Volume 6 | Issue 2 Article 6 ## Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules Omar H. Taha General Directorate of Salah al-Din Education - Ministry of Education, Tikrit, Iraq Omar A. Abdullah Department of Mathematics - College of Computer Science and Mathematics - Tikrit University, Tikrit, Iraq. Ali Sh. Ajeel Department of Mathematics - College of Computer Science and Mathematics - Tikrit University, Tikrit, Iraq. Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal Part of the Algebra Commons ## **Recommended Citation** Taha, Omar H.; Abdullah, Omar A.; and Ajeel, Ali Sh. (2025) "Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules," Al-Bahir. Vol. 6: Iss. 2, Article 6. Available at: https://doi.org/10.55810/2313-0083.1090 This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.iq. # Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of some Types of Modules ## Source of Funding The authors declare that no funds, grants, or other financial support were received for this research. ## Conflict of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper. ## **Data Availability** The data and fundamental definitions used in this study are available in the published research article: Taha OH, Salih MA. *Weakly Pseudo Semi-2-absorbing Submodule.* The International Journal of Mathematics and Computer Science. 2024;19(4):927-32. ## **Author Contributions** Author 1 contributed to the conceptualization and methodology; Author 2 performed the formal analysis; Author 3 was responsible for data curation and writing the original draft; all authors reviewed and edited the manuscript and approved the final version. ## ORIGINAL STUDY ## Some Characterizations of Weakly Pseudo Semi 2-absorbing Submodules in Terms of Some Types of Modules Omar H. Taha a,*, Omar A. Abdullah b, Ali Sh. Ajeel b #### **Abstract** The purpose of this paper is to investigate characterizations of weakly pseudo semi-2-absorbing submodules in terms of some types of modules. We provide characterizations for the class of multiplication modules with the help of some types of modules such as faithful, non-singular, Z-regular, and projective modules. Furthermore, we add some conditions to proof the residual of a weakly pseudo semi-2-absorbing submodule is a weakly pseudo semi-2-absorbing ideal. JEL classification: 16D99 Keywords: Multiplication modules, Weakly pseudo semi-2-absorbing #### 1. Introduction n this paper, the ring \mathscr{E} is a commutative ring with a non-zero identity, and \mathcal{U} is a unitary *E*-module. Over the past 13 years, the concepts of 2absorbing submodules and weakly 2-absorbing submodules have been extensively studied by Darani and Soheilinia [1]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathscr{E} -module \mathscr{U} is called 2-absorbing (weakly 2absorbing) if whenever $abu \in \mathcal{W} \ (0 \neq abu \in \mathcal{W})$ for some $a, b \in \mathcal{E}$, $u \in \mathcal{U}$, then either $au \in \mathcal{W}$ or $bu \in \mathcal{W}$ or $ab \in [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$. Following that, Hadi and Harfash introduced the concept of semi-2-absorbing submodules as a generalization of 2-absorbing submodules [2]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathcal{E} -module absorbing) if whenever $a^2u \in \mathcal{W}$ $(0 \neq a^2u \in \mathcal{W})$ for some $\in \mathscr{E}$, $u \in \mathscr{U}$, then either $au \in \mathscr{W}$ or $a^2 \in$ $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$. Also, Abdalla and Mohammadali introduced the concept of pseudo semi-2-absorbing submodules [3]. A submodule $\mathcal{W} \subsetneq \mathcal{U}$ of an \mathscr{E} -module \mathscr{U} is said to be a pseudo semi-2absorbing submodule of \mathcal{U} , if $e^2u \in \mathcal{W}$, for $e \in \mathcal{E}$, $u \in \mathcal{U}$, implies either $ru \in \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \in [\mathcal{W} +$ $Soc(\mathcal{U}): \mathcal{E}\mathcal{U}$. The concept