

Volume 6 | Issue 2 Article 6

Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules

Omar H. Taha

General Directorate of Salah al-Din Education - Ministry of Education, Tikrit, Iraq

Omar A. Abdullah

Department of Mathematics - College of Computer Science and Mathematics - Tikrit University, Tikrit, Iraq.

Ali Sh. Ajeel

Department of Mathematics - College of Computer Science and Mathematics - Tikrit University, Tikrit, Iraq.

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

Part of the Algebra Commons

Recommended Citation

Taha, Omar H.; Abdullah, Omar A.; and Ajeel, Ali Sh. (2025) "Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules," Al-Bahir. Vol. 6: Iss. 2, Article 6. Available at: https://doi.org/10.55810/2313-0083.1090

This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.iq.

Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules

Source of Funding

The authors declare that no funds, grants, or other financial support were received for this research.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Data Availability

The data and fundamental definitions used in this study are available in the published research article: Taha OH, Salih MA. *Weakly Pseudo Semi-2-absorbing Submodule.* The International Journal of Mathematics and Computer Science. 2024;19(4):927-32.

Author Contributions

Author 1 contributed to the conceptualization and methodology; Author 2 performed the formal analysis; Author 3 was responsible for data curation and writing the original draft; all authors reviewed and edited the manuscript and approved the final version.

ORIGINAL STUDY

Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of Some Types of Modules

Omar H. Taha a,*, Omar A. Abdullah b, Ali Sh. Ajeel b

Abstract

The purpose of this paper is to investigate characterizations of weakly pseudo semi-2-absorbing submodules in terms of some types of modules. We provide characterizations for the class of multiplication modules with the help of some types of modules such as faithful, non-singular, Z-regular, and projective modules. Furthermore, we add some conditions to proof the residual of a weakly pseudo semi-2-absorbing submodule is a weakly pseudo semi-2-absorbing ideal.

JEL classification: 16D99

Keywords: Multiplication modules, Weakly pseudo semi-2-absorbing

1. Introduction

n this paper, the ring \mathscr{E} is a commutative ring with a non-zero identity, and \mathcal{U} is a unitary *E*-module. Over the past 13 years, the concepts of 2absorbing submodules and weakly 2-absorbing submodules have been extensively studied by Darani and Soheilinia [1]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathscr{E} -module \mathscr{U} is called 2-absorbing (weakly 2absorbing) if whenever $abu \in \mathcal{W} \ (0 \neq abu \in \mathcal{W})$ for some $a, b \in \mathcal{E}$, $u \in \mathcal{U}$, then either $au \in \mathcal{W}$ or $bu \in \mathcal{W}$ or $ab \in [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$. Following that, Hadi and Harfash introduced the concept of semi-2-absorbing submodules as a generalization of 2-absorbing submodules [2]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathcal{E} -module absorbing) if whenever $a^2u \in \mathcal{W}$ $(0 \neq a^2u \in \mathcal{W})$ for some $\in \mathscr{E}$, $u \in \mathscr{U}$, then either $au \in \mathscr{W}$ or $a^2 \in$ $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$. Also, Abdalla and Mohammadali introduced the concept of pseudo semi-2-absorbing submodules [3]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathscr{E} -module \mathscr{U} is said to be a pseudo semi-2absorbing submodule of \mathcal{U} , if $e^2u \in \mathcal{W}$, for $e \in \mathcal{E}$,

