

Volume 2 | Issue 2 Article 9

g-Coatomic Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

Part of the Algebra Commons

Recommended Citation

Alwan, Ahmed H. (2023) "g-Coatomic Modules," Al-Bahir. Vol. 2: Iss. 2, Article 9. Available at: https://doi.org/10.55810/2313-0083.1025

This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.iq.

ORIGINAL STUDY

g-Coatomic Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let R be a ring and M be a left R-module. A submodule N of M is said to be g-small in M, if for every submodule $L \le M$, with N+L=M implies that L=M. Then $Rad_g(M)=\sum N\le M|N$ is a g-small submodule of M}. We call M g-coatomic module whenever $N\le M$ and $M/N=Rad_g(M/N)$ then M/N=0. Also, R is called right (left) g-coatomic ring if the right (left) R-module R_R (R) is g-coatomic. In this work, we study g-coatomic modules and ring. We investigate some properties of these modules. We prove $M=\bigoplus_{i=1}^n M_i$ is g-coatomic if and only if each M_i (i=1,...,n) is g-coatomic. It is proved that if R is a g-semiperfect ring with $Rad_g(R/Rad_g(R))=0$, then R is g-coatomic ring.

Keywords: g-small submodule, Coatomic module, g-coatomic module, g-semiperfect module

1. Introduction

T hroughout the present paper, all rings are associative rings with identity and all modules are unital right modules.

Let R be a ring and let M be an R-module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and let $N \leq M$. A submodule N of an R-module M is called small in M (we write $N \ll M$), if for every submodule $L \leq M$, with N + L = M implies that L = M. A submodule L < M is said to be essential in M, denoted as $L \leq M$, if $L \cap N = 0$ for every non-zero submodule $N \leq M$. The submodule K is called a generalized small (briefly, g-small) submodule of M if, for every essential submodule T of M such that M = K + T implies that T = M, we can write $K \ll_g M$ (in [12], it is called an e-small submodule of M and denoted by $K \ll_e M$). It is clear that every small submodule is a g-small submodule but the converse is not true generally. If T is essential and maximal submodule of M then T is said to be a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of M and denoted by $Rad_{g}(M)$ that also knows as the sum of all g-small submodules in M [6,12]. For any R-module M, we write Rad(M), Soc(M) and Z(M) for the radical, socle and singular submodule of M, respectively. M is said to be singular(or non-singular) if M = Z(M) (or Z(M) = 0). M is called coatomic if every submodule N of M, Rad(M/N) = M/N implies M/N = 0, equivalently every proper submodule of M is contained in a maximal submodule of M see ([1], [3,4]). A submodule N of a module M is called δ -small in M, denoted by $N \ll_{\delta} M$, if $N + K \neq M$ for any proper submodule K of M with M/K singular. Further, for a module M the submodule $\delta(M)$ is generated by all δ -small submodules of M [10]. In [5] M is called δ -coatomic if every submodule N of M, $\delta(M/N) =$ M/N implies M/N = 0. The paper deals with gcoatomic modules as a generalization of coatomic modules. We say that a module M is g-coatomic, if every submodule of M is contained in a generalized maximal submodule of M or equivalently, for a submodule $N \leq M$, if $Rad_{\mathfrak{g}}(M/N) = M/N$ then M/N = 0. In Section 2, some properties of generalized small submodules are given. In Section 3, several basic properties and characterizations of gcoatomic modules and rings are given.

We will refer to [1,2,9] for all undefined notions used in the text, and also for basic facts concerning coatomic and singular modules.

2. g-small submodule and the functor $Rad_{\mathfrak{G}}(M)$

In this section, some important properties of generalized small submodules are presented.

Definition 2.1. [6,12] Let N be a submodule of a module M. N is said to be g-small, denoted by $N \ll_g M$, in M if, for every essential submodule T of M such that M = N + T implies that T = M (in [12], it is called an e-small submodule of M and denoted by $K \ll_e M$). If N is any small submodule of M, then N is g-small submodule of M. For the reader's convenience, we record here some of the known results which will be used repeatedly in the sequel.

Proposition 2.2. [12, Proposition 2.3] Let *N* be a submodule of a module *M*. The following are equivalent.

- (1) $N \ll_{\rm g} M$,
- (2) if M = X + N, then $M = X \oplus Y$ with M/X a semisimple module and $Y \le M$.