of weakly pseudo semi-2absorbing submodule is a generalization of semi-2absorbing and pseudo semi-2-absorbing submodule introduced by Taha and Salih [4], a submodule $\mathcal{W} \subsetneq$ \mathcal{U} of an \mathcal{E} -module \mathcal{U} is said to be a weakly pseudo semi-2-absorbing submodule of \mathscr{U} (for short WPS-2AB), if $0 \neq e^2 u \in \mathcal{W}$, for $e \in \mathcal{E}$, $u \in \mathcal{U}$, implies either $eu \in \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \in [\mathcal{W} + Soc(\mathcal{U}):_{\mathcal{E}}\mathcal{U}]$. An ideal Q of a ring \mathcal{E} is said to be a weakly pseudo semi-2-absorbing ideal of \mathscr{E} if Q is a weakly pseudo semi-2-absorbing submodule of the \mathscr{E} -module \mathscr{E} . An \mathscr{E} -module \mathscr{U} is multiplication if every submodule \mathcal{W} of \mathcal{U} is of the from $\mathcal{W} = Q\mathcal{U}$ for some ideal Q of \mathcal{E} . It's well known that a cyclic module is Multiplication module [5]. An \mathscr{E} -module \mathscr{U} is called Z-regular if for any $s \in \mathcal{U}$ there $f \in \mathcal{U}^* = Hom_R(\mathcal{U}, \mathcal{E})$ such that s = f(s)s. Recall that an \mathscr{E} -module \mathscr{U} , is a projective if for every \mathscr{E} -epimorphism $f: M_1 \rightarrow M_2$ where M_1 and M_2 are \mathscr{E} -modules, every \mathscr{E} -homomorphism $g: \mathcal{U} \to M_2$, there exists an \mathcal{E} -homomorphism $h: \mathcal{U} \to M_1$ such that $f \circ h = g$. Recall that an Received 18 November 2024; revised 23 February 2025; accepted 24 February 2025. Available online 12 April 2025 E-mail addresses: omar.h.tahamm2314@st.tu.edu.iq (O.H. Taha), omerabdulrazzaqa@tu.edu.iq (O.A. Abdullah), ali.shebl@tu.edu.iq (A.Sh. Ajeel). ^a General Directorate of Salah al-Din Education, Ministry of Education, Tikrit, Iraq ^b Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq ^{*} Corresponding author. \mathscr{E} -module \mathscr{U} it is a non-singular if $Z(\mathscr{U}) = 0$, where $Z(\mathcal{U}) = \{ s \in \mathcal{U} : s Q = (0) \}$ for some ideal Q of $\mathscr E$. Recall that an $\mathscr E$ -module $\mathscr U$ is faithful if $Ann_R(\mathcal{U}) = (0)$. Recall that an \mathcal{E} -module \mathcal{U} is finitely generated if $\mathcal{U} = (x_1, x_2, \dots, x_n) = Rx_1 + Rx_2 +$... + Rx_n , where $x_1, x_2, ..., x_n \in \mathcal{U}$ [6]. In main results section of this paper, we provide characterizations for many modules, including non-singular modules, Multiplication modules, faithful finitely produced modules, projective modules, and Z-regular modules. We show, under certain conditions, the residual of weakly pseudo semi-2-absorbing submodule is a weakly pseudo semi-2-absorbing ideal, Proposition 9, 12, 15, 18. Moreover, we show that under certain conditions, if W is weakly pseudo semi-2absorbing submodules $Q \mathcal{U}$ is a weakly pseudo semi-2-absorbing submodule where Q is an ideal of \mathcal{E} see Proposition 24, 26, 28. ## 2. Main results **Proposition 1.** [4] Let $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of an \mathscr{E} -module \mathscr{U} , then \mathscr{W} is a WPS-2AB submodule if and only if $(0) \neq e^2T \subseteq \mathscr{W}$ for $e \in \mathscr{E}$ and T is submodule of \mathscr{U} , implies either $eT \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $e^2 \in [\mathscr{W} + Soc(\mathscr{U}):_{\mathscr{E}}\mathscr{U}]$. **Proposition 2.** [4] Let $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of an \mathscr{E} -module \mathscr{U} , then \mathscr{W} is a WPS-2AB submodule if and only if $(0) \neq Q^2T \subseteq \mathscr{W}$ for some ideal Q of \mathscr{E} and submodule T of \mathscr{U} , implies that either $QT \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $Q^2 \subseteq [\mathscr{W} + Soc(\mathscr{U}):_{\mathscr{E}} \mathscr{U}]$. **Theorem 3.