a suitable
approach to solve it [39].
Firstly, we merge the variable x and t, to arrive at a

variable h ¼ kðx � VtÞ, It establishes the dynamic
point of view [40]. Here k and V represent the wave
number and the velocity of the travelling waves [41].
Despite that, the values of the two parameters are
not known, we estimate that k> 0 [42]. Furthermore,
the independent variable Uðx; tÞ is substituted by
UðhÞ. Equations like (1) are then transformed into

�kV
dU
dh

¼G
�
U;k

dU
dh

;k2
d2U
dh2

; :::

�
; ð3Þ

or

k2V2d
2U
dh2

¼G
�
U;k

dU
dh

;k2
d2U
dh2

; :::

�
: ð4Þ

As a result, we will be dealing with Ordinary
differential equations rather than Partial Difference
equations [43,44]. Our primary objective is to arrive
at exact solutions to such tanh-form Ordinary dif-
ferential equations. If that is not feasible, estimated
solutions can be obtained. As a result, we present a
new independent variable y ¼ tanhðhÞ into the Or-
dinary differential equations [45,46]. Hence, we can
obtain the finite power series solutions in y.

FðyÞ¼
XN
n¼0

anyn: ð5Þ

Which incorporate solitary-wave and
shockewave profiles [47]. We determine the degree
ðNÞ by comparing and balancing [48]. The coeffi-
cient an follows from solving a nonlinear algebraic
system [49,50].

3. Existence and uniqueness of the solution

In this section, the existence and uniqueness of
the BurgereHuxley solution will be discussed. To
accomplish this goal, we employ the Galerkin
approximation to prove the well-posedness of the
equation. This is accomplished by presenting the
weak formation model first. There exist
U2M∞½ð0; TÞ;M2ðJÞ�∩M2½ð0; TÞ;K1

0ðJÞ�∩M4½ð0; TÞ;
M4ðJÞ�
such that cu0;

〈vU
vt ;V〉þ 〈vU

vx ;
vV
vx〉þa〈U vU

vx ;V〉

þb〈�U3�ðaþ1ÞU2þaU
�
;V〉¼0 :

ð6Þ

〈Uðx;0Þ;V〉¼ 〈U0;V〉: ð7Þ
We now apply the Galerkin approximation that

satisfies (1), giving the orthogonal basis function
ft1; t2; t3; :::; tn 3K1

0ðJÞ∩K2ðJÞg [51]. Then we get;

vUn

dt
�v2Un

dx2
þaUn

vUn

dx
þbPn

�
U3

n�ðaþ1ÞU2
nþaUn

�
¼0; onJ�ð0;TÞ;

ð8Þ

where n2א, and Un ¼ Pn
i¼1

fiðtÞti
It has been demonstrated traditionally in [51e53]

that the solutions to the Burgers'-Huxley Equation
(1) and Equation (16) are the same. The foundation
for proving the existence and uniqueness of the
solution to the Burgers'-Huxley problem is provided
by the preceding connections. Using the above
connections, the solution of the BurgerseHuxley
equations exists uniquely as shown in [51].

4. Application

4.1. Case 1

At ¼ 0 d ¼ 1, g ¼ 1, b ¼ 1, then the equation
becomes

vU
vt

¼v2U
vx2

þUð1�UÞðU�1Þ: ð9Þ

By transforming equation (5) we have

�kV
dU
dh

¼k2
d2UðhÞ
dh2

þUðhÞð1�UðhÞÞðUðhÞ�1Þ: ð10Þ

Next, we introduce y ¼ tanhðhÞ.
Also, we assume that uðhÞ/0, and dU

dh/∞ 0 as
h/∞.
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kV
�
1�y2

�dFðyÞ
dy

þk2
�
1�y2

�� d
dy

��
1�y2

�dFðyÞ
dy

��
þFðyÞð1�FðyÞÞðFðyÞ�1Þ¼0;

ð11Þ
From (5), FðyÞ ¼ PN

n¼0
anyn.

Then, we substitute FðyÞ ¼ PN
n¼0

anyn, and differen-

tiate where necessary.

