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REVIEW

Poisson Lindley-quasi XGamma Distribution for
Count Data: Properties and Applications

Seth Borbye , Suleman Nasiru, Kingsley K. Ajongba, Sampson Wiredu

Department of Statistics and Actuarial Science, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied
Sciences, Navrongo, Ghana

Abstract

The literature contains innumerable probability distributions for modeling over-dispersed and under-dispersed
count datasets from various fields of study. However, some of these proposed distributions are inadequate due to
empirical or theoretical characteristics. Therefore, minimizing information loss during modeling has prompted the
demand to modify the classical discrete distributions. A new two-parameter count distribution is proposed by
combining Poisson and Lindley-quasi XGamma distributions via a continuous mixture technique. Some statistical
properties have been derived and studied, including factorial moments, raw moments, probability generating function,
moment generating function, characteristic function, mean, variance, dispersion index, skewness, and kurtosis. The
shape of the PMF and dispersion index suggest that the proposed distribution is right-skewed with a heavy tail, over-
dispersed, and approximately equi-dispersed. The unknown parameters of the proposed model are estimated using
both maximum likelihood and Bayesian techniques. The usefulness and flexibility of the proposed distribution are
measured using two distinctive datasets. The application results reveal that the developed distribution provides
maximum fit to the given datasets compared to the other eight standard discrete distributions. The Poisson Lindley-
quasi XGamma distribution should therefore be considered by researchers when modeling over-dispersed count data
from all fields of study.

Keywords: Discrete distribution, Over-dispersion, Poisson distribution, Moments, Mixed-Poisson distributions

1. Introduction The Poisson distribution is a widely used con-
ventional discrete distribution for modeling count
data in the literature. However, the distribution has
a unit variance-to-mean ratio property (equi-
dispersed) [1], where the variance-to-mean ratio is

fixed at one. Meanwhile, in real-life situations, count

O ver the past few decades, statistical distribu-
tions have gained significant attention from
researchers due to their crucial role in modeling
data across various fields of study, including medi-

cine, transportation, engineering, epidemiology,
public health, and agriculture, among others. Count
data from these fields, such as the number of deaths
caused by COVID-19 in Ghana, the survival times
(in weeks) of patients with acute myelogenous leu-
kemia, or the survival times of lung cancer patients,
the number of times judgment is passed in the court
are conveniently modeled well using discrete dis-
tributions and the prominent among them is the
Poisson distribution.

data often exhibit overdispersion meaning that, the
variance-to-mean ratio is greater than one. This
drawback of equal variance and mean assumption
of the Poisson distribution has made the distribution
inflexible for modeling count data with unequal
variance and mean.

Moreover, this deficiency of Poisson's variance-
mean equality has caught the attention of many
researchers to develop more plausible mixed-
Poisson distributions in the literature to address the
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issues of over-dispersion in count observations and
notable among them in the literature include; Pois-
son-Xgamma distribution [2], Poisson Chris-Jerry
distribution [3], Poisson Akash distribution [4],
Poisson Weibull distribution [5], Binomial-Discrete
Poisson-Lindley distribution [6], Poisson-quasi-
Xgamma distribution [7], Poisson-Mirra distribution
[8], Poisson Ramos-Louzada distribution [9], Poisson
quasi-Lindley distribution [10], size-biased Poisson-
Pranav distribution [11], Poisson new X-Lindley
distribution [12], Poisson 2S-Lindley distribution
[13], and the Poisson Epanechnikov-Exponential
distribution [14].