Lemma 2.3. Let *M* be a module. Then

- (1) For submodules N, K, L of M with $K \le N$, we have (a) If $N \ll_{\mathbf{g}} M$, then $K \ll_{\mathbf{g}} M$ and $N/K \ll_{\mathbf{g}} M/K$. (b) $N + L \ll_{\mathbf{g}} M$ if and only if $N \ll_{\mathbf{g}} M$ and $L \ll_{\mathbf{g}} M$.
- (2) If $K \ll_g M$ and $f: M \to N$ is a homomorphism, then $f(K) \ll_g N$. In particular, if $K \ll_g M \leq N$, then $K \ll_g N$.
- (3) Let N, K, L, and T be submodules of M. If $K \ll_g L$ and $N \ll_g T$, then $K + N \ll_g L + T$.
- (4) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_g M_1 \oplus M_2$ if and only if $K_1 \ll_g M_1$ and $K_2 \ll_g M_2$.

Proof. See Proposition 2.5 of [12,] or see [6].

Corollary 2.4. [6] Let M be an R-module, $K \ll_g M$ and $L \leq M$. Then $K + L/L \ll_g M/L$.

Definition 2.5. [12] Let M be a module. Define $Rad_{\sigma}(M) = \bigcap \{N \leq M \mid N \text{ is maximal in } M\}.$

For a module M, the intersection of maximal essential submodules of an R-module M is called a generalized radical of M and denoted by $Rad_g(M)$ (in [12], it is denoted by $Rad_e(M)$). If M have no maximal essential submodules, then we denote $Rad_g(M) = M$. Obviously, $Rad(M) \subseteq \delta(M) \subseteq Rad_g(M)$. For an arbitrary ring R, let $Rad_g(R) = Rad_g(R_R)$. In the following we use g-small submodules to characterize $Rad_g(M)$.

Theorem 2.6. Let M be an R-modules. Then $Rad_g(M) = \sum_{N \ll_\sigma M} N$.

Proof. [12, Theorem 2.10].

Lemma 2.7. Let *M* and *N* be modules. Then

(1) If $f: M \rightarrow N$ is an R-homomorphism, then $f(Rad_g(M)) \leq Rad_g(N)$.

(2) If every proper essential submodule of M is contained in a maximal submodule of M, then $Rad_{\rm g}(M)$ is the unique largest g-small submodule of M.

Proof. [12] Corollary 2.11.

Lemma 2.8. If $M = \bigoplus_{i \in I} M_i$ then $Rad_g(M) = \bigoplus_{i \in I} Rad_g(M_i)$.

Proof. See [6, Lemma 4].

Lemma 2.9. Let M be a finitely generated R-module. Then $Rad_g(M) \ll_g M$.

Proof. See [8, Lemma 14].

Remark 2.10. It is clear that, in general, $Rad_{\rm g}(M)$ need not be g-small in M. But if M is a coatomic module, i.e. every proper submodule of M is contained in a maximal submodule of M, then $Rad_{\rm g}(M)$ is g-small in M by Lemma 2.7(2).

Remark 2.11. Clearly, for a module M, if Rad(M) is small in M then M/Rad(M) has no nonzero small submodule. Also, in [5, Lemma 1.3(2)] If $\delta(M)$ is δ -small in M, then $\delta(M/\delta(M)) = 0$. However this statement cannot be generalized for $Rad_g(M)$, i.e., if $Rad_g(M) \ll_g M$, maybe $Rad_g(M/Rad_g(M)) \neq 0$. As the following example shows.

Example 2.12. Let M be the \mathbb{Z} -module \mathbb{Z}_{24} . $Rad_g(M) = 2\mathbb{Z}_{24} \ll_g M$. But $\frac{\mathbb{Z}_{24}}{2\mathbb{Z}_{24}} \cong \mathbb{Z}_2$ and $\mathbb{Z}_2 \ll_g \mathbb{Z}_2$.

Lemma 2.13. Let M be a nonsingular module. If $Rad_{\rm g}(M)$ is g-small in M and $K/Rad_{\rm g}(M)$ is also g-small in $M/Rad_{\rm g}(M)$ where $K \leq M$, then K is g-small in M.