By expansion, we can only see that the highest
power of y appears to be yNþ2 in the second term
and y3N in the third.
Therefore,
3N ¼ N þ 2;
2N ¼ 2;
N ¼ 1:
Thus,

FðYÞ¼
X1
n¼0

anyn ¼ a0 þ a1y; ð14Þ

Then substituting FðYÞ ¼ a0 þ a1y into equation
(9), We have,

�kV
�
1�y2

�
a1�2k2

�
1�y2

�
ya1þa0ð1�a0�ya1Þ

ða0þya1�1Þþa1yð1�a0�ya1Þða0þya1�1Þ; ð15Þ

Through expansion, we have

y0 : �kVa1 � a0 þ 2a20 � a30 ¼ 0;

y1 : �2k2a1 þ 4a0a1 � 3a20a1 � a1 ¼ 0;

y2 : kVa1 þ 2a21 þ 3a0a21 ¼ 0;

y3 : 2k2a1 � a31 ¼ 0;
Equality holds when each coefficient of power of y

vanishes. Therefore, from y3, we get a21 ¼ 2k2.
Substituting a21 ¼ 2k2 into the rest of the over-

determined system of nonlinear algebraic equations

and solving using Maple 13 solver, we have

k ¼
ffiffi
2

p
4 , V ¼

ffiffi
2

p
2 , a0 ¼ 1

2, a1 ¼
ffiffiffiffiffiffiffi
2k2

p
¼ 1

2.
Since FðYÞ ¼ a0 þ a1y,
Then,

FðYÞ¼1
2
þ1
2
y¼1

2
ð1þyÞ: ð17Þ

Recall that y ¼ tanh h and h ¼ kðx � VtÞ,
Then,

uðx; tÞ¼1
2
ð1þ tanh hÞ¼1

2
ð1þ tanh kðx�VtÞÞ: ð18Þ

Substituting the values of k and V

uðx; tÞ¼1
2

 
1þ tanh

ffiffiffi
2

p

4

 
x�

ffiffiffi
2

p

2
t

!!
; ð19Þ

kV
�
1� y2

�dPNn¼0
anyn

dy
þ k2

�
1� y2

�� d
dy

�
1� y2

�� d
PN
n¼0

anyn

dy
þ PN

n¼0
anyn

�
1�PN

n¼0
anyn

��PN
n¼0

anyn � 1
�
¼ 0;

ð12Þ

kV
�
1�y2

�"XN
n¼0

anynn
y

#
þk2

�
1�y2

�
2
666664

"
� 2y

"XN
n¼0

anynn
y

##

þ�1� y2
�"XN

n¼0

�
anynn2

y2
� anynn

y2

�#

3
777775

þ
XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn�1

!
¼0:

ð13Þ

�kVa1 þ kVa1y2 � 2k2a1yþ 2k2a1y3 � a0 þ 2a20 þ 4a0a1y� a30 � 3a20a1y

þ3a0a21y
2 � a1yþ 2y2a21 � a31y

3
ð16Þ
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4.2. Case 2

At a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1, then the equation
becomes;

vu
vt

¼v2u
vx2

þu
vu
vx

þ uð1�uÞðu�1Þ: ð20Þ
By transforming equation (5), we have

�kV
dU
dh

¼k2
d2UðhÞ
dh2

þkUðhÞ
�
dUðhÞ
dh

þUðhÞð1�UðhÞÞ

�ðUðhÞ�1Þ:
ð21Þ

Next, we introduce y ¼ tanhðhÞ.
Also, we assume that uðhÞ/0, and dU

dh/∞ 0 as h/
∞.

From (5), FðyÞ ¼ PN
n¼0

anyn :

Then we substitute FðyÞ ¼PN
n¼0any

n and differ-
entiate where necessary, we have

By expansion, we can see that the highest power
of y appears to be yNþ2 in the second term, y2Nþ1 in
the third term, and y3N in the fourth.
Therefore,
3N ¼ N þ 2;
2N ¼ 2;
N ¼ 1:

3N ¼ 2N þ 1;
3N � 2N ¼ 1;
N ¼ 1:

Thus,

FðYÞ¼
X1
n¼0

anyn ¼ a0 þ a1y ð25Þ

Then substituting FðYÞ ¼ a0 þ a1y into equation
(17), we have

kV
�
1� y2

�
a1 � 2k2

�
1� y2

�
ya1 þ kða0 þ ya1Þ

�
1� y2

�
a1þ

ða0 þ ya1Þð1� a0 � ya1Þða0 þ ya1 � 1Þ;
ð26Þ

By expansion, we have,

kV
�
1� y2

�dFðyÞ
dy

þ k2
�
1� y2

�� d
dy

��
1� y2

�dFðyÞ
dy

��
þ kFðyÞ�1� y2

�dFðyÞ
dy

þ FðyÞð1� FðyÞÞðFðyÞ � 1Þ ¼ 0; ð22Þ

kV
�
1� y2

�dPNn¼0
anyn

dy
þ k2

�
1� y2

� d
dy

2
664�1� y2

�dPNn¼0
anyn

dy

3
775þ k

XN
n¼0

anyn
�
1� y2

�dPNn¼0
anyn

dy
þ

XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn � 1

!
¼ 0 :