Though these mixed-Poisson distributions exist in
the literature, distributional assumptions play a
fundamental role in selecting an appropriate para-
metric model for analysis. Choosing the right
parametric model for analysis depends heavily on
the underlying distribution of the data [15]. New
forms of data with complex characteristics emerge
daily that require distributions with those complex
traits and offers the best fit with minimal loss of
information. This has created a gap in literature
necessitating the continues development of new
count distributions for modeling data. This study
introduces a new mixed-Poisson distribution called
the Poisson Lindley-quasi Xgamma (PLQXG) dis-
tribution. The new distribution is developed by
amalgamating the Poisson and Lindley-quasi-
Xgamma distributions. The motivations for this
study stems from the fact that complex observations
often arise daily from the non-deterministic activ-
ities of humans, animals, and organisms. The mo-
tivations are:

i. The Lindley Quasi-Xgamma distribution dis-
plays desirable properties for modeling a wide
range of complex continuous data compared to
the existing Lindley class of distributions such
as Lindley, Quasi-Xgamma and Xgamma
distributions.

ii. The probability mass function (PMF) of the
PLQXG distribution displays desirable prop-
erties with different degrees of kurtosis.

iii. The dispersion index (DI) of the PLQXG model
exhibits that the distribution is flexible for
modeling over-dispersed count data.

iv. Evaluate the utility of the PLQXG distribution
using both classical and Bayesian methods.

The rest of this study is organized as follows:
Section 2 details the development of the PLQOXG
distribution, Section 3 presents some statistical
properties of developed distribution, Section 4 pre-
sents the maximum likelihood (ML) estimation

technique for estimating the parameters of the
PLQXG distribution, Section 5 details the Monte
Carlo simulation results of the ML estimation
technique, Section 6 presents the classical and
Bayesian usefulness of the developed distribution,
the conclusion of the study is finally presented in
Section 7.

2. Poisson Lindley-quasi XGamma
distribution

Suppose the random variable X follows the Pois-
son distribution with probability mass function
(PMF) given by

e o

[F"(x, CK) 277

x=0,1,2,..., (1)
where the rate parameter « > 0 is a random variable

that follows the Lindley-quasi Xgamma distribution
[16] with probability density function (PDF) given by
ne ™

el (GRIGES

+n(n—1)(1+/\a)},x>O,A>0,n>0, (2)

flasam) =

where 7 is a scale parameter and A is a shape
parameter.

Proposition 1. The PMF of the Poisson Lindley-
quasi Xgamma (PLQXG) distribution is given by

P(X=x) = U
(A+n)* @ +n)"

(M)(wam_l)

2(1+1)?
(5

3

(3)

where 1 > 0 is a scale parameter, A > 0 is a shape
parameter and x =0, 1, 2, ....

Proof. The PMF of the PLQXG distribution is ob-
tained using the continuous mixtures technique
given by

PX= x:/[P’X x;o)f (o A, m )der, 4)
0

where P(X=x;«) and flo; 4, n) are the PMF of the
Poisson distribution and the PDF of the Lindley-
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quasi Xgamma distribution respectively presented
in Egs. (1) and (2). Therefore

(oenfo-2)

+n(n—1)(1—|—2a)]da.

[So]

/ naxefa(lntn)
x!(A+n)?

0

P(X=x)

After some algebraic manipulation, we obtain

P(X=x)= 1
(A+n)*@+n)""

(A +n)n?
2(1+7)*

An(n—1)
1+17

AA+n)+n(n-1)

(x+1)(x+2)

+ (x—l)].

Further simplification yields the PMF of the
PLQXG distribution as

- 7
A+n)? 1 +n)

7(x+1)(x+2)
2(1+17)?

Alx+1)
i)

P(X

(A+n) (A—I—

+n(n—1)(l+

Fig. 1 displays the PMF plot of the PLQXG dis-
tribution for some selected parameter values. It is
observed from Fig. 1 that the PMF of the developed
distribution is right-skewed.

p
0.02 0.04
T R N |

0.00

0.08

P
000 0.4
L 1 1 1 1 1
—
e
—
=
=

p(x)

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2025;6:80—95

3. Statistical properties

This section outlines some statistical properties
of the PLQXG distribution such as factorial mo-
ments, ordinary moments, probability generating
function, moment generating function and charac-
teristic function.

3.1. Moments
3.1.1. Factorial moments

Proposition 2. The 7" factorial moment about the
origin of the PLQXG distribution is given by
i :(

WK“’”(”M?ﬂ)

+(n—1)(n+x(r+1))],r=1,2,3,....