Proof. Let $K/Rad_g(M)$ be a g-small submodule of $M/Rad_{\mathfrak{S}}(M)$ and M = K + L with $L \leq M$. So, L + $Rad_{\mathfrak{G}}(M) \leq M$. By [2, Proposition 1.21], $M/(L+Rad_g(M))$ is singular, $M/Rad_g(M)/(L+Rad_g(M))/Rad_g(M)$ is singular. By [2, Proposition 1.21], $(L+Rad_g(M))/Rad_g(M)$ is essential submodule of $M/Rad_g(M)$, and since $M/Rad_{\mathfrak{G}}(M) = K/Rad_{\mathfrak{G}}(M) + (L+Rad_{\mathfrak{G}}(M))/Rad_{\mathfrak{G}}(M)$ and $K/Rad_g(M)$ is g-small submodule $M/Rad_{\mathfrak{g}}(M)$, $M = L + Rad_{\mathfrak{g}}(M)$. Being $Rad_{\mathfrak{g}}(M)$ is gsmall in M and $L \leq M$, we then have M = L and so Kis g-small in M.

Now we give a characterization of $M/Rad_g(M)$.

Proposition 2.14. Let *M* be an *R*-module.

(1) If, for any submodule N of M, there exists a decomposition $M=M_1\oplus M_2$ such that $M_1\leq N$ and $N\cap M_2\ll_{\rm g} M_2$, then $M/\operatorname{Rad}_{\rm g}(M)$ is semisimple.

(2) If, for every submodule A of M, there exists a submodule B of M such that M = A + B and $A \cap B \ll_g M$, then $M / Rad_g(M)$ is semisimple.

Proof:

- (1) Let $Rad_{g}(M) \leq N \leq M$. Then $N/Rad_{g}(M) \leq M/Rad_{g}(M)$. By assumption, there exists a submodule A of N such that $M = A \oplus B$ and $N \cap B \ll_{g} B$ for some submodules B of M. So $M/Rad_{g}(M) = N/Rad_{g}(M) \oplus ((B+Rad_{g}(M)/Rad_{g}(M))$.
- (2) Let $Rad_g(M) \le N \le M$. By hypothesis, there exists a submodule K of M such that M = N + K and $N \cap K \ll_g M$. Then $N \cap K \le Rad_g(M)$. Hence $M/Rad_g(M)$ is semisimple by [7, Proposition 2.1].

3. g-Coatomic modules and rings

In this section, we define g-coatomic modules and g-semiperfect modules. We study properties and characterizations of g-coatomic and g-semiperfect modules. In [5] the authors defined δ -coatomic modules in this vein, we introduce g-coatomic modules.

Definition 3.1. An R-module M is said to be a g-coatomic if every submodule N of M, $Rad_g(M/N) = M/N$ implies M/N = 0. In The ring R is called right (or left) g-coatomic if the right (or left) R-module R_R (or R R) is g-coatomic.

We can give another definition of g-coatomic module.

Lemma 3.2. Let M be a module. The following are equivalent.

- (1) *M* is g-coatomic.
- (2) Every proper submodule *K* of *M* is contained in a generalized maximal submodule.

Proof

1⇒2: Let K be any proper submodule of M. By (1), $Rad_g(M/K) \neq M/K$. Hence there exists a singular simple module S and homomorphism $f: M/K \rightarrow S$. Let Ker(f) = N/K. Then N is an essential and maximal submodule in M.

2⇒1: Let K be a proper submodule of M. Assume that $Rad_{\rm g}(M/K)=M/K$. We prove M/K=0. By (2) there exists an essential and maximal submodule N of M such that $K \le N$. Let p denote the canonical epimorphism from M/K onto M/N. Since Ker(p)=N/K, $Rad_{\rm g}(M/K) \le N/K$. By assumption M/K=N/K, and so M=N. This contradiction completes the proof.

Theorem 3.3. Let M be an R-module with $Rad_g(M) \ll_g M$ and $Rad_g(M / Rad_g(M)) = 0$. Then M

is g-coatomic if it satisfies one of the following conditions.

- (1) $M/Rad_{\mathfrak{G}}(M)$ is semisimple.
- (2) For every submodule A of M, there exists a submodule B of M such that M = A + B and $A \cap B \ll_g M$.

