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ORIGINAL STUDY

Some Characterizations of Weakly Pseudo Semi
2-absorbing Submodules in Terms of Some Types
of Modules

Omar H. Taha a,*, Omar A. Abdullah b, Ali Sh. Ajeel b

a General Directorate of Salah al-Din Education, Ministry of Education, Tikrit, Iraq
b Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq

Abstract

The purpose of this paper is to investigate characterizations of weakly pseudo semi-2-absorbing submodules in terms
of some types of modules. We provide characterizations for the class of multiplication modules with the help of some
types of modules such as faithful, non-singular, Z-regular, and projective modules. Furthermore, we add some condi-
tions to proof the residual of a weakly pseudo semi-2-absorbing submodule is a weakly pseudo semi-2-absorbing ideal.

JEL classification: 16D99

Keywords: Multiplication modules, Weakly pseudo semi-2-absorbing

1. Introduction

I n this paper, the ring E is a commutative ring
with a non-zero identity, and U is a unitary

E -module. Over the past 13 years, the concepts of 2-
absorbing submodules and weakly 2-absorbing
submodules have been extensively studied by Dar-
ani and Soheilinia [1]. A submodule W =U of an
E emodule U is called 2-absorbing (weakly 2-
absorbing) if whenever abu2W (0sabu2W ) for
some a; b2E , u2U , then either au2W or bu2W
or ab2½W :E U �. Following that, Hadi and Harfash
introduced the concept of semi-2-absorbing sub-
modules as a generalization of 2-absorbing sub-
modules [2]. A submodule W =U of an E emodule
U is called semi-2-absorbing (weakly semi-2-
absorbing) if whenever a2u2W (0sa2u2W ) for
some 2E , u2U , then either au2W or a22
½W :E U �. Also, Abdalla and Mohammadali intro-
duced the concept of pseudo semi-2-absorbing
submodules [3]. A submodule W =U of an
E emodule U is said to be a pseudo semi-2-
absorbing submodule of U , if e2u2W , for e2 E ,

u2U , implies either ru2W þ SocðU Þ or e22½W þ
SocðU Þ:E U �. The concept of weakly pseudo semi-2-
absorbing submodule is a generalization of semi-2-
absorbing and pseudo semi-2-absorbing submodule
introduced by Taha and Salih [4], a submoduleW =
U of an E emodule U is said to be a weakly pseudo
semi-2-absorbing submodule of U (for short WPS-
2AB), if 0se2u2W , for e2E , u2U , implies either
eu2W þ SocðU Þ or e22½W þ SocðU Þ:E U �. An
ideal Q of a ring E is said to be a weakly pseudo
semi-2-absorbing ideal of E if Q is a weakly pseudo
semi-2-absorbing submodule of the E emodule E .
An E -module U is multiplication if every sub-
module W of U is of the from W ¼ QU for some
ideal Q of E . It's well known that a cyclic module is
Multiplication module [5]. An E -module U is called
Z-regular if for any s2U there exists
f2U * ¼ HomRðU ;E Þ such that s ¼ f ðsÞs. Recall
that an E -module U , is a projective if for every
E -epimorphism f : M1/M2 where M1 and M2 are
E -modules, and every E -homomorphism
g : U /M2, there exists an E -homomorphism
h : U /M1 such that f+h ¼ g . Recall that an
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E -module U it is a non-singular if ZðU Þ ¼ 0,
where ZðU Þ ¼ fs2U : s Q¼ ð0Þ g for some ideal Q
of E . Recall that an E -module U is faithful if
AnnRðU Þ ¼ ð0Þ. Recall that an E -module U is
finitely generated if U ¼ ðx1;x2:::;xnÞ ¼ Rx1 þ Rx2 þ
:::þ Rxn, where x1; x2:::; xn2U [6]. In main results
section of this paper, we provide characterizations
for many modules, including non-singular modules,
Multiplication modules, faithful finitely produced
modules, projective modules, and Z-regular mod-
ules. We show, under certain conditions, the resid-
ual of weakly pseudo semi-2-absorbing submodule
is a weakly pseudo semi-2-absorbing ideal, Propo-
sition 9, 12, 15, 18. Moreover, we show that under
certain conditions, if W is weakly pseudo semi-2-
absorbing submodules QU is a weakly pseudo
semi-2-absorbing submodule where Q is an ideal of
E see Proposition 24, 26, 28.