, '(r+1)

()

Proof. By definition, the factorial moments of the
PLQXG distribution is obtain by

[oe]

,u,ir] =E[EX"|A,n)] = /0oo [Zxra;f

x=0

—o

]f(‘% A7 n)d“;

where Y% (¥€C° = o js the factorial moment of the
Poisson distribution. Thus

= [ e

Therefore

1

T T
0 10 20 30 40 50
x

Fig. 1. PMF plots of the PLQXG distribution.
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[ (o)

My = o——= A+ A+
H/O Gt ) 7
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n(n—1)(1+ Aa) } da.

Further
, 1
o= G0+ - 1))
+ (A;") T(r+3)+ Ay —1)(r+1)] .
Hence,

, _ D(r+1) (r+1)(r+2)
MM_(A""’])Z?’]" {(A+7])(X+—2 )

+(n—1)(7l+/1(r+1))}

The first four factorial moments of the PLQXG
distribution are given as;

iy = ﬁ[(ﬂn)(ﬁﬁ) T+ (—1)(n+22),
, 2

Mg = W[(Hn)(%%) (n—1)(n+32)],
) 6

K = W[(Hn)(lﬂﬂ) (n—1)(n+42)]
and

/ _L[(,H Y(A+15) + (n—1)(n+52)]
Hig = (A+n)2n4 n n n .

3.1.2. Ordinary moments

Using the general relationship between factorial
moments about the origin and ordinary moments,
the first two ordinary moments of the PLQXG dis-
tribution are given as;

ua—mﬂwmn)ms) (n—1)(n+20)
and

1 A+

#2_(/14-77)217 n (n(2+3) +2(1+6))

+UT_1(n(n +22) +2(n+33) |.

The dispersion index (DI) of the PLQXG distri-
bution is defined as

_ Var(X)
DI = o (6)

Hence, the DI of the PLQXG distribution is given
by

A
Pl G G+ + -+ 23 @)
where

A= “;”( (A+3)+2(3+6))+ nl( (n+22)+2(n+32))

1

NE (n—1)(n+22)]".

s(A+n)(2+3)+

Table 1 displays the first four ordinary moments,
coefficient of variation (CV) and DI of the PLQXG
distribution for the following set of parameter
values :A=05and n = 0.6, II: A =2 and n = 0.5, III:
A =09 and n =5, IV: 2 = 100 and n = 200. It is
observed from Table 1 that the PLQXG distribution
is flexible for modeling over-dispersed and
approximately equi-dispersed count data.

Fig. 2 presents the plot of the DI of the PLOXG
distribution for A € [0.5, 20] and € [0.01, 40]. It is

Table 1. First four ordinary moments, CV and DI of the PLQXG
distribution.

u, I I III v

I 4.4215 3.2800 0.2885 0.0061
wh 33.3930 24.7200 0.4528 0.0062
wh 332.6125 265.3600 0.9176 0.0064
) 4074.5317 3628.5600 2.4010 0.0067
cv 13.8435 13.9616 0.3696 0.0062
DI 3.1310 4.2566 1.2812 1.0057

20

Fig. 2. DI plot of the PLQXG distribution.
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observed from Fig. 2 that the PLQXG distribution
can be over-dispersed.

Fig. 3 presents the plots of the coefficient of
skewness (CS) and coefficient of kurtosis (CK) of the  Therefore
PLQXG distribution for A € [0.5, 20] and n € [0.01,
40]. It is observed from Fig. 3 that the PLQXG dis- o aly—stl) -
tribution can be right-skewed and leptokurtic. G(s) = / ne " 2 KA +) (/1 +“27) )

o (A+m)

G(s) = /Oooe“(snf(a;/l,n)da.