Proof

- (1) Suppose that $M/\operatorname{Rad}_{\operatorname{g}}(M)$ is semisimple with $\operatorname{Rad}_{\operatorname{g}}(M) \ll_{\operatorname{g}} M$ and $\operatorname{Rad}_{\operatorname{g}}(M/\operatorname{Rad}_{\operatorname{g}}(M)) = 0$. For any submodule N of M, let $\operatorname{Rad}_{\operatorname{g}}(M/N) = M/N$. Since $M/\operatorname{Rad}_{\operatorname{g}}(M)$ is semisimple, there exists a submodule K of M with $\operatorname{Rad}_{\operatorname{g}}(M) \leq K$ and $M/\operatorname{Rad}_{\operatorname{g}}(M) = ((N+\operatorname{Rad}_{\operatorname{g}}(M))/\operatorname{Rad}_{\operatorname{g}}(M)) \oplus K/\operatorname{Rad}_{\operatorname{g}}(M)$. Then M=N+K and $N\cap K \leq \operatorname{Rad}_{\operatorname{g}}(M)$. Hence $M/N=(N+K)/N\cong K/(N\cap K)$. Let p denote the canonical epimorphism $K/(N\cap K) \to K/\operatorname{Rad}_{\operatorname{g}}(M)$. By Lemma 2.3, $K/\operatorname{Rad}_{\operatorname{g}}(M) = p(K/(N\cap K)) = p(\operatorname{Rad}_{\operatorname{g}}(K/(N\cap K))) \leq \operatorname{Rad}_{\operatorname{g}}(K/\operatorname{Rad}_{\operatorname{g}}(M))$, and by assumption, $\operatorname{Rad}_{\operatorname{g}}(M/\operatorname{Rad}_{\operatorname{g}}(M)) = 0$, and so $\operatorname{Rad}_{\operatorname{g}}(K/\operatorname{Rad}_{\operatorname{g}}(M)) = 0$. Hence $K/(N\cap K) = 0$. Thus M/N = 0.
- (2) Assume that, for every submodule A of M, there exists a submodule B of M such that M = A + B and $A \cap B \ll_g M$. By Proposition 2.14, $M/Rad_g(M)$ is semisimple. Hence M is g-coatomic by part (1).

Lemma 3.4. Let *M* be a module. Then the following holds.

- (1) If $X \leq Rad_g(M)$ and X is g-coatomic, then $X \ll M$.
- (2) If M is g-coatomic, then $Rad_g(M) \ll M$. In either case $Rad_g(M) \ll_g M$.

Proof

- (1) Suppose that $X \leq Rad_g(M)$ and X is g-coatomic module. Let M = X + Y for some submodule Y of M. We show that M = Y. Suppose that $M \neq Y$. Then $X \neq X \cap Y$. By hypothesis and Lemma 3.2, there exists a maximal submodule X' of X such that $X \cap Y \leq X' \leq X$ and X/X' is singular simple. Hence M/(X'+Y) is singular simple since $X/X' \cong (X+Y)/(X'+Y) = M/(X'+Y)$. It follows that $X' \leq Rad_g(M) \leq X'+Y$ and $X'+Y \leq Rad_g(M)+Y \leq X'+Y$, and so M=X'+Y. Therefore X=X'. This contradicts the fact that X' is maximal submodule of X. Thus X is small in M and so g-small in M.
- (2) Assume that M is g-coatomic module. Let $M = Rad_g(M) + Y$ for some $Y \le M$. Assume that $M \ne Y$. By Lemma 3.2, there exists $Y \le Y' \le M$ with M/Y'

singular simple. Thus, Y' is a generalized maximal submodule. By Lemma 2.3, $Rad_g(M) \leq Y'$. Hence M = Y'. This contradicts the fact that Y' is maximal submodule of M. Hence $Rad_g(M)$ is small in M and so g-small in M.

Theorem 3.5. For an *R*-module *M* with $Rad_g(M/Rad_g(M)) = 0$, the following are equivalent.

- (1) $M/Rad_g(M)$ is semisimple and every submodule of $Rad_g(M)$ is g-coatomic.
- (2) For every submodule A of M, there exists a submodule B of M such that M = A + B and $A \cap B \ll_g M$, and every submodule of M is g-coatomic.

Proof. Note under the assumptions 1 and 2, $Rad_g(M) \ll_g M$ by Lemma 3.4 and Proposition 2.14. (1) \Rightarrow (2) For any submodule A of M, let $M/Rad_g(M) = \left(\left(A + Rad_g(M)\right) / Rad_g(M)\right) \oplus B / Rad_g(M)$ for some submodule B of M. Then M = A + B and $A \cap B \leq Rad_g(M)$. Since $Rad_g(M) \ll_g M$, by Lemma 2.3, $A \cap B \ll_g M$.