ð23Þ

Then,

kV
�
1�y2

�"XN
n¼0

anynn
y

#
þk2

�
1�y2

�
2
66664
�2y

"XN
n¼0

anynn
y

#

þ�1� y2
�"XN

n¼0

�
anynn2

y2
� anynn

y2

�#
3
77775

þk

 XN
n¼0

anyn
!�

1�y2
�"XN

n¼0

anynn
y

#
þ
XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn�1

!
¼0:

ð24Þ
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kVa1�kVa1y2�2k2a1yþ2k2a1y3þka0a1�ka0a1y2

þka21y�ka21y
3 þ 2a20þ4a0a1y�a0�a30�3a20a1y

�3a20a1
2y2þ2a12y2�ya1�a31y

3;

ð27Þ

y0 : kVa1 � a0 � a30 þ ka0a1 þ 2a20 ¼ 0;

y1 : 4 a0a1 � 2k2a1 � a1 þ a21k� 3a20a1 ¼ 0;

y2 :�kVa1 � ka0a1 þ 2a21 þ 3a0a21 ¼ 0;

y3 : 2k2a1 � a21k� a31 ¼ 0 :

Equality holds when each coefficient of power
of y vanishes. Therefore, from y3, we have

2k2�a1k� a21 ¼ 0: ð28Þ
By solving the quadratic equation,

k¼ � a1
2
or k¼ a1 ð29Þ

Substituting a1 ¼ �2k into the rest of the over-
determined system of nonlinear algebraic equations
and solving using Maple 13 solver, we have
k ¼ 1

4 , V ¼ � 3
2, a0 ¼ 1

2, a1 ¼ � 2k ¼ � 1
2.

Since FðYÞ ¼ a0 þ a1y
Then FðYÞ ¼ 1

2� 1
2 y ¼ 1

2 ð1 � yÞ.
Recall that y ¼ tanh h and h ¼ kðx � VtÞ
Then,
uðx; tÞ ¼ 1

2 ð1 � tanh hÞ ¼ 1
2 ð1 � tanh kðx � VtÞÞ.

Substituting the values of k and V

uðx; tÞ¼1
2

�
1� tanh

1
4

�
xþ3

2
t
��

: ð30Þ

4.3. Case 3

At a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1, then the equation
becomes
(31)
vu
vt

¼v2u
vx2

þu
vu
vx

þ 2uð1�uÞðu�3Þ: ð31Þ
By transforming equation (5), we have

(32)
�kV

dU
dh

¼ k2
d2UðhÞ
dh2

þkUðhÞ
�
dUðhÞ
dh

þ2UðhÞð1�UðhÞÞ

ðUðhÞ�3Þ:
ð32Þ

Next, we introduce y ¼ tanhðhÞ
Also, we assume that uðhÞ/0, and dU

dh/∞ 0 as
h/∞.
(33)
kV
�
1� y2

�dFðyÞ
dy

þ k2
�
1� y2

�� d
dy

��
1� y2

�dFðyÞ
dy

��
þ

kFðyÞ�1� y2
�dFðyÞ

dy
þ 2FðyÞð1� FðyÞÞðFðyÞ � 3Þ ¼ 0

ð33Þ
Since FðyÞ ¼ PN

n¼0
anyn,

Then we substitute FðyÞ ¼ PN
n¼0

anyn and differen-

tiate where necessary,

kV
�
1� y2

�dPNn¼0
anyn

dy
þ k2

�
1� y2

� d
dy

2
664�1� y2

�dPNn¼0
anyn

dy

3
775þ

k
XN
n¼0

anyn
�
1� y2

�dPNn¼0
anyn

dy
þ 2

XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn � 3

!
¼ 0

ð34Þ

Then

kV
�
1�y2

�"XN
n¼0

anynn
y

#
þk2

�
1�y2

�"� 2y

"XN
n¼0

anynn
y

#
þ �1�y2

�"XN
n¼0

�
anynn2

y2
�anynn

y2

�##

þk

 XN
n¼0

anyn
!�

1�y2
�"XN

n¼0

anynn
y

#
þ2
XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn�3

!
¼0

ð35Þ
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By expansion, we can see that the highest power
of y appears to be yNþ2 in the second term, y2Nþ1 in
the third term and y3N in the fourth.
Therefore,
3N ¼ N þ 2;
2N ¼ 2;
N ¼ 1:

3N ¼ 2N þ 1;
3N � 2N ¼ 1;
N ¼ 1:

