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REVIEW

Chemically Responsive Hydrogels, Properties,
Pharmaceuticals, and Agricultural Applications:
A Review
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2 Emirates School Establishment, Dubai, 3962, United Arab Emirates
b Department of Land, Water, and Environment, The University of Jordan, Amman, Jordan
¢ Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila 66110, Jordan

Abstract

A review of the literature on chemically responsive hydrogels about the selection of selectivity based on classification,
properties, and application is presented in this article. Chemically responsive hydrogels are a type of hydrogel that
undergo changes in their properties in response to specific stimuli. These hydrogels have attracted significant attention
due to their potential applications in various fields, including pharmaceuticals and agriculture. Chemically crosslinked
hydrogels are synthesized by covalent crosslinking of end-functionalized macromeres. Currently, a great deal of research
is being conducted on hydrogel networks, also known as smart networks or hungry networks. This is owing to their
potential use in fields like biomedicine, pharmaceuticals, biotechnology, biosensors, agriculture, oil recovery, and cos-
metics. When they sense small changes in their surroundings, smart hydrogels display significant physiochemical
changes. Despite this, changes such as these are reversible; therefore, the hydrogels can return to their original state after
they have caused a reaction once the trigger has been removed.

Keywords: Hydrogels, Smart hydrogels, Chemical responsive hydrogels, Pharmaceutical

1. Introduction nature, hydrogels have existed since the beginning
of time. Nature abounds with water-swollen motifs,
such as bacterial biofilms, and plant structures, such
as the extracellular matrix consists of these compo-
nents. Throughout human history, hydrogels served
a variety of purposes, but they are now being used
for biomedical applications. At the beginning of
history, hydrogels were used for medical applica-
tions. Other materials, such as gelatine and agar,
have also been utilized in the past. Researchers
studied early versions of the newly synthesized
methacrylic polymers [5].

Hydrogel technology has limitations in terms of
properties like high crystallinity, insolubility, and

effectively as possible, or interacting with live tis- biodegradability. In addition, it has unfavorable

sues, hydrogels must exhibit properties of revers- ~ Mmechanical and thermal properties, unreacted

ibility, “stability, and biocompatibility [1,3,4]. In monomers, and the use of toxic crosslinkers [6—9].
In other words, by using natural or synthetic

H ydrogels are three-dimensional polymer net-
works made from natural or synthetic mate-
rials that possess a high amount of water content
and possess flexibility [1] as shown in Fig. 1. They
are characterized by a rubbery consistency and the
ability to absorb a vast amount of water, much like
living tissues. As such, they can be used for a wide
range of applications. The solid portion of the
hydrogel is a network of crosslinked polymer
chains, a 3D network usually referred to as a mesh
as shown in Fig. 1.

For treating or replacing tissues and organs as
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Fig. 1. Structural chemistry of a hydrogel [2].

polymers with specific properties such as biodeg-
radation, solubility, crystallinity, and biological ac-
tivity, one is less likely to be able to develop these
properties by developing novel methods [5,10].
Depending on their materials, techniques, and
applications, hydrogels can be classified in a variety
of ways. Chemical and physical polymerization are

the standard techniques for inducing crosslinking
[11,12]. In Table 1, a few materials, techniques, and
applications are listed.

In this review, we discuss the use of chemically
responsive hydrogels in a variety of fields, including
pharmaceuticals and agriculture. In addition to
microfluidic control, biomimetics, biosensors/bio

Table 1. Materials, techniques, and applications used in the preparation of hydrogels.

Material The technique (s)

Application (s) Reference (s)

Polyethylene glycol (PEG)
Photo-polymerization

Free-radical polymerization
Free-radical polymerization

Grafting
Arabic Gum
Sterculia gum
Hydroxypropyl methylcellulose (HPMC)
Hydroxyethyl cellulose (HEC)
Chitosan

Radiation-induced
Radiation

Photo-polymerization
Photo-polymerization

Carboxymethyl cellulose (CMC) Freeze-thaw

Chemical cross-linking

Photo-induced radical polymerization

Chemical cross-linking

Hydroxypropyl cellulose (HPC)

Polyacryl amide
Polyvinyl alcohol (PVA)

Starch

Chemical cross-linking
Chemical cross-linking
Copolymerization
Chemical cross-linking
Grafting