3.2. Probability generating function
+n(n —1)(1+Aa)]da.
Propositions 3. The probability generating function

G(s) of the PLQXG distribution is gi b
(8) of the PLQ ISHHDUHON 1 given By After some algebraic manipulation, we obtain

Gls) = AAFD Tt D)0 s = 1"+ (A4 m)n*nln —(n —s +1)
(n—s+1)>° :

Proof. By definition )
Adtm)+ntn=1) (A+mn

G(s) = res
© S sfafe ©) n—s+1 2(77_S+1)3 ©
x=0 7(7’ . + 1>2 .
where Y% €€ = ¢*-1) j5 the probability gener-
ating function of the Poisson distribution. Thus Hence,
(a)cs (b) CK

Fig. 3. CS and CK plots of the PLQXG distribution.
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G(s) =

(A +m +nln—D)(n—s =1+ (A+ )+ dn(n = (n—s+1)

(n—s+1)°

3.3. Moment generating function

Proposition 4. The moment generating function (mgf)
of the PLQXG distribution if it may exist is given as

(204 m) + 00 = D)) —¢ ~ 1’ + A+ 00’ +2n(n —D(n - +1)

MX(t) = (77 I 1)3

Proof. By definition

Mx(t) = E[E(eX|3,m)] = /w[ie”
P

o

] s A,m)da,

where Y3 (€€e” = ¢4~ jg the moment generating
function (mgf) of the Poisson distribution. Thus

Mx(t):/ eo‘(effl)f(a;l,n)da.

0

Therefore

Mx(t) = /j%ﬂe;l) K/H—n) (A—l—a?Z) +n(n—1)(1+2Aa) |de.

After some algebraic manipulation

AA+n) +n(n—1)n—¢ =1+ A+ +n—1)(n—e +1)
(n—e +1)° '

Mx(t) =

3.4. Characteristic function

Proposition 5. The characteristic function Q(#) of the
PLQXG distribution is given by

Q(t) = (77 it 1+ 1)3

Proof. By definition

oo

Q(t) = E[E(e™ |1, m)] = /0 Iy

x=0

eitxaxe—a

]f(a; A, m)de,

—a it . . . .
where Y% (€@e — px(¢"-1) j5 the characteristic function

of the Poisson distribution. Thus

Q(t) = / " eV (a; 2, m)da.

0

Therefore

MX(t):/O WK%+7))<A+22?72>+n(n—1)(1+xa) da.

After some algebraic manipulation

AA+n) +nn—1)(n—€" —1)* + A+ n)n* + n(n—1)(n —€" +1)
(n—eit +1)° ’

Qt) =

A0+ +nn—1)(n—e" 1>+ A+ + an(n —1)(n — e +1) i VT

85

(10)
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4. Parameter estimation

In this section, the ML estimation technique is
employed for estimating the parameters of the
PLQXG distribution. Let X, X5, X3, ..., X,, be a
random sample of size n obtained from the PLQXG
distribution and x;, x5, x3, ..., x,, be the observed
values of X;, X5, X3, ..., X,,. Then, the log-likelihood
function of the PLQXG distribution is given by

n

2(A,m;x) = nlog(n) —2nlog(A+n) — » (x;+1)log(1+n)
i=1
Ax; + 1))
B Y I e s
+n(n )< + 17

Taking the partial derivatives of the log-likelihood
function presented in equation (11) with respect to A
and 7 produce the score functions of the PLQXG
distribution denoted as

_00(A,m;x)
=" (12)
and

04, m;x)

The ML estimates of the PLQXG distribution are
obtained by setting S, = S, = 0 and solving simul-
taneously. Since Egs. (12) and (13) are not in closed
form, the ML estimates of the PLQXG distribution
are obtain using numerical methods in R-software
[17].

5. Simulation study

In this section, the performance of the ML estimator
of the parameters of the PLQXG distribution is
examined via Monte Carlo simulation experiments.
The experiments were carried out using different
values of the parameters. That is (4,7)=(0.6,0.2),
(4,1)=(0.7,0.5) and (4,17)=(0.8,0.8). The simulations
were replicated 5000 times for each sample size
n = 30, 100, 200, 300, 400 and 500. The sample sizes
were chosen in a manner that enables us to examine
the performance of the estimator of the parameters
in small, moderate, and large samples. The random
samples were generated using the inversion method
and the performance of the estimator is examined

using the average estimate (AE), absolute bias (AB),
relative absolute bias (RAB), root mean square error
(RMSE), and coverage probability (CP). The AB,
RAB, RMSE and CP are respectively given as

Mz

1
N

:l

n*(xi +1)(x +2)
(11)
1 N6 —6
Rap = >
>ia (6 — 0)?
RMSE = N
and

CP =P(L(X;0) < 6 < U(X;0)).