Let X be a submodule of M. We show that X is g-coatomic. Assume that $Rad_{\rm g}(X/A)=X/A$ for some submodule A of X. Then $M/Rad_{\rm g}(M)=((A+Rad_{\rm g}(M))/Rad_{\rm g}(M))\oplus B/Rad_{\rm g}(M)$ for some submodule B of M since $M/Rad_{\rm g}(M)$ is semisimple. Then M=A+B and $A\cap B\leq Rad_{\rm g}(M)$. It is easy to check that

 $(X + Rad_g(M))/(A + Rad_g(M)) = Rad_g((X + Rad_g(M)))/(A + Rad_g(M)))$

 $\leq Rad_{\mathfrak{g}}(M/(A+Rad_{\mathfrak{g}}(M))).$

 $Rad_{g}(M/(A + Rad_{g}(M))) \cong Rad_{g}(B/Rad_{g}(M)) \leq Rad_{g}(M/Rad_{g}(M)).$

By assumption, $Rad_{\rm g}(M/Rad_{\rm g}(M))=0$. Hence $A+Rad_{\rm g}(M)=X+Rad_{\rm g}(M)$, and so $X=A+(X\cap Rad_{\rm g}(M))$. Then $X/A\cong (X\cap Rad_{\rm g}(M))/(A\cap Rad_{\rm g}(M))$. Since every submodule of $Rad_{\rm g}(M)$ is g-coatomic by hypothesis, $X\cap Rad_{\rm g}(M)$ is a g-coatomic submodule of $Rad_{\rm g}(M)$. Since $Rad_{\rm g}((X\cap Rad_{\rm g}(M))/(A\cap Rad_{\rm g}(M)))=(X\cap Rad_{\rm g}(M))/(A\cap Rad_{\rm g}(M))$, we have that $X\cap Rad_{\rm g}(M)=A\cap Rad_{\rm g}(M)$. Hence A=X.

 $(2) \Rightarrow (1)$ It is clear by Proposition 2.14.

Proposition 3.6. Let $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of modules.

- (1) If M is g-coatomic module, then N is g-coatomic.
- (2) If *K* and *N* are g-coatomic modules, then *M* is g-coatomic.

In particular, any direct summand of a g-coatomic module is g-coatomic.

Proof

(1) We may suppose that $K \le M$ and N = M/K. Let U be a submodule of N. Suppose that $Rad_g(N/U) =$

- N/U. Then we find submodule L of M with L/K = U. Then $Rad_g(M/L) = M/L$. Since M is a g-coatomic module, M/L = 0. This implies that N/U = 0. It follows that N is g-coatomic.
- (2) Assume that *K* and *N* are g-coatomic modules. Let *L* be any proper essential submodule of *M*.

Case I. M/K = (L+K)/K. Then M = L+K. Since K is g-coatomic, there exists a generalized maximal submodule K' of K such that $K \cap L \le K' \le K$ and K/K' singular simple. Since $K/K' \cong (K+L)/(K'+L) = M/(K'+L)$, M/(K'+L) is singular simple. Thus, K'+L is generalized maximal submodule of M with $L \le K'+L$. Hence M is g-coatomic by Lemma 3.2.

Case II. $M/K \neq (L+K)/K$. Then $M \neq L+K$. Since N is g-coatomic and $N \cong M/K$, there exists a submodule K'/K of M/K such that $(M/K)/(K'/K) \cong M/K'$ is singular simple and $(L+K)/K \leq K'/K$. Thus, K' is generalized maximal submodule of M with $L \leq K'$. Then M is g-coatomic by Lemma 3.2.

Proposition 3.7. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of modules M_i (i = 1, ..., n). Then M is g-coatomic if and only if each M_i (i = 1, ..., n) is g-coatomic.

Proof. It is sufficient by induction on n to prove this is the case when n = 2. Let M_1 and M_2 be g-coatomic modules and $M = M_1 \bigoplus M_2$. We consider the following exact sequence;

$$0 \rightarrow M_1 \rightarrow M = M_1 \bigoplus M_2 \rightarrow M_2 \rightarrow 0$$

Hence, $M = M_1 \bigoplus M_2$ is g-coatomic module if and only if M_1 and M_2 are g-coatomic modules by Proposition 3.6.