Chemical cross-linking
Chemical cross-linking
Chemical cross-linking
Photocrosslinking
Freeze-thaw
Radiation-induced
Freeze-thaw
Freeze-thaw

Radical polymerization

Drug delivery [11]
Implants [13]
Scaffolds [14]
Self-healing [15]
Bacteriostasis [16]
Self-healing hydrogel [17]
Biomedical [18]
Scaffolds [19]
Wound dressing [20]
Biomedical [21]
Tissue adhesive [22]
Enzyme immobilization [23]
Drug carrier agent [24]
Hydrogel beads [25]
Dye removal [26]
Anti-counterfeiting [27]
Metal ions removal [28,29]
Controlled release [30]
Drug delivery [31]
Thermoresponsive hydrogel [32]
Biomedical [33]
Biomedical [34]
Agriculture [35]
Drug release [36]
Regenerative medicines [37]
Wound dressing [38]
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actuators, bio separation, and artificial skin, smart
hydrogels can be used to create a range of applica-
tions. Among its features are reversible swelling and
deswelling, high ionic conductivity, high perme-
ability, innovative mechanical properties, and high
sorption capability.

2. Classifications of hydrogels

Different types of hydrogels can be categorized
into different types according to their physical
characteristics, swelling characteristics, preparation
method, origin, ionic charge, sources, and rate of
degradation. This is in addition to their observed
crosslinking nature [39, 40]. Figure 2 illustrates some
of the more prominent hydrogels that attract sci-
entists. It is beyond the scope of this article to
describe the classification details of each type of
hydrogel.

3. Chemically responsive hydrogels

Hydrogels are three-dimensional networks of
hydrophilic polymers that can absorb and retain
large amounts of water due to physical or chemical
crosslinking of individual polymer chains [41]. They
are versatile materials with diverse applications in
biomedicine, drug delivery, tissue engineering, and
environmental engineering. Hydrogels that respond
to oxidants are particularly interesting because they
can undergo reversible redox reactions in response

to changes in the oxidative environment. These
hydrogels are designed to contain redox-active
groups, such as thiol, disulfide, or selenocysteine,
that can undergo reversible oxidation and reduction
reactions in response to oxidative stress [42]. The
redox-responsive hydrogels can be used to encap-
sulate and release drugs in response to oxidant
stimuli or for targeted delivery of therapeutics to
sites of oxidative stress. The development of new
synthetic methods has revolutionized the field of
biomaterials and expanded the applications of
hydrogels, including redox-responsive hydrogels, in
various fields of science and engineering [43].

3.1. Glucose-responsive hydrogels
- Hydrogels with glucose-responsive properties

Diabetes treatment should be facilitated by the
development of an insulin delivery hydrogel system
that triggers insulin release based on glucose
sensing. Insulin and glucose oxidase mixtures that
contain glucose-sensitive insulin are attractive ma-
terials [44]. Researchers Podual and Brahim et al.
[45,46] respectively, developed a kind of material
known as “bio-smart”. In this class, molecular
recognition is combined with actuation, consisting
of two types of materials: 2-hydroxyethyl methac-
rylate (HEMA) and poly methacrylate (PMA). Cat-
alytic hydrogels swell by releasing insulin when

Cross linking
a.Physically crosslinked

Degradability
a.Biodegradable
b.Non-biodegradable

Physical properties

a.Smart hydrogels
b.Conventional hydrogels

b.Chemically crosslinked

o~

Response )

a.Biochemical
responsive
i. Antigens responsive
ii.Enzymes responsive
iii.Ligands responsive

b.Physically responsive
i. Light
ii.Electric field
iii.Magnetic field
iv.Temperature
v.Pressure

c.Chemically responsive
i. pH responsive
ii.Glucose responsive

e iii.Oxidant responsive

.

Hydrogels

Preparation
a.Copolymeric
hydrogels
b.Homopolymetic
hydrogels
c.Interpenetrating
network

®

lonic charge
a.Cationic hydrogels
b.Anionic hydrogels
c.Nonionic hydrogels

Source
a.Natural

b.Synthetic
c.Hybrid

Fig. 2. Physicochemical classification of hydrogels [5].
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glucose is converted to gluconic acid by an enzyme
called glucose oxidase. This results in a reduction in
the pH of the system. By covalently incorporating
glucose oxidase into the hydrogel, it can reduce
rapid diffusion out of the system and enhance
controlled insulin delivery [5,44].