** Let \mathscr{U} be a Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T_1^2 T_2 \subseteq \mathscr{W}$, for some submodules T_1 and T_2 of \mathscr{U} , implies that either $T_1 T_2 \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T_1^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$. *Proof.* Assume that $(0) \neq T_1^2 T_2 \subseteq \mathcal{W}$, for some submodules T_1 and T_2 of \mathcal{U} . Since \mathcal{U} is a Multiplication, We have $T_1 = D_1 D$ and $T_2 = D_2 D$ for some ideals D_1 , D_2 in \mathcal{E} , it follows that $(0) \neq (D_1 D)^2 D_2 D = D_1^2 D_2 D \subseteq \mathcal{W}$. Since \mathcal{W} is a WPS-2AB submodule proposition 1 implies that $D_1(D_2 D) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $D_1^2 \subseteq [\mathcal{W} + Soc(\mathcal{U}):_{\mathcal{E}}\mathcal{U}]$, that is either $T_1 T_2 \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $T_1^2 \subseteq \mathcal{W} + Soc(\mathcal{U})$. Conversely, $(0) \neq Q^2L \subseteq \mathcal{W}$, for some submodule L of \mathcal{U} and Q an ideal of \mathcal{E} . Since \mathcal{U} is a Multiplication, then $L = D_1D$ for some ideal D_1 in \mathcal{E} , Hence $(0) \neq Q^2D_1D \subseteq \mathcal{W}$. Take $T = Q\mathcal{U}$, that is $T^2L \subseteq \mathcal{W}$ and it follows by hypothesis either $TL \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $T^2 \subseteq \mathcal{W} + Soc(\mathcal{U})$, that is either $QL \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $Q^2\mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$ and Proposition 2, implies that \mathcal{W} is a WPS-2AB submodule. A straightforward consequence of Theorem 3. **Corollary 4.** Let \mathscr{U} be a Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T^2 u \subseteq \mathscr{W}$, for some submodule T of \mathscr{U} and $u \in \mathscr{U}$, implies that either $Tu \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$. **Corollary 5.** Let \mathscr{U} be a cyclic \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T_1^2 T_2 \subseteq \mathscr{W}$, for some submodules T_1 and T_2 of \mathscr{U} , implies that either $T_1 T_2 \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T_1^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$. **Corollary 6.** Let \mathscr{U} be a cyclic \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if whenever $(0) \neq T^2 u \subseteq \mathscr{W}$, for some submodules T of \mathscr{U} and $u \in \mathscr{U}$, implies that either $Tu \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $T^2 \subseteq \mathscr{W} + Soc(\mathscr{U})$. Remark 7. [4] If \mathcal{W} is a WPS-2AB submodule of an \mathcal{E} -module \mathcal{U} . In general, $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is not a WPS-2AB ideal of \mathcal{E} . **Lemma 8.** [6] Let \mathscr{U} be Z-regular of an \mathscr{E} -module. Then $Soc(\mathscr{U}) = Soc(\mathscr{E})\mathscr{U}$. Under certain conditions, the residual of WPS - 2AB submodules are a WPS - 2AB ideal, as shown in the following Propositions. **Proposition 9.** Let \mathscr{U} be a Z-regular Multiplication \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . *Proof.* Assume that $(0) \neq e^2 s \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$ for some $e \in \mathcal{E}$, and $s \in \mathcal{U}$. It follows that $(0) \neq e^2 (s \mathcal{U}) \subseteq \mathcal{W}$. Since \mathcal{W} is WPS-2AB, Proposition 1, implies that either $e(s \mathcal{U}) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$. As \mathcal{U} is a Multiplication, we have $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U}$. Furthermore, since \mathcal{U} is a Z-regular, Lemma 8, implies that either $e(s \mathcal{U}) \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. This mean that either $rd \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$ or $e^2 \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E}) = [[\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$. Then either $rd \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$ or $e^2 \subseteq [[\mathcal{W}:_{\mathcal{E}} \mathcal{U}] + Soc(\mathcal{E})$. Hence, $[\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} . Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathcal{U} and $e \in \mathcal{E}$. Since \mathcal{U} is a Multiplication Then $T = D_1D$, for some ideal D_1 in \mathcal{E} . That is $(0) \neq e^2D_1D \subseteq \mathcal{W}$, then $(0) \neq e^2D_1 \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$. Since $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [[\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}] = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$. It follows that either $rD_1D\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U}\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$. Since \mathcal{U} is a Z-regular, then by Lemma 8 and since \mathcal{U} is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W} + Soc(\mathcal{U})$. It follows that either $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\subseteq [\mathcal{W} + Soc(\mathcal{U})]$. $Soc(\mathscr{U}):_{\mathscr{E}}\mathscr{U}$]. Then, by Proposition 1, \mathscr{W} is a WPS-2AB submodule. A straightforward consequence of Proposition 9. **Corollary 10.** Let \mathscr{U} be a cyclic Z-regular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . **Lemma 11.** [6] Let \mathscr{U} be a projective \mathscr{E} -module, then $Soc(\mathscr{U}) = Soc(\mathscr{E}) \mathscr{U}$. **Proposition 12.** Let \mathscr{U} be a Multiplication projective \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . *Proof.* Assume that $(0) \neq e^2s \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ for some $e \in \mathcal{E}$, and $s \in \mathcal{U}$. It follows that $(0) \neq e^2(s\mathcal{U}) \subseteq \mathcal{W}$. Since \mathcal{W} is WPS-2AB, Proposition 1, implies that either $e(s\mathcal{U}) \subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U} \subseteq \mathcal{W} + Soc(\mathcal{U})$. As \mathcal{U} is a Multiplication, we have $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Furthermore, since \mathcal{U} is a projective, Lemma 11, implies that either $e(s\mathcal{U}) \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U} + Soc(\mathcal{E})\mathcal{U}$ or $e^2\mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}) = [[\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]$. Then either $rd\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E})$ or $e^2\subseteq [\mathcal{W}:_{\mathcal{E}}\mathcal{U}] + Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]$. Hence, $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} . Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathscr{U} and $e \in \mathscr{E}$. Since \mathscr{U} is a Multiplication Then $T = D_1D$, for some ideal D_1 in \mathscr{E} . That is $(0) \neq e^2 D_1 D \subseteq \mathcal{W}$, then $(0) \neq e^2 D_1 \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}]$. Since $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathscr{E}}\mathcal{U}] + Soc(\mathscr{E})$ or $e^2\subseteq$ $[[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}] = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}).$ It follows that either $rD_1D\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. Since \mathcal{U} is a projective , then by Lemma 11 and since $\mathscr U$ is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathcal{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W} + Soc(\mathcal{U})$. It follows that either $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ or $e^2 \subset [\mathcal{W} +$ $Soc(\mathcal{U}):_{\mathscr{E}}\mathcal{U}$. Then, by proposition 1, \mathcal{W} is a WPS-2AB submodule. A straightforward consequence of Proposition 12. **Corollary 13.** Let \mathscr{U} be a cyclic projective \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . **Lemma 14.** [7] Let \mathscr{U} be a non-singular \mathscr{E} -module, then $Soc(\mathscr{U}) = Soc(\mathscr{E}) \mathscr{U}$. **Proposition 15.