Definition 3.8. A pair (P, f) is called a projective g-cover of the module M if P is projective right R-module and f is an epimorphism of P onto M with $Ker(f) \ll_{\rm g} P$.

Lemma 3.9. Let M = A + B. If M/A has a projective g-cover, then B contains a submodule A' of A such that M = A + A' and $A \cap A' \ll_g A'$.

Proof. Let $\pi: B \to M/A$ the natural homomorphism and $f: P \to M/A$ be a projective g-cover. Since P is projective, there exists $g: P \to B$ such that $\pi \circ g = f$ and Ker(f) is g-small in P. Then $(\pi \circ g)(P) = f(P)$ and $A \cap g(P) = g(Ker(f))$. Hence M = A + g(P) and $A \cap g(P) = g(Ker(f))$. Since $Ker(f) \ll_g P$, so $g(Ker(f)) \ll_g g(P)$ and thus $A \cap g(P) \ll_g g(P)$.

Lemma 3.10. Let A be any submodule of M. Assume that M/A has a projective g-cover. Then there exists

a submodule A' such that M = A + A' and $A \cap A' \ll_g A'$.

Proof. Let B = M in Lemma 3.9.

Definition 3.11. A projective module *M* is called g-semiperfect if every homomorphic image of *M* has a projective g-cover.

Lemma 3.12. For any projective *R*-module *M*, the following are equivalent:

- (1) *M* is g-semiperfect.
- (2) For any $N \le M$, M has a decomposition $M = M_1 \bigoplus M_2$ for some submodules M_1 , M_2 with $M_1 \le N$ and $M_2 \cap N \ll_g M_2$.

proof. The proof is similar to that of Lemma 2.4 in [10] for δ -semiperfect modules.

Theorem 3.13. Let M be a g-semiperfect module such that $Rad_g(M) \ll_g M$ and $Rad_g(M/Rad_g(M)) = 0$. Then M is g-coatomic.

Proof. Let M be a g-semiperfect module. Let $A \le M$. By Lemma 3.10, there exists a submodule A' such that M = A + A' such that $A \cap A' \ll_g A'$. So by Theorem 3.3, M is g-coatomic.

Proposition 3.14. For any ring R, $Rad_g(R)$ is g-small in R.

Proof. Let I be an essential right ideal in R (I extle R). Assume that $R = Rad_g(R) + I$. Suppose that I is proper and let K be a maximal right ideal containing I. Then K generalized maximal right ideal of R. Hence $Rad_g(R) \leq K$, this is a contradiction. Thus for any I extle R such that $R = Rad_g(R) + I$ we have R = I. By definition $Rad_g(R) extle g$ R.

Definition 3.15. A ring R is named g-semiperfect if every finitely generated right R-module has a projective g-cover. The ring R is g-semiperfect if and only if the regular module R_R is g-semiperfect.

R is g-semiperfect if $R/Rad_{\rm g}(R)$ is semisimple and idempotents in $R/Rad_{\rm g}(R)$ can be lifted modulo $Rad_{\rm g}(R)$.

Proposition 3.16. Let R be a g-semiperfect ring with $Rad_{\rm g}(R/Rad_{\rm g}(R))=0$. Then R is left and right g-coatomic ring.

Proof. *R* is right g-coatomic ring from Theorem 3.13 and Proposition 3.14. By symmetry, *R* is also left g-coatomic ring.

Theorem 3.17: let R be a ring. Then each right ideal I of R with $Rad_g(R/I) = R/I$ is direct summand.

Proof: Let I be a right ideal of R. Assume that $Rad_{g}(R/I) = R/I$. Then all maps from R/I to singular simple right R-modules is zero. Assume that I

is an essential right ideal. Let K be a maximal right ideal containing I. Then R/K is singular simple right R-module. Since R/K is an image of R/I and $Rad_g(R/I) = R/I$, R = K. This is a contradiction. Hence I is not essential. Let L be a maximal right ideal with respect to the property $I \cap L = 0$. Then $I \oplus L$ is essential in R. Assume that $I \oplus L$ is proper. Let T be a maximal right ideal containing $I \oplus L$. Then R/T is singular simple image of R/I. This is a contradiction again. Thus $R = I \oplus L$.