- Concanavalin A based hydrogels

Canavalia ensiform is, a plant that creates glyco-
proteins in the form of carbohydrates, produces a
hydrogel based on concanavalin A (Con-A). In
comparison to the presence of glucose-insulin con-
jugates, free glucose molecules have a stronger
binding affinity for Con A [41]. Therefore, when
glucose is unbound in the skin, glycosylated insulin
is desorbed. Glucose levels determine how quickly
glucose-insulin conjugates are released. The free
glucose molecules engage in exchange competition
with the glucose attached to the polymer as they
diffuse into the hydrogel. As a result, the concen-
trations of Con A and glucose-containing polymers
can be changed to alter how hydrogels react to
different levels of free glucose. Glucose-responsive
hydrogels can also be created without the aid of Con
A. It is appropriate to use polymers with phenyl
boronic groups, such as poly (3-(acrylamide)-phenyl
boronic acid) and its copolymers.

- Hydrogels based on glucose oxidase

Concanavalin-A has been tested as a crosslinker
for the formulation of glucose-responsive hydrogels;
phenylboronic acid and glucose dehydrogenase
have been tested as biosensors [47]. As glucose

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2023;2:101—110

oxidase oxidizes glucose into gluconic acid, it is the
enzyme most used to detect glucose levels, since it
changes the pH of the system, one that can be used
to control insulin delivery with pH-sensitive
hydrogels. When the pH of poly (dieth-
ylaminoethylmethacrylate) PDEAEM-based hydro-
gels is lowered, ionization takes place, causing
swelling and the release of insulin. By using grafted
porous membrane filters and immobilized glucose
oxidase, glucose-sensitive hydraulic flow controllers
may be developed based on polyanions such as
(methacrylic acid-co-butyl methacrylate) [48].
Consequently, the chain expands at normal pH. In
turn, as the glucose oxidase converts it into gluconic
acid, the pH decreases, and the carboxyl groups are
protonated, which gives rise to chain collapse
[47,48].

- A hydrogel based on PVA

The formation of complexes in PVA hydrogels
occurs through the formation of phenyl borate and
hydroxyl groups, whereas polyol polymers compete
for their crosslinking owing to their glycolytic mono
functionality (one binding site) [49]. This causes the
hydrogel to swell and insulin release to increase as
glucose concentration increases and crosslinking
decreases as shown in Fig. 3.

3.2. Hydrogels with pH-responsive properties

A polymeric hydrogel with ionic pendant groups
is capable of accepting or donating hydrogels [50],
which have dramatic changes in ionization degree,
also called pK, or pK,. Electrostatic repellence

® Free glucose

Polymer bound glucose

(:t) con-A

-+

—_—

glucose

<«

Fig. 3. The sol—gel transition of glucose-sensitive hydrogel [5].
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between ionized groups produces a sudden volume
transition at a junction that is caused by ionized
pendants that rapidly change their net charges. This
results in an increase in force during osmotic
swelling [51]. Hydrogels with different pH re-
sponses can be either anionic or cationic. As a result
of the deprotonation of pendant molecules such as
carboxylic acid or sulfonic acid in an environment
with an elevated pH, the pendant molecules begin
to ionize. This causes swelling of the hydrogel
[52—54]. As an alternative, cationic hydrogels
contain pendant groups, like amine groups, at
which ionization occurs below the base of pKy,. Due
to the enhanced electrostatic repulsion, causes
swelling occurs [52,55].

- Properties of pH-responsive hydrogels

Anionic hydrogel swelling is influenced by a few
major factors, according to a study by Gupta et al.
[52], published in 2002. The degree of ionization of a
polymer will be determined first by the concentra-
tion of the groups, their crosslink density, their ionic
charge, their pKa and pKb, their hydrophilicity, and
their hydrophobicity. Two other factors to consider
are the properties of the swelling medium, such as
its pH, ionic strength, counterions, and its poly
(vinylsulfonic acid) (PVSA) value [56—58]. Based on
a pH variation, researchers observed the ionization
of polydiethylamino ethyl methacrylate
(PDEAEMA) and its copolymer in Fig. 4.