** Let \mathcal{U} be a non-singular Multiplication \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . Then \mathcal{W} is a WPS-2AB submodule if and only if $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} . *proof.* The proof is similar to the proof of Proposition 9 and by Lemma 14. Assume that $(0) \neq e^2s \subseteq [\mathscr{W}:_{\mathscr{U}}\mathscr{U}]$ for some $e \in \mathscr{E}$, and $s \in \mathscr{U}$. It follows that $(0) \neq e^2(s\mathscr{U}) \subseteq \mathscr{W}$. Since \mathscr{W} is WPS-2AB, Proposition 1, implies that either $e(s\mathscr{U}) \subseteq \mathscr{W} + Soc(\mathscr{U})$ or $e^2\mathscr{U} \subseteq \mathscr{W} + Soc(\mathscr{U})$. As \mathscr{U} is a Multiplication, we have $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. Furthermore, since \mathscr{U} is a non-singular, Lemma 14, implies that either $e(s\mathscr{U}) \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$ or $e^2\mathscr{U} \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$. This mean that either $rd \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}) = [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]$. Then either $rd \subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]$. Hence, $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . Conversely, Assume that $(0) \neq e^2T \subseteq \mathcal{W}$ for some submodule T of \mathscr{U} and $e \in \mathscr{E}$. Since \mathscr{U} is a Multiplication Then $T = D_1D_1$, for some ideal D_1 in \mathcal{E} . That is $(0) \neq e^2 D_1 D \subseteq \mathcal{W}$, then $(0) \neq e^2 D_1 \subseteq [\mathcal{W}:_{\mathscr{E}} \mathcal{U}]$. Since $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} , then by proposition 1 either $rI\subseteq [\mathcal{W}:_{\mathscr{E}}\mathcal{U}] + Soc(\mathscr{E})$ or $e^2 \subseteq [[\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}] = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] + Soc(\mathscr{E}).$ It follows that either $rD_1D\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U} + Soc(\mathscr{E})\mathscr{U}$ or $e^2 \mathcal{U} \subseteq [\mathcal{W}:_{\mathcal{E}} \mathcal{U}] \mathcal{U} + Soc(\mathcal{E}) \mathcal{U}$. Since \mathcal{U} is a nonsingular, then by Lemma 14 and since \mathcal{U} is a Multiplication, then $\mathcal{W} = [\mathcal{W}:_{\mathscr{E}}\mathcal{U}]\mathcal{U}$. Then either $rD_1D\subseteq \mathcal{W}+Soc(\mathcal{U})$ or $e^2\mathcal{U}\subseteq \mathcal{W}+Soc(\mathcal{U})$. It follows $rT\subseteq \mathcal{W} + Soc(\mathcal{U})$ either or $e^2 \subseteq [\mathcal{W} +$ $Soc(\mathcal{U})_{:\mathcal{E}}\mathcal{U}$. Then, by proposition 1, \mathcal{W} is a WPS-2AB submodule. A straightforward consequence of Proposition 15 is the following outcome **Corollary 16.** Let \mathscr{U} be a cyclic non-singular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ be a submodule of \mathscr{U} . Then \mathscr{W} is a WPS-2AB submodule if and only if $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . **Lemma 17.** [5] Let \mathscr{U} be a faithful Multiplication \mathscr{E} -module. Then $Soc(\mathscr{U}) = Soc(\mathscr{E})\mathscr{U}$. **Proposition 18.** Let \mathcal{U} be a faithful Multiplication \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . Then \mathcal{W} is a WPS-2AB submodule if and only if $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} . *proof.* The proof is similar to the proof of Proposition 9 and by Lemma 17 A straightforward consequence of Proposition 18. **Corollary 19.** *Let* \mathcal{U} *be a faithful cyclic* \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ *be a submodule of* \mathcal{U} . Then \mathcal{W} *is a WPS-* 2AB submodule if and only if $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} . **Lemma 20.** [5] Let \mathscr{U} be a finitely generated Multiplication \mathscr{E} -module, and Q_1, Q_2 be ideals of \mathscr{E} , then $Q_1D\subseteq Q_2D$, if and only if $Q_1\subseteq Q_2+ann_{\mathscr{E}}(\mathscr{U})$. **Proposition 21.