The following result is well known and also easy to prove.

Theorem 3.18: The following are equivalent for a ring *R*.

- (1) *R* is semisimple artinian.
- (2) Every maximal right ideal of R is a direct summand of R_R .

Proof: It follows from [11, Lemma 2.1].

Remark 3.19: If I is an essential right ideal in the ring R, then R/I is singular right R-module. The converse is also true. In module case it takes the form: for a nonsingular module M and $N \leq M$, M/N is singular if and only if N is essential in M [2, Proposition 1.21]. Any maximal right ideal in a ring is essential right ideal or direct summand. For g-coatomic rings, this is not the case in general for maximal right ideals.

Theorem 3.20: Let *R* be a right g-coatomic ring. Then

- (1) Every simple right *R*-module is singular.
- (2) Every maximal right ideal in *R* is essential right ideal.

Proof:

- (1) Let I be a maximal right ideal in R. If $Rad_g(R/I) = R/I$, by hypothesis R = I. It is not possible. So $Rad_g(R/I) = 0$. Then there exists a nonzero homomorphism $f: R/I \rightarrow S$ where S is a singular simple right R-module. Hence f is an isomorphism and so R/I is singular right R-module.
- (2) Let I be a maximal right ideal in R. We claim that I is an essential right ideal. Assume that I is not essential right ideal and let $R = I \oplus K$ for some right ideal K. If $Rad_{\rm g}(R/I) = R/I$, by hypothesis R = I. It is not possible. Hence $Rad_{\rm g}(R/I) \neq R/I$. By (1), R/I is nonzero singular simple right R-module. By Remark 3.19, I is an essential right ideal of R. This contradicts the assumption. Therefore I is direct summand.

Examples 3.21:

(1) Consider the integers \mathbb{Z} as \mathbb{Z} -module. Then $Rad_{\mathfrak{g}}(\mathbb{Z})=0$ and for any prime integer p,

- $Rad_{g}(\mathbb{Z}/p\mathbb{Z})=0$ since $\mathbb{Z}/p\mathbb{Z}$ is singular simple \mathbb{Z} -module. Hence \mathbb{Z} is g-coatomic \mathbb{Z} -module. But the rational numbers \mathbb{Q} as \mathbb{Z} -module is not g-coatomic since every cyclic submodule of \mathbb{Q} is small and so $Rad_{g}(\mathbb{Q})=\mathbb{Q}$.
- (2) Let M be a local module with unique maximal submodule $Rad(M) = Rad_g(M)$. Then M is g-coatomic.
- (3) Let M denote the \mathbb{Z} -module \mathbb{Z} . By Lemma 3.12, M is not g-semiperfect module. Since every proper submodule is contained in an essential maximal submodule, by Lemma 3.2, M is g-coatomic.

Conflicts of interest

There is no conflict of interest.

References

[1] Anderson FW, Fuller KR. Rings and categories of modules. New York: Springer-Verlag; 1974.

- [2] Goodearl KR. Ring Theory: nonsingular rings and modules. New York: Dekker; 1976.
- [3] Gungoroglu G. Coatomic modules. Far East J Math Sci 1998: 153–62. Special Volume, Part II.
- [4] Kasch F. Modules and rings. Academic Press; 1982.
- [5] Kosan MT, Harmanci A. Ğeneralizations of coatomic modules. Cent Eur J Math 2005;3(2):273–81.
- [6] Koşar B, Nebiyev C, Pekin A. A generalization of g-supplemented modules. Miskolc Math Notes 2019;20(1): 345–52.
- [7] Lomp C. On semilocal modules and rings. Commun Algebra 1999;27(4):1921–35.
- [8] Nebiyev C, Ökten HH. Weakly g-supplemented modules. Eur J Pure Appl Math 2017;10(3):521–8.
- [9] Wisbauer R. Foundations of module and ring theory. Reading: Gordon & Breach; 1991.
- [10] Zhou Y. Generalizations of perfect, semiperfect, and semi-regular rings. Algebra Colloq 2000;7(3):305–18.
- [11] Yousif MY, Zhou Y. Semiregular, semiperfect and perfect rings relative to an ideal. Rocky Mt J Math 2002;32(4): 1651–71.
- [12] Zhou DX, Zhang XR. Small-essential submodules and morita duality. Southeast Asian Bull Math 2011;35: 1051–62.