 $u \in \mathcal{U}$, implies either $ru \in \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \in [\mathcal{W} +$ $Soc(\mathcal{U}): \mathcal{E}\mathcal{U}$. The concept of weakly pseudo semi-2absorbing submodule is a generalization of semi-2absorbing and pseudo semi-2-absorbing submodule introduced by Taha and Salih [4], a submodule $\mathcal{W} \subsetneq$ \mathcal{U} of an \mathcal{E} -module \mathcal{U} is said to be a weakly pseudo semi-2-absorbing submodule of \mathscr{U} (for short WPS-2AB), if $0 \neq e^2 u \in \mathcal{W}$, for $e \in \mathcal{E}$, $u \in \mathcal{U}$, implies either $eu \in \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \in [\mathcal{W} + Soc(\mathcal{U}):_{\mathcal{E}}\mathcal{U}]$. An ideal Q of a ring \mathcal{E} is said to be a weakly pseudo semi-2-absorbing ideal of \mathscr{E} if Q is a weakly pseudo semi-2-absorbing submodule of the \mathscr{E} -module \mathscr{E} . An \mathscr{E} -module \mathscr{U} is multiplication if every submodule \mathcal{W} of \mathcal{U} is of the from $\mathcal{W} = Q\mathcal{U}$ for some ideal Q of \mathcal{E} . It's well known that a cyclic module is Multiplication module [5]. An \mathscr{E} -module \mathscr{U} is called Z-regular if for any $s \in \mathcal{U}$ there $f \in \mathcal{U}^* = Hom_R(\mathcal{U}, \mathcal{E})$ such that s = f(s)s. Recall that an \mathscr{E} -module \mathscr{U} , is a projective if for every \mathscr{E} -epimorphism $f: M_1 \rightarrow M_2$ where M_1 and M_2 are \mathscr{E} -modules, every \mathscr{E} -homomorphism $g: \mathcal{U} \to M_2$, there exists an \mathcal{E} -homomorphism $h: \mathcal{U} \to M_1$ such that $f \circ h = g$. Recall that an

Received 18 November 2024; revised 23 February 2025; accepted 24 February 2025. Available online 12 April 2025

E-mail addresses: omar.h.tahamm2314@st.tu.edu.iq (O.H. Taha), omerabdulrazzaqa@tu.edu.iq (O.A. Abdullah), ali.shebl@tu.edu.iq (A.Sh. Ajeel).

^a General Directorate of Salah al-Din Education, Ministry of Education, Tikrit, Iraq

^b Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq

^{*} Corresponding author.

 \mathscr{E} -module \mathscr{U} it is a non-singular if $Z(\mathscr{U}) = 0$, where $Z(\mathcal{U}) = \{ s \in \mathcal{U} : s Q = (0) \}$ for some ideal Q of $\mathscr E$. Recall that an $\mathscr E$ -module $\mathscr U$ is faithful if $Ann_R(\mathcal{U}) = (0)$. Recall that an \mathcal{E} -module \mathcal{U} is finitely generated if $\mathcal{U} = (x_1, x_2, \dots, x_n) = Rx_1 + Rx_2 +$... + Rx_n , where $x_1, x_2, ..., x_n \in \mathcal{U}$ [6]. In main results section of this paper, we provide characterizations for many modules, including non-singular modules, Multiplication modules, faithful finitely produced modules, projective modules, and Z-regular modules. We show, under certain conditions, the residual of weakly pseudo semi-2-absorbing submodule is a weakly pseudo semi-2-absorbing ideal, Proposition 9, 12, 15, 18. Moreover, we show that under certain conditions, if W is weakly pseudo semi-2absorbing submodules $Q \mathcal{U}$ is a weakly pseudo semi-2-absorbing submodule where Q is an ideal of \mathcal{E} see Proposition 24, 26, 28.

2. Main results

Proposition 1. [4] Let $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of an \mathscr{E} -module \mathscr{U} , then \mathscr{W} is a WPS-2AB submodule if and only if $(0) \neq e^2T \subseteq \mathscr{W}$ for $e \in \mathscr{E}$ and T is submodule of \mathscr{U} , implies either $eT \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $e^2 \in [\mathscr{W} + Soc(\mathscr{U}):_{\mathscr{E}}\mathscr{U}]$.

Proposition 2. [4] Let $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of an \mathscr{E} -module \mathscr{U} , then \mathscr{W} is a WPS-2AB submodule if and only if $(0) \neq Q^2T \subseteq \mathscr{W}$ for some ideal Q of \mathscr{E} and submodule T of \mathscr{U} , implies that either $QT \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $Q^2 \subseteq [\mathscr{W} + Soc(\mathscr{U}):_{\mathscr{E}} \mathscr{U}]$.

Theorem 3. Let \mathscr{U} be a Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T_1^2 T_2 \subseteq \mathscr{W}$, for some submodules T_1 and T_2 of \mathscr{U} , implies that either $T_1 T_2 \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T_1^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$.