From Table 2, the AEs of the parameters approach
the true value as the sample size increases. This is
an indication that the estimator is asymptotically
unbiased. The ABs, RABs and RMSEs of the pa-
rameters decrease as the sample size increases.
Hence, the maximum likelihood estimator of the
parameter is consistent. The 95 % confidence in-
terval CPs are quite high and approaches the
nominal value of 0.95 as the sample size increases. It
can therefore be concluded that the maximum
likelihood estimator performs well in estimating the
parameters of the PLQXG distribution.

6. Applications

In the section, we demonstrate the classical and
Bayesian Applications of the PLQXG distribution
using two distinctive datasets.

6.1. Classical applications

The classical usefulness of the PLQXG distribution
is demonstrated and compared with the Poisson (P)
distribution, Piosson-Mirra (PMi) distribution [8],
Poisson-quasi-Xgamma (PQXG) distribution [7],
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Table 2. Monte Carlo simulation results for PLQXG distribution.
I:(4, 71)=(0.6,0.2)

Parameter n AE AB RAB RMSE CP
30 0.6993 0.1910 03183 0.8489  0.90167
100 0.6047 0.0605 0.1009 0.0792  0.93100

A 200 0.6023 0.0423 0.0705 0.0535 0.93600
300 0.6009 0.0337 0.0562 0.0425 0.94433
400 0.6017 0.0301 0.0501 0.0380  0.94300
500 0.6015 0.0262 0.0437 0.0332 0.95067
30 0.2021 0.0233 0.1166 0.0312  0.94033
100 0.2011 0.0121 0.0603 0.0153  0.94700

n 200 0.2003 0.0085 0.0424 0.0107 0.94467
300 0.2003 0.0067 0.0337 0.0085 0.95600
400 0.2003 0.0059 0.0296 0.0074  0.95100
500 0.2001 0.0052 0.0260 0.0066 0.94733
II:(%, 7)=(0.7,0.5)

Parameter n AE AB RAB RMSE CP
30 0.9372 0.4725 0.6750 1.3844 0.9063
100 0.7428 0.1755 0.2508 0.4927 0.9273

A 200 0.7069 0.1057 0.1509 0.1378  0.9377
300 0.7030 0.0843 0.1204 0.1082  0.9437
400 0.7039 0.0711 0.1015 0.0901 0.9563
500 0.7004 0.0649 0.0927 0.0820 0.9363
30 05133 0.0842 0.1683 0.1103  0.9457
100 0.5027 0.0444 0.0889 0.0569  0.9480

n 200 05026 0.0308 0.0615 0.0387 0.9503
300 05022 0.0248 0.0496 0.0312 0.9523
400 05011 0.0210 0.0420 0.0265 0.9543
500 05015 0.0189 0.0377 0.0239  0.9523
III: (A, 7)=(0.7,0.5)

Parameter n AE AB RAB RMSE CP
30 12720 1.0104 1.2630 2.0769  0.9553
100 1.0271 05406 0.6758 1.3719  0.9410

A 200 0.8706 0.2936 0.3670 0.7489  0.9470
300 0.8344 0.2169 0.2711 0.4885  0.9530
400 0.8159 0.1798 0.2248 0.3281  0.9470
500 0.8136 0.1607 0.2009 0.2078  0.9493
30 0.8349 0.1778 02222 0.2234  0.9570
100 0.8058 0.1030 0.1288 0.1328  0.9517

n 200 0.8046 0.0717 0.0896 0.0933  0.9490
300 0.8023 0.0569 0.0712 0.0725 0.9563
400 0.8041 0.0490 0.0613 0.0621  0.9603
500 0.8012 0.0446 0.0558 0.0562  0.9480

Poisson Ram Awadh (PRA) distribution [18], Pois-
son Prakaamy (PP) distribution [19], discrete inver-
ted Topp-Leone (DITL) distribution [20], Discrete
inverse Rayleigh (DIR) distribution [21] and Poisson
XRani (PXR) distribution [22] based on their log-
likelihood (R), Akaike Information Criterion (AIC),
Corrected Akaike Information Criterion (AICc) and
Bayesian Information Criterion (BIC).