** Let \mathscr{U} be a finitely generated Z-regular Multiplication \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $\operatorname{ann}_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . *Proof.* Assume that $(0) \neq T_1^2 T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathscr{E} . That is $(0) \neq D_1^2 D_2 D \subseteq Q \mathscr{U}$. Since \mathscr{U} is a finitely generated Multiplication &-module, then by Lemma 20 we have $(0) \neq D_1^2 D_2 \subseteq Q + ann_{\mathscr{E}}(\mathscr{U})$. Since $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q+ann_{\mathscr{E}}(\mathscr{U})=Q$, that is $(0)\neq$ $D_1^2D_2\subseteq Q$. Since Q is a WPS-2AB ideal of \mathscr{E} , then by 2 $ID_2\subseteq Q + Soc(\mathscr{E})$ or $D_1^2\subseteq [Q +$ Proposition $Soc(\mathscr{E}):_{\mathscr{E}}\mathscr{E}]=Q+Soc(\mathscr{E}).$ It follows that either $ID_2D\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $D_1^2\mathscr{U}\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$. Since \mathscr{U} is Z-regular, then by Lemma 8, $(Soc(\mathscr{U}) =$ $Soc(\mathscr{E})\mathscr{U}$). It follows that either $ID_2D\subseteq Q\mathscr{U}$ + $Soc(\mathcal{U})$ or $D_1^2 \mathcal{U} \subseteq Q \mathcal{U} + Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$ or $T_1^2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$. By Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathscr{E} . **Lemma 22.** [7] Every cyclic \mathcal{E} -module is finitely generated. A straightforward consequence of Proposition 21. **Corollary 23.** Let \mathscr{U} be a Z-regular cyclic \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$, then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . **Proposition 24.** Let \mathscr{U} be a finitely generated Multiplication projective \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . *Proof.* Assume that $(0) \neq T_1^2T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathcal{E} . That is $(0) \neq D_1^2D_2D \subseteq Q \mathcal{U}$. Since \mathcal{U} is a finitely generated Multiplication \mathcal{E} -module, then by Lemma 20 we have $(0) \neq D_1^2D_2\subseteq Q + ann_{\mathcal{E}}(\mathcal{U})$. Since $ann_{\mathcal{E}}(\mathcal{U})\subseteq Q$, then $Q+ann_{\mathcal{E}}(\mathcal{U})=Q$, that is $(0) \neq D_1^2D_2\subseteq Q$. Since Q is a WPS-2AB ideal of \mathcal{E} , then by Proposition 2 $ID_2\subseteq Q+Soc(\mathcal{E})$ or $D_1^2\subseteq [Q+Soc(\mathcal{E}):_{\mathcal{E}}\mathcal{E}]=Q+Soc(\mathcal{E})\mathcal{U}$ or $D_1^2\subseteq Q\mathcal{U}+Soc(\mathcal{E})\mathcal{U}$. Since \mathcal{U} is a finitely generated, then by Lemma 11, $(Soc(\mathcal{U})=Soc(\mathcal{E})\mathcal{U})$. It follows that either $ID_2D\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $D_1^2\mathcal{U}\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $T_1^2\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. By Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathcal{E} . A straightforward consequence of Proposition 24. **Corollary 25.** Let \mathscr{U} be a cyclic projective \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then, $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . **Proposition 26.** Let \mathscr{U} be a finitely generated Multiplication non-singular \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . *Proof.* Assume that $(0) \neq T_1^2 T_2 \subseteq Q \mathcal{U}$ for T_1, T_2 some submodules of \mathcal{U} . As \mathcal{U} is Multiplication \mathcal{E} -module, we have $T_1 = D_1D$, $T_2 = D_2D$ for some ideals D_1 , D_2 of \mathscr{E} . That is $(0) \neq D_1^2 D_2 D \subseteq Q \mathscr{U}$. Since \mathscr{U} is a finitely generated Multiplication \mathscr{E} -module, then by Lemma 20 we have $(0) \neq D_1^2 D_2 \subseteq Q + ann_{\mathscr{E}}(\mathscr{U})$. Since $ann_{\mathcal{E}}(\mathcal{U})\subseteq Q$, then $Q+ann_{\mathcal{E}}(\mathcal{U})=Q$, that is $(0) \neq D_1^2 D_2 \subseteq Q$. Since Q is a WPS-2AB ideal