2. Main results

Proposition 1. [4] Let W =U be a submodule of an
E -module U , then W is a WPS-2AB submodule if and
only if ð0Þse2T⊆W for e2E and T is submodule of U ,
implies either eT⊆W þ SocðU Þ or e22½W þ
SocðU Þ:E U �.
Proposition 2. [4] Let W =U be a submodule of an
E -module U , then W is a WPS-2AB submodule if and
only if ð0ÞsQ2T⊆W for some ideal Q of E and sub-
module T of U , implies that either QT⊆W þ SocðU Þ or
Q2⊆½W þ SocðU Þ:E U �.
Theorem 3. Let U be a Multiplication E -module and
W =U be a submodule of U . Then W is a WPS-2AB
submodule if and only if whenever ð0ÞsT1

2T2⊆W , for
some submodules T1 and T2 of U , implies that either
T1T2⊆W þ SocðU Þ or T1

2⊆W þ SocðU Þ.
Proof. Assume that ð0ÞsT1

2T2⊆W , for some sub-
modules T1 and T2 of U . Since U is a Multiplication,
We have T1 ¼ D1D and T2 ¼ D2D for some ideals D1;
D2 in E , it follows that ð0ÞsðD1DÞ2D2D ¼ D2

1D2D⊆
W . Since W is a WPS-2AB submodule proposition
1 implies that D1ðD2DÞ⊆W þ SocðU Þ or D2

1⊆ ½W þ
SocðU Þ:E U �, that is either T1T2⊆W þ SocðU Þ or
T1

2⊆W þ SocðU Þ.
Conversely, ð0ÞsQ2L⊆W , for some submodule L

of U and Q an ideal of E . Since U is a Multipli-
cation, then L ¼ D1D for some ideal D1 in E , Hence
ð0ÞsQ2D1D⊆W . Take T ¼ QU , that is T2L⊆W and
it follows by hypothesis either TL⊆W þ SocðU Þ or
T2⊆W þ SocðU Þ, that is either QL⊆W þ SocðU Þ or
Q2U 2W þ SocðU Þ and Proposition 2, implies that
W is a WPS-2AB submodule.

A straightforward consequence of Theorem 3.

Corollary 4. Let U be a Multiplication E -module and
W =U be a submodule of U . Then W is a WPS-2AB
submodule if and only if whenever ð0ÞsT2u⊆W , for
some submodule T of U and u2U , implies that either
Tu⊆W þ SocðU Þ or T2⊆W þ SocðU Þ.
Corollary 5. Let U be a cyclic E -module and W =U
be a submodule of U . Then W is a WPS-2AB sub-
module if and only if whenever ð0ÞsT1

2T2⊆W , for
some submodules T1 and T2 of U , implies that either
T1T2⊆W þ SocðU Þ or T1

2⊆W þ SocðU Þ.
Corollary 6. Let U be a cyclic E -module and
W =U be a submodule of U . Then W is a WPS-2AB
submodule if and only if whenever ð0ÞsT2u⊆W , for
some submodules T of U and u2U , implies that either
Tu⊆W þ SocðU Þ or T2⊆W þ SocðU Þ.
Remark 7. [4] If W is a WPS-2AB submodule of an
E -module U . In general, ½W :E U � is not a WPS-
2AB ideal of E .

Lemma 8. [6] Let U be Z-regular of an E -module.
Then SocðU Þ ¼ SocðE ÞU .

Under certain conditions, the residual of
WPS� 2AB submodules are a WPS� 2AB ideal, as
shown in the following Propositions.

Proposition 9. Let U be a Z-regular Multiplication
E -module and W =U be a submodule of U . Then W
is a WPS-2AB submodule if and only if ½W :E U � is a
WPS-2AB ideal of E .

Proof. Assume that ð0Þse2s⊆½W :E U � for some
e2E , and s2U . It follows that ð0Þse2ðsU Þ⊆W .
Since W is WPS-2AB, Proposition 1, implies that
either eðsU Þ⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. As
U is a Multiplication, we have W ¼ ½W :E U �U .
Furthermore, since U is a Z-regular, Lemma 8, im-
plies that either eðsU Þ⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . This mean that either
rd⊆½W :E U � þ SocðE Þ or e2⊆½W :E U � þ SocðE Þ ¼
½½W :E U � þ SocðE Þ:E E �. Then either rd⊆½W :E U � þ
SocðE Þ or e2⊆½½W :E U � þ SocðE Þ:E E �. Hence,
½W :E U � is a WPS-2AB ideal of E .