Table 3. Descriptive statistics of dataset 1.

6.1.1. Dataset I: COVID-19 of Australia

The first dataset is a 32 days daily new cases of
COVID-19 from Australia recorded from 3rd
September to October 4, 2020, studied by Gillariose
et al. [23], Almetwally and Ibrahim [24]. The data
are: 6,15,59,11,5,9,8,11,7,9,6,7,6,0,8,8,5,7,5, 2,
35,2,8,1,23,7,4,2,2,3. Table 3 displays the mean,
standard deviation (SD), DI, CS and excess kurtosis
of the first dataset, it is observed that the dataset is
over-dispersed, right-skewed and leptokurtic.
Table 4 presents the ML estimates with their
accompanying standard errors in brackets and
model selection criteria for the fitted models. It is
observed that the PLQXG distribution produce the
best fit with the highest log-likelihood value and the
least AIC, AICc and BIC values.

Fig. 4 presents the PMF plots of empirical and fitted
models for dataset I. It is observed from Fig. 4 that
the PLQXG distribution performs better than the
other eight computing models since it closely
mimics the empirical PMF.

6.1.2. Dataset II: survival times

The second dataset is the survival times (in weeks)
for 33 patients suffering from acute myelogenous
leukemia. The data is studied by Afify et al. [25] and
the data are: 3, 3, 30, 3, 8, 4, 2, 4, 4, 65, 100, 108, 121, 4,
134, 16, 39, 26, 22, 1, 143, 56, 1, 5, 65, 17, 7, 16, 56, 65,
22, 43, 156. Table 5 displays the mean, SD, DI, CS
and excess kurtosis of the second dataset, it is
observed that the dataset is over-dispersed, right-
skewed and platykurtic.

Table 6 presents the ML estimates with their
accompanying standard errors in brackets and
model selection criteria for the fitted models. It is
observed that the PLQXG distribution produce the
best fit with the highest log-likelihood value and the
least AIC, AICc and BIC values.

Fig. 5 displays the PMF plots of the empirical and
fitted models for dataset II. It is seen from Fig. 5 that
the PLQXG distribution provides the maximum fit
since the PMF of the PLQXG distribution closely
mimics the empirical PMF.

6.2. Bayesian applications

This section presents the Bayesian application of the
PLQXG distribution. In Bayesian estimation, the
parameters of the distribution are assumed to be
random variables that follow a given distribution

Minimum Maximum Median Mean

SD DI CS Kurtosis

0.0000 59.0000 6.0000 7.3750

9.9895 13.5309 4.2743 19.3338
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Table 4. ML estimates and model selection criteria for dataset 1.

Distribution ML Estimates (SE) Q AIC AICc BIC
PLOXG A = 25.9750 (59.5988) —97.8900 199.7738 200.1876 202.7053
n = 0.1412 (0.0286)
Poisson A = 7.3750 (0.4801) —164.9200 331.8332 331.9665 333.2989
PMi a = 1.5017 (3.6764) —98.9200 201.8398 202.2536 204.7713
6 = 0.0663 (0.0663)
PQXG 6 = 0.1424 (0.0314) —97.9300 199.8602 200.2740 202.7916
o = 38.7782 (109.8474)
PRA f = 0.8146 (0.0789) —107.0300 216.0687 216.2021 217.5345
PP 6 = 0.8137 (0.0787) —107.0100 216.0211 216.1544 217.4868
DITL 0 = 0.7562(0.1338) —106.3100 214.6111 214.7445 216.0769
DIR o = 10.9096(2.0231) —102.6100 207.2138 207.3471 208.6795
PXR A = 0.6761(0.0674) —104.2400 210.4793 210.6127 211.9451
PLQXG Poisson PMi
< | < < |
o o o
i emp emp i emp
2 o — PLQXG| 2 o — Poisson| T o — Pmi
g S A 2 S
- 1l |||||.‘ o ..|||‘|‘ s ]
S T T T T T 1 S TT T T T T T T T 1 S T T T T T T T
0 3 4 5 6 7 8 9 01 2 3 4 56 7 8 9 01 2 3 4 56 7 8 9
X X X
PQXG PRA PP
< _| < =
o o o
i emp emp i emp
2 o — PQXG| 2 o — PRA 2 o — PP
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ST s ol Lt inll
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Fig. 4. PMF plots of the empirical and fitted models for dataset 1.
Table 5. Descriptive statistics of dataset II.
Minimum Maximum Median Mean SD DI CS Kurtosis
1.0000 156.0000 22.0000 40.8800 46.7030 53.3571 1.1120 —0.0642
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Table 6. ML estimates and model selection criteria for dataset II.