Proof. Assume that $(0) \neq T_1^2 T_2 \subseteq \mathcal{W}$, for some submodules T_1 and T_2 of \mathcal{U} . Since \mathcal{U} is a Multiplication, We have $T_1 = D_1 D$ and $T_2 = D_2 D$ for some ideals D_1 , D_2 in \mathcal{E} , it follows that $(0) \neq (D_1 D)^2 D_2 D = D_1^2 D_2 D \subseteq \mathcal{W}$. Since \mathcal{W} is a WPS-2AB submodule proposition 1 implies that $D_1(D_2 D) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $D_1^2 \subseteq [\mathcal{W} + Soc(\mathcal{U}):_{\mathcal{E}}\mathcal{U}]$, that is either $T_1 T_2 \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $T_1^2 \subseteq \mathcal{W} + Soc(\mathcal{U})$.

Conversely, $(0) \neq Q^2L \subseteq \mathcal{W}$, for some submodule L of \mathcal{U} and Q an ideal of \mathcal{E} . Since \mathcal{U} is a Multiplication, then $L = D_1D$ for some ideal D_1 in \mathcal{E} , Hence $(0) \neq Q^2D_1D \subseteq \mathcal{W}$. Take $T = Q\mathcal{U}$, that is $T^2L \subseteq \mathcal{W}$ and it follows by hypothesis either $TL \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $T^2 \subseteq \mathcal{W} + Soc(\mathcal{U})$, that is either $QL \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $Q^2\mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$ and Proposition 2, implies that \mathcal{W} is a WPS-2AB submodule.

A straightforward consequence of Theorem 3.

Corollary 4. Let \mathscr{U} be a Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T^2 u \subseteq \mathscr{W}$, for some submodule T of \mathscr{U} and $u \in \mathscr{U}$, implies that either $Tu \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$.

Corollary 5. Let \mathscr{U} be a cyclic \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T_1^2 T_2 \subseteq \mathscr{W}$, for some submodules T_1 and T_2 of \mathscr{U} , implies that either $T_1 T_2 \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T_1^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$.

Corollary 6. Let \mathscr{U} be a cyclic \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T^2 u \subseteq \mathscr{W}$, for some submodules T of \mathscr{U} and $u \in \mathscr{U}$, implies that either $Tu \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$.

Remark 7. [4] If \mathcal{W} is a WPS-2AB submodule of an \mathcal{E} -module \mathcal{U} . In general, $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is not a WPS-2AB ideal of \mathcal{E} .

Lemma 8. [6] Let \mathscr{U} be Z-regular of an \mathscr{E} -module. Then $Soc(\mathscr{U}) = Soc(\mathscr{E})\mathscr{U}$.

Under certain conditions, the residual of WPS - 2AB submodules are a WPS - 2AB ideal, as shown in the following Propositions.

Proposition 9. Let \mathscr{U} be a Z-regular Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Proof. Assume that $(0) \neq e^2 s \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$ for some $e \in \mathcal{E}$, and $s \in \mathcal{U}$. It follows that $(0) \neq e^2 (s \mathcal{U}) \subseteq \mathcal{W}$. Since \mathcal{W} is WPS-2AB, Proposition 1, implies that either $e(s \mathcal{U}) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$. As \mathcal{U} is a Multiplication, we have $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U}$. Furthermore, since \mathcal{U} is a Z-regular, Lemma 8, implies that either $e(s \mathcal{U}) \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. This mean that either $rd \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$ or $e^2 \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E}) = [[\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$. Then either $rd \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$ or $e^2 \subseteq [[\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$. Hence, $[\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} .

Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathcal{U} and $e \in \mathcal{E}$. Since \mathcal{U} is a Multiplication Then $T = D_1D$, for some ideal D_1 in \mathcal{E} . That is $(0) \neq e^2D_1D \subseteq \mathcal{W}$, then $(0) \neq e^2D_1 \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$. Since $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [[\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}] = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$. It follows that either $rD_1D\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U}\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$. Since \mathcal{U} is a Z-regular, then by Lemma 8 and since \mathcal{U} is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W} + Soc(\mathcal{U})$. It follows that either $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\subseteq [\mathcal{W} + Soc(\mathcal{U})]$ or $e^2\subseteq [\mathcal{W} + Soc(\mathcal{U})]$ or $e^2\subseteq [\mathcal{W} + Soc(\mathcal{U})]$ or $e^2\subseteq [\mathcal{W} + Soc(\mathcal{U})]$.