Conversely, Assume that ð0Þse2T⊆W for some
submodule T of U and e2E . Since U is a Multi-
plication Then T ¼ D1D, for some ideal D1 in E .
That is ð0Þse2D1D⊆W , then ð0Þse2D1⊆½W :E U �.
Since ½W :E U � is a WPS-2AB ideal of E , then by
proposition 1 either rI⊆½W :E U � þ SocðE Þ or
e2⊆½½W :E U � þ SocðE Þ:E E � ¼ ½W :E U � þ SocðE Þ. It
follows that either rD1D⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . Since U is a
Z-regular, then by Lemma 8 and since U is a
Multiplication, then W ¼ ½W :E U �U . Then either
rD1D⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. It
follows that either rT⊆W þ SocðU Þ or e2⊆½W þ
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SocðU Þ:E U �. Then, by Proposition 1, W is a WPS-
2AB submodule.

A straightforward consequence of Proposition 9.

Corollary 10. Let U be a cyclic Z-regular E -module
and W =U be a submodule of U . Then W is a WPS-
2AB submodule if and only if ½W :E U � is a WPS-2AB
ideal of E .

Lemma 11. [6] Let U be a projective E -module, then
SocðU Þ ¼ SocðE ÞU .

Proposition 12. Let U be a Multiplication projective
E -module and W =U be a submodule of U . Then W
is a WPS-2AB submodule if and only if ½W :E U � is a
WPS-2AB ideal of E .

Proof. Assume that ð0Þse2s⊆½W :E U � for some e2
E , and s2U . It follows that ð0Þse2ðsU Þ⊆W . Since
W is WPS-2AB, Proposition 1, implies that either
eðsU Þ⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. As U is
a Multiplication, we have W ¼ ½W :E U �U .
Furthermore, since U is a projective , Lemma 11,
implies that either eðsU Þ⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . This mean that either
rd⊆½W :E U � þ SocðE Þ or e2⊆½W :E U � þ SocðE Þ ¼
½½W :E U � þ SocðE Þ:E E �. Then either rd⊆½W :E U � þ
SocðE Þ or e2⊆½½W :E U � þ SocðE Þ:E E �. Hence,
½W :E U � is a WPS-2AB ideal of E .

Conversely, Assume that ð0Þse2T⊆W for some
submodule T of U and e2E . Since U is a Multi-
plication Then T ¼ D1D, for some ideal D1 in E .
That is ð0Þse2D1D⊆W , then ð0Þse2D1⊆½W :E U �.
Since ½W :E U � is a WPS-2AB ideal of E , then by
proposition 1 either rI⊆½W :E U � þ SocðE Þ or e2⊆
½½W :E U � þ SocðE Þ:E E � ¼ ½W :E U � þ SocðE Þ. It
follows that either rD1D⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . Since U is a projec-
tive , then by Lemma 11 and since U is a Multi-
plication, then W ¼ ½W :E U �U . Then either
rD1D⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. It follows
that either rT⊆W þ SocðU Þ or e2⊆½W þ
SocðU Þ:E U �. Then, by proposition 1, W is a WPS-
2AB submodule.

A straightforward consequence of Proposition 12.

Corollary 13. Let U be a cyclic projective E -module
and W =U be a submodule of U . Then W is a WPS-
2AB submodule if and only if ½W :E U � is a WPS-2AB
ideal of E .

Lemma 14. [7] Let U be a non-singular E -module,
then SocðU Þ ¼ SocðE ÞU .

Proposition 15. Let U be a non-singular Multiplication
E -module and W =U be a submodule of U . Then W

is a WPS-2AB submodule if and only if ½W :E U � is a
WPS-2AB ideal of E .

proof. The proof is similar to the proof of Proposi-
tion 9 and by Lemma 14.