Distribution ML Estimates (SE) Q AIC AICc BIC
PLQXG A = 1.2521 (0.4950) —152.9400 309.8700 310.2700 312.8630
n = 0.0424 (0.0077)
Poisson A = 40.8790 (1.1130) —872.9600 1747.9200 1748.0500 1749.4200
PMi a = 0.0010 (0.0014) —155.3500 314.7080 315.1080 317.7010
6 = 0.0421 (0.0113)
PQXG 6 = 0.0362 (0.0084) —154.9800 313.9690 314.3690 316.9620
a = 3.1656 (2.6364)
PRA 6 = 0.1468 (0.0112) —231.7000 465.4011 465.5302 466.8977
PP 6 = 0.1468 (0.0112) —231.6900 465.3879 465.5169 466.8844
DITL 6 = 0.4204 (0.0732) —163.27 328.5455 328.6745 330.042
DIR a = 26.3444 (4.8211) —193.51 389.0106 389.1397 390.5071
PXR A = 0.1223 (0.0101) —216.700 435.3995 435.5286 436.8961
PLQXG Poisson PMi
< _| o _| ©
o o o
_ emp _ emp emp
X <« — PLQXG X < —— Poisson Z o« — Pmi
o o o o o o
= : L0 = : = R
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Fig. 5. PMF plots of the empirical and fitted models for dataset II.
Table 7. Posterior summaries of the PLQXG distribution for dataset L.
Parameter Estimates SD SE 2.50 % 50 % 97.50 % R Neff
n 0.1753 0.0806 0.0006 0.0989 0.1527 0.4378 1.001 36000
A 9.2355 7.6204 0.0419 0.4084 7.3351 29.3479 1.001 36000




90

Table 8. Stationarity and halfwidth test for dataset 1.
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Parameter Stationarity Test p-value Halfwidth Test Halfwidth
Chain 1 n Pass 0.251 Pass 0.0019

A Pass 0.772 Pass 0.1448
Chain 2 n Pass 0.3800 Pass 0.0019

A Pass 0.2100 Pass 0.1416
Chain 3 n Pass 0.9640 Pass 0.0020

A Pass 0.5810 Pass 0.1406

called the prior distribution. This study uses the
gamma distribution as the prior distribution for the
parameters of the PLQXG distribution given as

a1
77()‘) = %Aulle_hll, a1>0,01>0,A>0
1
and
b2
77(77) = ﬁ’larle—bw, a,>0,b,>0,7>0
2

with hyper-parameter values a; = a, = b; = b, = 0.1.
The study uses the R2jags package [26] in R-soft-
ware to perform the analysis using three parallel
chains with 900,000 iterations, 300,000 burn-in, and
50 thinning intervals each.

06-
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6.2.1. Dataset I COVID-19 of Australia

The Bayesian estimation of parameters of the
PLOXG distribution is demonstrated for dataset I.
Table 7 presents the Bayesian estimate and other
descriptives of the posterior parameters of the
PLQXG distribution for dataset I. It is observedfrom
Table 7 that potential reduction scale factor (R ) is
close to 1 and the effective sample size (Neff) is high
indicating the convergence of the MCMC algorithm.
Table 8 displays the stationarity and halfwidth tests
for the posterior parameters of the PLQXG distri-
bution for the dataset I. The results from Table 8
demonstrate that the process is from a stationary
distribution.