 $Soc(\mathscr{U}):_{\mathscr{E}}\mathscr{U}$]. Then, by Proposition 1, \mathscr{W} is a WPS-2AB submodule.

A straightforward consequence of Proposition 9.

Corollary 10. Let \mathscr{U} be a cyclic Z-regular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Lemma 11. [6] Let \mathscr{U} be a projective \mathscr{E} -module, then $Soc(\mathscr{U}) = Soc(\mathscr{E}) \mathscr{U}$.

Proposition 12. Let \mathscr{U} be a Multiplication projective \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Proof. Assume that $(0) \neq e^2s \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ for some $e \in \mathcal{E}$, and $s \in \mathcal{U}$. It follows that $(0) \neq e^2(s\mathcal{U}) \subseteq \mathcal{W}$. Since \mathcal{W} is WPS-2AB, Proposition 1, implies that either $e(s\mathcal{U}) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$. As \mathcal{U} is a Multiplication, we have $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Furthermore, since \mathcal{U} is a projective, Lemma 11, implies that either $e(s\mathcal{U}) \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}) = [[\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]$. Then either $rd\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]$. Hence, $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} .

Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathscr{U} and $e \in \mathscr{E}$. Since \mathscr{U} is a Multiplication Then $T = D_1D$, for some ideal D_1 in \mathscr{E} . That is $(0) \neq e^2 D_1 D \subseteq \mathcal{W}$, then $(0) \neq e^2 D_1 \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$. Since $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathscr{E}}\mathcal{U}] + Soc(\mathscr{E})$ or $e^2\subseteq$ $[[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}] = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}).$ It follows that either $rD_1D\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. Since \mathcal{U} is a projective , then by Lemma 11 and since $\mathscr U$ is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W} + Soc(\mathcal{U})$. It follows that either $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \subset [\mathcal{W} +$ $Soc(\mathcal{U}):_{\mathscr{E}}\mathcal{U}$. Then, by proposition 1, \mathcal{W} is a WPS-2AB submodule.

A straightforward consequence of Proposition 12.

Corollary 13. Let \mathscr{U} be a cyclic projective \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Lemma 14. [7] Let \mathscr{U} be a non-singular \mathscr{E} -module, then $Soc(\mathscr{U}) = Soc(\mathscr{E}) \mathscr{U}$.

Proposition 15. Let \mathcal{U} be a non-singular Multiplication \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . Then \mathcal{W}

is a WPS-2AB submodule if and only if $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} .

proof. The proof is similar to the proof of Proposition 9 and by Lemma 14.

Assume that $(0) \neq e^2s \subseteq [\mathscr{W}:_{\mathscr{U}}\mathscr{U}]$ for some $e \in \mathscr{E}$, and $s \in \mathscr{U}$. It follows that $(0) \neq e^2(s\mathscr{U}) \subseteq \mathscr{W}$. Since \mathscr{W} is WPS-2AB, Proposition 1, implies that either $e(s\mathscr{U}) \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $e^2\mathscr{U} \subseteq \mathscr{W} + Soc(\mathscr{U})$. As \mathscr{U} is a Multiplication, we have $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. Furthermore, since \mathscr{U} is a non-singular, Lemma 14, implies that either $e(s\mathscr{U}) \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$ or $e^2\mathscr{U} \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$. This mean that either $rd \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}) = [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]$. Then either $rd \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]$. Hence, $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathscr{U} and $e \in \mathscr{E}$. Since \mathscr{U} is a Multiplication Then $T = D_1D_1$, for some ideal D_1 in \mathcal{E} . That is $(0) \neq e^2 D_1 D \subseteq \mathcal{W}$, then $(0) \neq e^2 D_1 \subseteq [\mathcal{W}:_{\mathscr{E}} \mathcal{U}]$. Since $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathscr{E}}\mathcal{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}] = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}).$ It follows that either $rD_1D\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. Since \mathcal{U} is a nonsingular, then by Lemma 14 and since \mathcal{U} is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathscr{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W}+Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W}+Soc(\mathcal{U})$. It follows $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ either or $e^2 \subseteq [\mathcal{W} +$ $Soc(\mathcal{U})_{:\mathcal{E}}\mathcal{U}$. Then, by proposition 1, \mathcal{W} is a WPS-2AB submodule.