of \mathcal{E} , then by Proposition 2 $ID_2\subseteq Q + Soc(\mathscr{E})$ or $D_1^2\subseteq [Q + Soc(\mathscr{E})]$ $Soc(\mathscr{E})_{:\mathscr{E}}\mathscr{E} = Q + Soc(\mathscr{E})$. It follows that either $ID_2D\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$ or $D_1^2\mathscr{U}\subseteq Q\mathscr{U}+Soc(\mathscr{E})\mathscr{U}$. Since \mathcal{U} is a non-singular, then by Lemma 14, $(Soc(\mathcal{U}) = Soc(\mathcal{E})\mathcal{U})$. It follows that either $ID_2D\subseteq Q\mathcal{U}+Soc(\mathcal{U})$ or $D_1^2\mathcal{U}\subseteq Q\mathcal{U}+Soc(\mathcal{U})$. Then either that $T_1T_2\subseteq Q\mathscr{U}+Soc(\mathscr{U})$ or $T_1^2\subseteq Q\mathscr{U}+$ $Soc(\mathcal{U})$. By Proposition 3, we have $Q\mathcal{U}$, a WPS-2AB submodule of \mathscr{E} . A straightforward consequence of proposition 26. **Corollary 27.** Let \mathscr{U} be a cyclic non-singular \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . **Proposition 28.** Let \mathscr{U} be a finitely generated faithful Multiplication \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB. submodule of \mathscr{E} . *proof.* The proof is similar to the proof of Proposition 21 and by Lemma 20. A straightforward consequence of Proposition 28. **Corollary 29.** Let \mathscr{U} be a faithful cyclic \mathscr{E} -module and Q be a WPS-2AB ideal of \mathscr{E} with ann $\mathscr{E}(\mathscr{U})\subseteq Q$. Then $Q\mathscr{U}$ is a WPS-2AB submodule of \mathscr{E} . **Lemma 30.** [7] If \mathcal{U} is a Multiplication \mathcal{E} -module, then \mathcal{U} is cancellation if and only if \mathcal{U} is a finitely generated faithful. **Proposition 31.** Let \mathcal{U} be a faithful finitely generated Multiplication \mathcal{E} -module, and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . The statements below are considered to be equivalent: - (a) W is a WPS-2AB submodule. - (b) $[\mathcal{W}:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} . (c) $W = Q \mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} . *Proof* (a)⇔(b) Follows by Proposition 18 (b)⇒(c) Assume that [\mathscr{W} : \mathscr{E} \mathscr{U}] is a WPS-2AB ideal of \mathscr{E} . since \mathscr{U} is Multiplication, then $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. Put $Q = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ then Q is a WPS-2AB ideal of \mathscr{E} and $\mathscr{W} = O\mathscr{U}$. $(c)\Rightarrow(b)$ Assume that $\mathscr{W}=Q\mathscr{U}$ for some Q which is a WPS-2AB ideal of \mathscr{E} . Since \mathscr{U} is Multiplication, then $\mathscr{W}=[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}=Q\mathscr{U}$. Since \mathscr{U} is faithful finitely generated \mathscr{E} -module, then by Lemma 30, \mathscr{U} is a cancellation. Therefore $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]=Q$ is a WPS-2AB ideal of \mathscr{E} . A straightforward consequence of Proposition 31. **Corollary 32.** Let \mathcal{U} be a faithful cyclic \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathcal{U} . The statements below are considered to be equivalent: - (a) W is a WPS-2AB submodule. - (b) $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} . - (c) $\mathcal{W} = Q\mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} . Recall \mathscr{U} be a weak cancellation of \mathscr{E} -module if whenever $Q_1\mathscr{U}=Q_2\mathscr{U}$, for Q_1,Q_2 are ideal of \mathscr{E} , implies that $Q_1+ann_{\mathscr{E}}(\mathscr{U})=Q_2+ann_{\mathscr{E}}(\mathscr{U})$ [6]. **Lemma 33.** [7] If \mathscr{U} be a Multiplication \mathscr{E} -module, then \mathscr{U} is finitely generated if and only if \mathscr{U} is a weak cancellation. **Proposition 34.** Let \mathscr{U} be a finitely generated Multiplication (cyclic) Z-regular \mathscr{E} -module and $\mathscr{W} \subsetneq \mathscr{U}$ is a submodule of \mathscr{U} with ann $\mathscr{E}(\mathscr{U}) \subseteq [\mathscr{W} : \mathscr{E} \mathscr{U}]$. The statements below are considered to be equivalent: - (a) W is a WPS-2AB submodule. - (b) $[W:_{\mathscr{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathscr{E} . - (c) $\mathcal{W} = Q \mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} with ann $\mathcal{E}(\mathcal{U}) \subseteq Q$. *Proof.