The convergence of the chains is investigated using
time series plots, running mean plots, and auto-
correlation plots. The time series plot in Fig. 6 sug-
gest a stationary pattern, hence convergence of the
chains.

Chain

7500 10000 12500 1

— 3

10000 12500

7500

Fig. 6. Time series plots of the posterior parameters for dataset I
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Fig. 7. Running mean plots of the posterior parameters for dataset 1.

The running mean plot in Fig. 7 indicates that the
chains have converged after 2500 iterations.

The swift decay of the autocorrelation plots in Fig. 8
indicates a good mixing of the chains and the
convergence of the MCMC algorithm.

6.2.2. Dataset II: survival times

The Bayesian estimation of parameters of the
PLQXG distribution is demonstrated for dataset II.
Table 9 presents the Bayesian estimates and other
descriptives of the posterior parameters of the
PLQXG distribution for dataset II. It is observed
from Table 9 that potential reduction scale factor
(R) is approximately 1 and the effective sample size
(Neff) is high indicating the convergence of the
MCMC algorithm.

Table 10 displays the stationarity and halfwidth test
for the posterior parameters of the PLQXG distri-
bution for dataset II. The results from Table 10
demonstrate that the process is from a stationary
distribution.

The time series plot in Fig. 9 suggest a stationary
pattern, hence convergence of the chains for dataset
IL

The running mean plot in Fig. 10 indicates that the
chains have converged after 10,000 iterations.

The sharp decay of the autocorrelation plots in
Fig. 11 indicates a good mixing of the chains and the
convergence of the MCMC algorithm.

7. Conclusions

A new two-parameter mixed-Poisson distribution is
developed in this study by compounding the Pois-
son distribution and the Lindley Quasi-Xgamma
distribution. Some statistical properties of the
developed distribution were derived. The PMF and
dispersion index of the developed distribution
revealed that the PLQXG distribution is flexible for
modeling right-skewed, over-dispersed, and
approximately equi-dispersed count datasets. Both
maximum likelihood and Bayesian estimation
techniques were employed to estimate the param-
eters of the PLQXG distribution and a simulation
study was carried out to measure the performance
of the maximum likelihood estimation technique.
The study demonstrated the usefulness of the
developed distribution using two real datasets. The
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Fig. 8. Autocorrelation plots of the posterior parameters for dataset L
Table 9. Posterior summaries of the PLQXG distribution for dataset IL.
Parameter Estimates SD SE 2.50 % 50 % 97.50 % R Neff
n 0.03950 0.0082 4387 x 107° 0.0240 0.0394 0.0561 1.001 36000
A 2.3154 2.6741 1.796 x 1072 0.7771 1.5614 9.0111 1.001 36000
Table 10. Stationarity and halfwidth test for dataset II.
Parameter Stationarity Test p-value Halfwidth Test Halfwidth
Chain 1 n Pass 0.8450 Pass 0.0002
A Pass 0.9360 Pass 0.0703
Chain 2 n Pass 0.4030 Pass 0.0002
A Pass 0.2170 Pass 0.0603
Chain 3 n Pass 0.1420 Pass 0.0001
A Pass 0.4610 Pass 0.0509

PLQXG distribution was compared with eight
competing models and it was revealed that the
developed distribution provides a better fit than the
compared models with the highest log-likelihood

values and the least AIC, AICc, and BIC values. The
PLQXG distribution should be considered as an
alternative model when modeling over-dispersed
count datasets. The proposed model has a limitation
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Fig. 9. Time series plots of the posterior parameters for dataset II.
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Fig. 11. Autocorrelation plots of the posterior parameters for dataset II.

of not being flexible for handling left-skewed,
symmetric and under-dispersed count data. Thus,
PLQXG distribution needs considerable extension
and studies to render it flexible for modeling left-
skewed, symmetric, bimodal and under-dispersed
count data which we shall consider in our future
research.
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