A straightforward consequence of Proposition 15 is the following outcome

Corollary 16. Let \mathscr{U} be a cyclic non-singular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Lemma 17. [5] Let \mathscr{U} be a faithful Multiplication \mathscr{E} -module. Then $Soc(\mathscr{U}) = Soc(\mathscr{E})\mathscr{U}$.

Proposition 18. Let \mathcal{U} be a faithful Multiplication \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . Then \mathcal{W} is a WPS-2AB submodule if and only if $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} .

proof. The proof is similar to the proof of Proposition 9 and by Lemma 17

A straightforward consequence of Proposition 18.

Corollary 19. *Let* \mathcal{U} *be a faithful cyclic* \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ *be a submodule of* \mathcal{U} . Then \mathcal{W} *is a WPS-*

2AB submodule if and only if $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Lemma 20. [5] Let \mathscr{U} be a finitely generated Multiplication \mathscr{E} -module, and Q_1, Q_2 be ideals of \mathscr{E} , then $Q_1D\subseteq Q_2D$, if and only if $Q_1\subseteq Q_2+ann_{\mathscr{E}}(\mathscr{U})$.

Proposition 21. Let \mathscr{U} be a finitely generated Z-regular Multiplication \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $\operatorname{ann}_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proof. Assume that $(0) \neq T_1^2 T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathscr{E} . That is $(0) \neq D_1^2 D_2 D \subseteq Q \mathscr{U}$. Since \mathscr{U} is a finitely generated Multiplication &-module, then by Lemma 20 we have $(0) \neq D_1^2 D_2 \subseteq Q + ann_{\mathscr{E}}(\mathscr{U})$. Since $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q+ann_{\mathscr{E}}(\mathscr{U})=Q$, that is $(0)\neq$ $D_1^2D_2\subseteq Q$. Since Q is a WPS-2AB ideal of \mathscr{E} , then by 2 $ID_2\subseteq Q + Soc(\mathscr{E})$ or $D_1^2\subseteq [Q +$ Proposition $Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]=Q+Soc(\mathscr{E}).$ It follows that either $ID_2D\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $D_1^2\mathscr{U}\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$. Since \mathscr{U} is Z-regular, then by Lemma 8, $(Soc(\mathscr{U}) =$ $Soc(\mathscr{E})\mathscr{U}$). It follows that either $ID_2D\subseteq Q\mathscr{U}$ + $Soc(\mathcal{U})$ or $D_1^2 \mathcal{U} \subseteq Q \mathcal{U} + Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$ or $T_1^2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$. By Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathscr{E} .

Lemma 22. [7] Every cyclic \mathcal{E} -module is finitely generated.

A straightforward consequence of Proposition 21.

Corollary 23. Let \mathscr{U} be a Z-regular cyclic \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proposition 24. Let \mathscr{U} be a finitely generated Multiplication projective \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proof. Assume that $(0) \neq T_1^2T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathcal{E} . That is $(0) \neq D_1^2D_2D \subseteq Q \mathcal{U}$. Since \mathcal{U} is a finitely generated Multiplication \mathcal{E} -module, then by Lemma 20 we have $(0) \neq D_1^2D_2\subseteq Q + ann_{\mathcal{E}}(\mathcal{U})$. Since $ann_{\mathcal{E}}(\mathcal{U})\subseteq Q$, then $Q+ann_{\mathcal{E}}(\mathcal{U})=Q$, that is $(0) \neq D_1^2D_2\subseteq Q$. Since Q is a WPS-2AB ideal of \mathcal{E} , then by Proposition 2 $ID_2\subseteq Q+Soc(\mathcal{E})$ or $D_1^2\subseteq [Q+Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]=Q+Soc(\mathcal{E})\mathcal{U}$ or $D_1^2\subseteq Q\mathcal{U}+Soc(\mathcal{E})\mathcal{U}$. Since \mathcal{U} is a finitely generated, then by Lemma 11, $(Soc(\mathcal{U})=Soc(\mathcal{E})\mathcal{U})$. It follows that either $ID_2D\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $D_1^2\mathcal{U}\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $T_1^2\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. By

Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathcal{E} .