* (a)⇔(b) Follows from Proposition 9 (b)⇒(c) Let \mathscr{W} be submodule of an \mathscr{E} -module \mathscr{U} , then $\mathscr{W} = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$. But $Q = [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}$ implies that Q is a WPS-2AB ideal of \mathscr{E} with $ann_{\mathscr{E}}(\mathscr{U}) = [0:\mathscr{U}]\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}] = Q$, that is $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. $(c)\Rightarrow(b)$ Assume that $\mathscr{W}=Q\mathscr{U}$ for some WPS-2AB ideal Q of \mathscr{E} , with $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$. Since \mathscr{U} is Multiplication then $\mathscr{W}=[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]\mathscr{U}=Q\mathscr{U}$. Since \mathscr{U} is faithful finitely generated \mathscr{E} -module, then by Lemma 33 \mathscr{U} is a weak cancellation. Therefore $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]+ann_{\mathscr{E}}(\mathscr{U})=Q+ann_{\mathscr{E}}(\mathscr{U})$. But $ann_{\mathscr{E}}(\mathscr{U})\subseteq Q$ and $ann_{\mathscr{E}}(\mathscr{U})\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$, that is $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]=Q$. Since Q is a WPS-2AB ideal of \mathscr{E} . Then $[\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$ is a WPS-2AB ideal of \mathscr{E} . **Proposition 35.** Let \mathcal{U} be a finitely generated Multiplication (cyclic) projective \mathcal{E} -module and $\mathcal{W} \subsetneq \mathcal{U}$ be a submodule of \mathscr{U} with ann $_{\mathscr{E}}(\mathscr{U})\subseteq [\mathscr{W}:_{\mathscr{E}}\mathscr{U}]$. The statements below are considered to be equivalent: - (a) W is a WPS-2AB submodule. - (b) $[\mathcal{W}:_{\mathcal{E}}\mathcal{U}]$ is a WPS-2AB ideal of \mathcal{E} . - (c) $\mathcal{W} = Q\mathcal{U}$ for some WPS-2AB ideal Q of \mathcal{E} with ann $\mathcal{E}(\mathcal{U})\subseteq Q$. *Proof* $(a)\Leftrightarrow(b)$ Follows from Proposition 9. $(b)\Leftrightarrow(c)$ Follows from Proposition 34. ## **Ethical Approval** Not applicable. ## Source of Funding The authors declare that no funds, grants, or other financial support were received for this research. #### **Conflict of Interest** The authors declare that there are no conflicts of interest regarding the publication of this paper. ## **Data Availability** The data and fundamental definitions used in this study are available in the published research article: Taha OH, Salih MA. *Weakly Pseudo Semi-2-absorbing Submodule.* The International Journal of Mathematics and Computer Science. 2024; 19 (4):927-32. ### **Author Contributions** Author 1 contributed to the conceptualization and methodology; Author 2 performed the formal analysis; Author 3 was responsible for data curation and writing the original draft; all authors reviewed and edited the manuscript and approved the final version. ## References - [1] Darani AY, Soheilnia F. 2-absorbing and weakly 2-absorbing submodules. Thai J Math 2011;9(3):577–84. - [2] Hadi IMAH, Abdurehman A. Semi-2-Absorbing submodules and semi-2-absorbing modules. Int J Adv Sci Tech Res 2015: 521–30. - [3] Pseudo 2-absorbing and pseudo semi-2-absorbing submodules. In: Mohammadali HK, Abdalla OA, editors. AIP conference proceedings. AIP Publishing; 2019. - [4] Taha OH, Salih MA. Weakly pseudo semi-2-absorbing submodule. Int J Math Comput Sci 2024;19(4):927–32. - [5] Anderson D. Some remarks on multiplication ideals, II. Commun Algebra 2000;28(5):2577–83. - [6] Wisbauer R. Foundations of module and ring theory. Routledge; 2018. - [7] Faith C. Algebra: rings, modules and categories I. Springer Science & Business Media; 2012.