Thus,
FðYÞ ¼ P1

n¼0any
n ¼ a0 þ a1y

Then substituting FðYÞ ¼ a0 þ a1y into equation (4),
we have

kV
�
1� y2

�
a1 � 2k2

�
1� y2

�
ya1 þ kða0 þ ya1Þ

�
1� y2

�
a1þ

2ða0 þ ya1Þð1� a0 � ya1Þða0 þ ya1 � 3Þ
ð36Þ

Through expansion, we have

kVa1�kVa1y2�2k2a1yþ2k2a1y3þka0a1�ka0a1y2

þka21y�ka21y
3þ8a20þ16a0a1y�6a0�2a30�6a20a1y

�6a20a1
2y2þ8a12y2�6ya1�2a31y

3

ð37Þy0 : kVa1 � 6a0 � 2a30 þ ka0a1 þ 8a20 ¼ 0;

y1 : 16 a0a1 � 2k2a1 � 6a1 þ a21k� 6a20a1 ¼ 0;

y2 : �kVa1 � ka0a1 þ 8a21 þ 6a0a21 ¼ 0;

y3 : 2k2a1 � a21k� 2a31 ¼ 0:
Equality holds when each coefficient of power of y

vanishes. Therefore, from y3, we have 2k2 � a1k�
2a21 ¼ 0.
By solving the quadratic equation.

k ¼
	
1
4 þ

ffiffiffiffi
17

p
4



a1 or k ¼

	
1
4 �

ffiffiffiffi
17

p
4



a1.

Substituting k ¼
	
1
4þ

ffiffiffiffi
17

p
4



a1 into the rest of the

over-determined system of nonlinear algebraic
equations and solving using Maple 13 solver, we
have

V ¼ 5
ffiffiffiffi
17

p þ7
4 , a0 ¼ 1

2, a1 ¼ � 2k ¼ � 1
2, k ¼ 1þ ffiffiffiffi

17
p
8 .

Since FðYÞ ¼ a0 þ a1y,

Then, FðYÞ ¼ 1
2� 1

2 y ¼ 1
2 ð1 � yÞ.

Recall that y ¼ tanh h and h ¼ kðx � VtÞ,
Then, in its original variable.
uðx; tÞ ¼ 1

2 ð1 � tanh hÞ ¼ 1
2 ð1 � tanh kðx � VtÞÞ.

Substituting the values of k and V

uðx; tÞ¼1
2

 
1� tanh

1þ ffiffiffiffiffi
17

p

8

 
x�5

ffiffiffiffiffi
17

p þ 7
4

t

!!
ð38Þ

4.4. Case 4

At a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1, then the equation
becomes

vu
vt

¼v2u
vx2

þ2u
vu
vx

þ uð1�uÞðu�3Þ ð39Þ
By transforming equation (5) we have

�kV
dU
dh

¼k2
d2UðhÞ
dh2

þ2kUðhÞ
�
dUðhÞ
dh

þUðhÞð1�UðhÞÞ

�ðUðhÞ�3Þ
ð40Þ

Next, we introduce y ¼ tanhðhÞ
Also, we assume that uðhÞ/0, and dU

dh/∞ 0 as
h/∞.

kV
�
1� y2

�dFðyÞ
dy

þ k2
�
1� y2

�� d
dy

��
1� y2

�dFðyÞ
dy

��
þ

2kFðyÞ�1� y2
�dFðyÞ

dy
þ FðyÞð1� FðyÞÞðFðyÞ � 3Þ ¼ 0

ð41Þ
Since FðyÞ ¼ PN

n¼0
anyn.

Then we substitute FðyÞ ¼PN
n¼0any

n and differ-
entiate where necessary

kV
�
1� y2

�dPNn¼0
anyn

dy
þ k2

�
1� y2

� d
dy

2
664�1� y2

�dPNn¼0
anyn

dy

3
775þ 2k

XN
n¼0

anyn
�
1� y2

�dPNn¼0
anyn

dy
þ

XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn � 3

!
¼ 0

ð42Þ
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Then

By expansion, we can see that the highest power
of y appears to be yNþ2 in the second term, y2Nþ1 in
the third term and y3N in the fourth.
Therefore,
3N ¼ N þ 2;
2N ¼ 2;
N ¼ 1:

3N ¼ 2N þ 1;
3N � 2N ¼ 1;
N ¼ 1:

Thus,

FðYÞ ¼ P1
n¼0

anyn ¼ a0 þ a1y.