A straightforward consequence of Proposition 24.

Corollary 25. Let \mathscr{U} be a cyclic projective \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then, $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proposition 26. Let \mathscr{U} be a finitely generated Multiplication non-singular \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proof. Assume that $(0) \neq T_1^2 T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathscr{E} . That is $(0) \neq D_1^2 D_2 D \subseteq Q \mathscr{U}$. Since \mathscr{U} is a finitely generated Multiplication \mathscr{E} -module, then by Lemma 20 we have $(0) \neq D_1^2 D_2 \subseteq Q + ann_{\mathscr{E}}(\mathscr{U})$. Since $ann_{\mathcal{E}}(\mathcal{U})\subseteq Q$, then $Q+ann_{\mathcal{E}}(\mathcal{U})=Q$, that is $(0) \neq D_1^2 D_2 \subseteq Q$. Since Q is a WPS-2AB ideal of \mathcal{E} , then by Proposition 2 $ID_2\subseteq Q + Soc(\mathscr{E})$ or $D_1^2\subseteq [Q + Soc(\mathscr{E})]$ $Soc(\mathscr{E})_{:\mathscr{E}}\mathscr{E} = Q + Soc(\mathscr{E})$. It follows that either $ID_2D\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $D_1^2\mathscr{U}\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$. Since \mathcal{U} is a non-singular, then by Lemma 14, $(Soc(\mathcal{U}) = Soc(\mathcal{E})\mathcal{U})$. It follows that either $ID_2D\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $D_1^2\mathcal{U}\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$ or $T_1^2\subseteq Q\mathscr{U}+$ $Soc(\mathcal{U})$. By Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathscr{E} .

A straightforward consequence of proposition 26.

Corollary 27. Let \mathscr{U} be a cyclic non-singular \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Proposition 28. Let \mathscr{U} be a finitely generated faithful Multiplication \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB. submodule of \mathscr{E} .

proof. The proof is similar to the proof of Proposition 21 and by Lemma 20.

A straightforward consequence of Proposition 28.

Corollary 29. Let \mathscr{U} be a faithful cyclic \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} .

Lemma 30. [7] If \mathcal{U} is a Multiplication \mathcal{E} -module, then \mathcal{U} is cancellation if and only if \mathcal{U} is a finitely generated faithful.

Proposition 31. Let \mathcal{U} be a faithful finitely generated Multiplication \mathcal{E} -module, and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . The statements below are considered to be equivalent:

- (a) W is a WPS-2AB submodule.
- (b) $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} .

(c) $W = Q \mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} .

Proof (a)⇔(b) Follows by Proposition 18 (b)⇒(c) Assume that [\mathscr{W} : \mathscr{E} \mathscr{U}] is a WPS-2AB ideal

of \mathscr{E} . since \mathscr{U} is Multiplication, then $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. Put $Q = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ then Q is a WPS-2AB ideal of \mathscr{E} and $\mathscr{W} = O\mathscr{U}$.

 $(c)\Rightarrow(b)$ Assume that $\mathscr{W}=Q\mathscr{U}$ for some Q which is a WPS-2AB ideal of \mathscr{E} . Since \mathscr{U} is Multiplication, then $\mathscr{W}=[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}=Q\mathscr{U}$. Since \mathscr{U} is faithful finitely generated \mathscr{E} -module, then by Lemma 30, \mathscr{U} is a cancellation. Therefore $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]=Q$ is a WPS-2AB ideal of \mathscr{E} .

A straightforward consequence of Proposition 31.

Corollary 32. Let \mathcal{U} be a faithful cyclic \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . The statements below are considered to be equivalent:

- (a) W is a WPS-2AB submodule.
- (b) $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} .
- (c) $\mathcal{W} = Q\mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} .