Assume that ð0Þse2s⊆½W :E U � for some e2E ,
and s2U . It follows that ð0Þse2ðsU Þ⊆W . Since W
is WPS-2AB, Proposition 1, implies that either
eðsU Þ⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. As U is
a Multiplication, we have W ¼ ½W :E U �U .
Furthermore, since U is a non-singular, Lemma 14,
implies that either eðsU Þ⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . This mean that either
rd⊆½W :E U � þ SocðE Þ or e2⊆½W :E U � þ SocðE Þ ¼
½½W :E U � þ SocðE Þ:E E �. Then either rd⊆½W :E U � þ
SocðE Þ or e2⊆½½W :E U � þ SocðE Þ:E E �. Hence,
½W :E U � is a WPS-2AB ideal of E .

Conversely, Assume that ð0Þse2T⊆W for some
submodule T of U and e2E . Since U is a Multi-
plication Then T ¼ D1D, for some ideal D1 in E .
That is ð0Þse2D1D⊆W , then ð0Þse2D1⊆½W :E U �.
Since ½W :E U � is a WPS-2AB ideal of E , then by
proposition 1 either rI⊆½W :E U � þ SocðE Þ or
e2⊆½½W :E U � þ SocðE Þ:E E � ¼ ½W :E U � þ SocðE Þ. It
follows that either rD1D⊆½W :E U �U þ SocðE ÞU or
e2U ⊆½W :E U �U þ SocðE ÞU . Since U is a non-
singular, then by Lemma 14 and since U is a
Multiplication, then W ¼ ½W :E U �U . Then either
rD1D⊆W þ SocðU Þ or e2U ⊆W þ SocðU Þ. It follows
that either rT⊆W þ SocðU Þ or e2⊆½W þ
SocðU Þ:E U �. Then, by proposition 1, W is a WPS-
2AB submodule.

A straightforward consequence of Proposition 15
is the following outcome

Corollary 16. Let U be a cyclic non-singular E -module
and W =U be a submodule of U . Then W is a WPS-
2AB submodule if and only if ½W :E U � is a WPS-2AB
ideal of E .

Lemma 17. [5] Let U be a faithful Multiplication
E -module. Then SocðU Þ ¼ SocðE ÞU .

Proposition 18. Let U be a faithful Multiplication
E -module and W =U be a submodule of U . Then W
is a WPS-2AB submodule if and only if ½W :E U � is a
WPS-2AB ideal of E .

proof. The proof is similar to the proof of Proposi-
tion 9 and by Lemma 17
A straightforward consequence of Proposition 18.

Corollary 19. Let U be a faithful cyclic E -module
and W =U be a submodule of U . Then W is a WPS-
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2AB submodule if and only if ½W :E U � is a WPS-2AB
ideal of E .

Lemma 20. [5] Let U be a finitely generated Multipli-
cation E -module, and Q1;Q2 be ideals of E , then Q1D⊆
Q2D, if and only if Q1⊆Q2 þ annE ðU Þ.
Proposition 21. Let U be a finitely generated Z-regular
Multiplication E -module and Q be a WPS-2AB ideal of
E with annE ðU Þ⊆Q, then QU is a WPS-2AB sub-
module of E .

Proof. Assume that ð0ÞsT1
2T2⊆QU for T1;T2 some

submodules of U . As U is Multiplication E -mod-
ule, we have T1 ¼ D1D;T2 ¼ D2D for some ideals D1;
D2 of E . That is ð0ÞsD2

1D2D⊆QU . Since U is a
finitely generated Multiplication E -module, then by
Lemma 20 we have ð0ÞsD2

1D2⊆Qþ annE ðU Þ. Since
annE ðU Þ⊆Q, then Qþ annE ðU Þ ¼ Q, that is ð0Þs
D2

1D2⊆Q. Since Q is a WPS-2AB ideal of E , then by
Proposition 2 ID2⊆Qþ SocðE Þ or D2

1⊆½Q þ
SocðE Þ:E E � ¼ Qþ SocðE Þ. It follows that either
ID2D⊆QU þ SocðE ÞU or D2

1U ⊆QU þ SocðE ÞU .
Since U is Z-regular, then by Lemma 8, (SocðU Þ ¼
SocðE ÞU ). It follows that either ID2D⊆QU þ
SocðU Þ or D2

1U ⊆QU þ SocðU Þ. Then either that
T1T2⊆QU þ SocðU Þ or T1

2⊆QU þ SocðU Þ. By
Proposition 3, we have QU , a WPS-2AB submodule
of E .