Then, substituting FðYÞ ¼ a0 þ a1y into equation
(4), we have

kV
�
1�y2

�
a1�2k2

�
1�y2

�
ya1þ2kða0þya1Þ

�
1�y2

�
a1þ

ða0þya1Þð1�a0�ya1Þða0þya1�3Þ :
ð44Þ

Through expansion, we have

kVa1�kVa1y2�2k2a1yþ2k2a1y3þ2ka0a1�2ka0a1y2

þ2ka21y�2ka21y
3 þ 4a20þ8a0a1y�3a0�a30

�3a20a1y�3a20a1
2y2þ4a12y2�3ya1�a31y

3

ð45Þ

y0 : kVa1 � 3a0 � a30 þ 2ka0a1 þ 4a20 ¼ 0;

y1 : 8a0a1 � 2k2a1 � 3a1 þ 2a21k� 3a20a1 ¼ 0;

y2 :�kVa1 � 2ka0a1 þ 4a21 þ 3a0a21 ¼ 0;

y3 : 2k2a1 � 2a21k� a31 ¼ 0 :

s

Equality holds when each coefficient of power
of y vanishes. Therefore, from y3, we have

2k2�2a1k� a21 ¼ 0: ð46Þ
By solving the quadratic equation,

k ¼
	
1
2þ

ffiffi
3

p
2



a1 or k ¼

	
1
2 �

ffiffi
3

p
2



a1.

Substituting k ¼
	
1
2þ

ffiffi
3

p
2



a1 into the rest of the

over-determined system of nonlinear algebraic
equations and solving using Maple 13 solver, we
have

V ¼
ffiffi
3

p �5
2 , a0 ¼ 3

2 , a1 ¼ 3
2, k ¼ 3�3

ffiffi
3

p
4 .

Since FðYÞ ¼ a0 þ a1y,
Then FðYÞ ¼ 3

2� 3
2 y ¼ 3

2 ð1 � yÞ
Recall that y ¼ tanh h, and h ¼ kðx � VtÞ.

Then, in its original variable,

uðx; tÞ¼3
2
ð1� tanh hÞ¼3

2
ð1� tanh kðx�VtÞÞ: ð47Þ

Substituting the values of k and V

uðx; tÞ¼3
2

�
1� tanh

3� 3
ffiffiffi
3

p

4

�
x�

ffiffiffi
3

p � 5
2

t
��

: ð48Þ

5. Numerical simulations

In this section, we present the result of the four
cases graphically. The result from the Tanh method
is the same as the exact solution found in the liter-
ature [27,29].

6. Discussion

In this section, using 3D plots, we show how the
exact solutions and the Tanh Method results relate
to one another for each of the four cases of the
BurgerseHuxley equation. Figures 1e4 show the
graphs of the solutions derived from the Tanh
method at a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1. The result
shows that the Tanh method is an appropriate,
efficient, and accurate method for solving the
BurgereHuxley equation. The method is also suit-
able for finding the exact solution directly instead of
using semi-analytic methods [29,54] and numerical

kV
�
1�y2

�"XN
n¼0

anynn
y

#
þk2

�
1�y2

�"� 2y

"XN
n¼0

anynn
y

#
þ �1�y2

�"XN
n¼0

�
anynn2

y2
�anynn

y2

�##

þ2k

 XN
n¼0

anyn
!�

1�y2
�"XN

n¼0

anynn
y

#
þ
XN
n¼0

anyn
 
1�

XN
n¼0

anyn
! XN

n¼0

anyn�3

!
¼0

ð43Þ

Fig. 1. Solution plot for case 1 at ¼ 0 d ¼ 1, g ¼ 1, b ¼ 1.
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methods [32,55], which will only result in an series
and approximate solution of the BurgereHuxley
equation. The method will be advantageous to

engineers and researchers because it provides
easier and more accurate solutions in less time
compared with other methods.

Fig. 3. Solution plot for case 3 at a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1.

Fig. 2. Exact Solution plot for case 2 at a ¼ � 1, d ¼ 1, g ¼ 1, b ¼ 1.
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7. Conclusion

In this paper, we have successfully and efficiently
used the Tanh method to solve the BurgereHuxley
equation. Four cases are presented to show the ef-
ficiency and accuracy of the method to solve Bur-
gereHuxley. In each case, we arrived at the exact
solution to the equations presented. Therefore, the
result in this paper is sufficient to conclude that the
Tanh method is a suitable method for solving non-
linear partial differential equations, and in partic-
ular, the BurgereHuxley equation. Hence, the Tanh
approach is highly recommended for use in the
solution of models involving fluid dynamics, tech-
nology, nonlinear dynamics, noise, convection,
dispersion, advection-diffusion, etc. Analytical so-
lutions to Burgers-Huxley-type equations and
related nonlinear partial differential equations may
also be obtained using this approach.
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