Recall \mathscr{U} be a weak cancellation of \mathscr{E} -module if whenever $Q_1\mathscr{U}=Q_2\mathscr{U}$, for Q_1,Q_2 are ideal of \mathscr{E} , implies that $Q_1+ann_{\mathscr{E}}(\mathscr{U})=Q_2+ann_{\mathscr{E}}(\mathscr{U})$ [6].

Lemma 33. [7] If \mathscr{U} be a Multiplication \mathscr{E} -module, then \mathscr{U} is finitely generated if and only if \mathscr{U} is a weak cancellation.

Proposition 34. Let \mathscr{U} be a finitely generated Multiplication (cyclic) Z-regular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ is a submodule of \mathscr{U} with ann $\mathscr{E}(\mathscr{U}) \subseteq [\mathscr{W} : \mathscr{E} \mathscr{U}]$. The statements below are considered to be equivalent:

- (a) W is a WPS-2AB submodule.
- (b) $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} .
- (c) $\mathcal{W} = Q \mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} with ann $\mathcal{E}(\mathcal{U}) \subseteq Q$.

Proof. (a)⇔(b) Follows from Proposition 9 (b)⇒(c) Let \mathscr{W} be submodule of an \mathscr{E} -module \mathscr{U} , then $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. But $Q = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$ implies that Q is a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U}) = [0:\mathscr{U}]\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] = Q$, that is $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$.

 $(c)\Rightarrow(b)$ Assume that $\mathscr{W}=Q\mathscr{U}$ for some WPS-2AB ideal Q of \mathscr{E} , with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Since \mathscr{U} is Multiplication then $\mathscr{W}=[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}=Q\mathscr{U}$. Since \mathscr{U} is faithful finitely generated \mathscr{E} -module, then by Lemma 33 \mathscr{U} is a weak cancellation. Therefore $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]+ann_{\mathscr{E}}(\mathscr{U})=Q+ann_{\mathscr{E}}(\mathscr{U})$. But $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$ and $ann_{\mathscr{E}}(\mathscr{U})\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$, that is $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]=Q$. Since Q is a WPS-2AB ideal of \mathscr{E} . Then $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} .

Proposition 35. Let \mathcal{U} be a finitely generated Multiplication (cyclic) projective \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a

submodule of \mathscr{U} with ann $_{\mathscr{E}}(\mathscr{U})\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$. The statements below are considered to be equivalent:

- (a) W is a WPS-2AB submodule.
- (b) $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} .
- (c) $\mathcal{W} = Q\mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} with ann $\mathcal{E}(\mathcal{U})\subseteq Q$.

Proof $(a)\Leftrightarrow(b)$ Follows from Proposition 9. $(b)\Leftrightarrow(c)$ Follows from Proposition 34.

Ethical Approval

Not applicable.

Source of Funding

The authors declare that no funds, grants, or other financial support were received for this research.

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Data Availability

The data and fundamental definitions used in this study are available in the published research article: Taha OH, Salih MA. *Weakly Pseudo Semi-2-absorbing Submodule.* The International Journal of Mathematics and Computer Science. 2024; 19 (4):927-32.

Author Contributions

Author 1 contributed to the conceptualization and methodology; Author 2 performed the formal analysis; Author 3 was responsible for data curation and writing the original draft; all authors reviewed and edited the manuscript and approved the final version.

References

- [1] Darani AY, Soheilnia F. 2-absorbing and weakly 2-absorbing submodules. Thai J Math 2011;9(3):577–84.
- [2] Hadi IMAH, Abdurehman A. Semi-2-Absorbing submodules and semi-2-absorbing modules. Int J Adv Sci Tech Res 2015: 521–30.
- [3] Pseudo 2-absorbing and pseudo semi-2-absorbing submodules. In: Mohammadali HK, Abdalla OA, editors. AIP conference proceedings. AIP Publishing; 2019.
- [4] Taha OH, Salih MA. Weakly pseudo semi-2-absorbing submodule. Int J Math Comput Sci 2024;19(4):927–32.
- [5] Anderson D. Some remarks on multiplication ideals, II. Commun Algebra 2000;28(5):2577–83.
- [6] Wisbauer R. Foundations of module and ring theory. Routledge; 2018.
- [7] Faith C. Algebra: rings, modules and categories I. Springer Science & Business Media; 2012.