Lemma 22. [7] Every cyclic E -module is finitely
generated.

A straightforward consequence of Proposition 21.

Corollary 23. Let U be a Z-regular cyclic E -module
and Q be a WPS-2AB ideal of E with annE ðU Þ⊆Q,
then QU is a WPS-2AB submodule of E .

Proposition 24. Let U be a finitely generated Multi-
plication projective E -module and Q be a WPS-2AB
ideal of E with annE ðU Þ⊆Q. Then QU is a WPS-2AB
submodule of E .

Proof. Assume that ð0ÞsT1
2T2⊆QU for T1;T2 some

submodules of U . As U is Multiplication E -mod-
ule, we have T1 ¼ D1D;T2 ¼ D2D for some ideals D1;
D2 of E . That is ð0ÞsD2

1D2D⊆QU . Since U is a
finitely generated Multiplication E -module, then by
Lemma 20 we have ð0ÞsD2

1D2⊆Qþ annE ðU Þ. Since
annE ðU Þ⊆Q, then Qþ annE ðU Þ ¼ Q, that is ð0Þs
D2

1D2⊆Q. Since Q is a WPS-2AB ideal of E , then by
Proposition 2 ID2⊆Qþ SocðE Þ or D2

1⊆½Q þ
SocðE Þ:E E � ¼ Qþ SocðE Þ. It follows that either
ID2D⊆QU þ SocðE ÞU or D2

1U ⊆QU þ SocðE ÞU .
Since U is a finitely generated, then by Lemma 11,
(SocðU Þ ¼ SocðE ÞU ). It follows that either ID2D⊆
QU þ SocðU Þ or D2

1U ⊆QU þ SocðU Þ. Then either
that T1T2⊆QU þ SocðU Þ or T1

2⊆QU þ SocðU Þ. By

Proposition 3, we have QU , a WPS-2AB submodule
of E .

A straightforward consequence of Proposition 24.

Corollary 25. Let U be a cyclic projective E -module
and Q be a WPS-2AB ideal of E with annE ðU Þ⊆Q.
Then, QU is a WPS-2AB submodule of E .

Proposition 26. Let U be a finitely generated Multi-
plication non-singular E -module and Q be a WPS-2AB
ideal of E with annE ðU Þ⊆Q. Then QU is a WPS-2AB
submodule of E .

Proof. Assume that ð0ÞsT1
2T2⊆QU for T1;T2 some

submodules of U . As U is Multiplication E -mod-
ule, we have T1 ¼ D1D;T2 ¼ D2D for some ideals D1;
D2 of E . That is ð0ÞsD2

1D2D⊆QU . Since U is a
finitely generated Multiplication E -module, then by
Lemma 20 we have ð0ÞsD2

1D2⊆Qþ annE ðU Þ. Since
annE ðU Þ⊆Q, then Qþ annE ðU Þ ¼ Q, that is
ð0ÞsD2

1D2⊆Q. Since Q is a WPS-2AB ideal of E ,
then by Proposition 2 ID2⊆Qþ SocðE Þ or D2

1⊆½Q þ
SocðE Þ:E E � ¼ Qþ SocðE Þ. It follows that either
ID2D⊆QU þ SocðE ÞU or D2

1U ⊆QU þ SocðE ÞU .
Since U is a non-singular, then by Lemma 14,
(SocðU Þ ¼ SocðE ÞU ). It follows that either
ID2D⊆QU þ SocðU Þ or D2

1U ⊆QU þ SocðU Þ. Then
either that T1T2⊆QU þ SocðU Þ or T1

2⊆QU þ
SocðU Þ. By Proposition 3, we have QU , a WPS-2AB
submodule of E .

A straightforward consequence of proposition 26.

Corollary 27. Let U be a cyclic non-singular E -module
and Q be a WPS-2AB ideal of E with annE ðU Þ⊆Q.
Then QU is a WPS-2AB submodule of E .

Proposition 28. Let U be a finitely generated faithful
Multiplication E -module and Q be a WPS-2AB ideal of
E with annE ðU Þ⊆Q. Then QU is a WPS-2AB. sub-
module of E .

proof. The proof is similar to the proof of Proposi-
tion 21 and by Lemma 20.
A straightforward consequence of Proposition 28.

Corollary 29. Let U be a faithful cyclic E -module and
Q be a WPS-2AB ideal of E with annE ðU Þ⊆Q. Then
QU is a WPS-2AB submodule of E .

Lemma 30. [7] If U is a Multiplication E -module,
then U is cancellation if and only if U is a finitely
generated faithful.

Proposition 31. Let U be a faithful finitely generated
Multiplication E -module, and W =U be a submodule
of U . The statements below are considered to be
equivalent:

(a) W is a WPS-2AB submodule .
(b) ½W :E U � is a WPS-2AB ideal of E .
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(c) W ¼ QU for some WPS-2AB ideal Q of E .

Proof ðaÞ⇔ðbÞ Follows by Proposition 18
ðbÞ0ðcÞ Assume that ½W :E U � is a WPS-2AB ideal
of E . since U is Multiplication, then W ¼
½W :E U �U . Put Q ¼ ½W :E U � then Q is a WPS-2AB
ideal of E and W ¼ QU .
ðcÞ0ðbÞ Assume that W ¼ QU for some Q which is
a WPS-2AB ideal of E . Since U is Multiplication,
then W ¼ ½W :E U �U ¼ QU . Since U is faithful
finitely generated E -module, then by Lemma 30, U
is a cancellation. Therefore ½W :E U � ¼ Q is a WPS-
2AB ideal of E .

A straightforward consequence of Proposition 31.

Corollary 32. Let U be a faithful cyclic E -module and
W =U be a submodule of U . The statements below are
considered to be equivalent:

(a ) W is a WPS-2AB submodule.
(b) ½W :E U � is a WPS-2AB ideal of E .
( c ) W ¼ QU for some WPS-2AB ideal Q of E .

Recall U be a weak cancellation of E -module if
whenever Q1U ¼ Q2U , for Q1;Q2 are ideal of E ,
implies that Q1 þ annE ðU Þ ¼ Q2 þ annE ðU Þ [6].
Lemma 33. [7] If U be a Multiplication E -module,
then U is finitely generated if and only if U is a weak
cancellation.

Proposition 34. Let U be a finitely generated Multi-
plication (cyclic) Z-regular E -module and W =U is a
submodule of U with annE ðU Þ⊆½W :E U �. The state-
ments below are considered to be equivalent:

( a) W is a WPS-2AB submodule.
(b) ½W :E U � is a WPS-2AB ideal of E .
(c) W ¼ QU for some WPS-2AB ideal Q of E with

annE ðU Þ⊆Q.

Proof. ðaÞ⇔ðbÞ Follows from Proposition 9
ðbÞ0ðcÞ Let W be submodule of an E -module U ,
then W ¼ ½W :E U �U . But Q ¼ ½W :E U �U
implies that Q is a WPS-2AB ideal of E
with annE ðU Þ ¼ ½0 : U �⊆½W :E U � ¼ Q, that is
annE ðU Þ⊆Q.
ðcÞ0ðbÞ Assume that W ¼ QU for some WPS-2AB
ideal Q of E , with annE ðU Þ⊆Q. Since U is Multi-
plication then W ¼ ½W :E U �U ¼ QU . Since U is
faithful finitely generated E -module, then by
Lemma 33 U is a weak cancellation. Therefore
½W :E U � þ annE ðU Þ ¼ Qþ annE ðU Þ. But
annE ðU Þ⊆Q and annE ðU Þ⊆½W :E U �, that is
½W :E U � ¼ Q. Since Q is a WPS-2AB ideal of E .
Then ½W :E U � is a WPS-2AB ideal of E .

Proposition 35. Let U be a finitely generated Multi-
plication (cyclic) projective E -module and W =U be a

submodule of U with annE ðU Þ⊆½W :E U �. The state-
ments below are considered to be equivalent:

( a ) W is a WPS-2AB submodule.
(b) ½W :E U � is a WPS-2AB ideal of E .
(c ) W ¼ QU for some WPS-2AB ideal Q of E with

annE ðU Þ⊆Q.

Proof ðaÞ⇔ðbÞ Follows from Proposition 9.
ðbÞ⇔ðcÞ Follows from Proposition 34.
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