An article published recently by Abbasi et al. [59]
discussed the porous silica as drug carrier for
controlled delivery of sulfasalazine to studied the
effect of alginate-N, O-Carboxymethyl chitosan gel

coating into the drug release rate in a simulated
intestinal media. The media was kept at 37 °C and
pH 6.8 and 7.4 and subjected to continuous ultra-
sonic waves to simulate body fluid flow. The
released results were studied in simulated gastric
and intestinal media and show that no burst release
occurred in both coated and functionalized samples
and the swelling degree of coats at basic and neutral
media decreased by the presence of alginate in the
network. Moreover, concluded that the coat with a
50:50 ratio can release the colon drugs in 24 h at a
suitable rate. It is also envisioned that functionali-
zation was a factor boosting drug uptake, however,
the release rate was lower in the functionalized
samples.

Any factor that affects electrostatic repulsion, such
as pH, ionic strength, or counterions, will affect
swelling. This phenomenon is illustrated in Fig. 5.
Two phases of hydrogel can be seen in this figure: a
gel-like phase formed by polymer—polymer in-
teractions and a polymer—polymer phase that is gel-
like. In this condition, the hydrogel shrinks due to
its hydrophobicity. Polymer and aqueous solution
are well mixed in the second phase due to in-
teractions between the solvent and polymer. In the
second phase, hydrophilicity and swelling are at
their maximum levels [41].

4. Applications of chemical responsive
hydrogels

There was an astounding variety of hydrogels
available for engineering, biology, and pharmaceu-
ticals [60—63]. Among the many uses of poly-
electrolytes are hydrogels that can transfer chemical

lowpH high pH
/ -~ Y~ / -~ ) \
OH
O OH H e} o
~ ¥ - >
ot j\
=
o o
"L w7
ey T ey

Fig. 4. Induced ionization of polyelectrolytes under pH-dependent conditions [4].
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Fig. 5. Hydrogels with stimuli-responsive phase transitions.

charges along the chain and bind to oppositely
charged proteins and peptides to form complexes.
This includes delivering drugs, proteins, peptides,
nutrients, hormones, and cells, as well as in agri-
culture and biotechnology [64]. Several synthetic
carriers have been developed that use catalytic
polymers to break up large particles into smaller
ones and to cover DNA with negative charges. In
addition to being widely applicable for delivering
DNA and oligonucleotides from viral or non-viral
sources, these characteristics make them ideal for
transfecting most types of cells, genes, antisense
therapies, and bile acids [65]. As a result of small
changes in their surroundings, such as electrical
fields, magnetic fields, solvents, pH, ionic strengths,
and temperatures, hydrogels often experience large
volume changes [66].

4.1. Pharmaceutical applications

Hydrogels are increasingly being used as a ver-
satile platform in the field of pharmaceuticals due to
their excellent biocompatibility, high water absorp-
tion, and retention properties [41]. These unique
characteristics of hydrogels make them suitable for
various pharmaceutical applications such as drug
delivery, wound healing, and tissue engineering. In
drug delivery, hydrogels are used as carriers that
can interact with mucosal linings in different parts
of the body such as the gastrointestinal tract, colon,
vagina, and nose, allowing for a prolonged resi-
dence time at the delivery location [67].

Additionally, the specific properties of hydrogels
can be tailored by means of modification and com-
pounding to achieve a wide range of functionalities.
For instance, the controlled release of drugs can be
achieved by incorporating stimuli-responsive
hydrogels, which respond to external stimuli such as
pH, temperature, and light [68,69]. The use of
hydrogels in pharmaceuticals is therefore a prom-
ising avenue for the development of novel drug
delivery systems and biomedical applications.

4.1.1. PVA-based based hydrogels

Diabetes, liver, intestine, colon, blood, brain,
nerves, and thyroid cancer are among many appli-
cations of this technology [66]. The pharmaceutical
delivery system is effective for delivering drugs
under control [61,63]. According to Sanchez et al,,
2019, a drug delivery system with crosslinked com-
posite PVA beads is achieved by increasing the PVA
content and crosslinking the level of the beads [70].

4.1.2. A hydrogel-based on PEG-PCL

According to Saidi and colleagues. 2019, to
determine the effects of structural parameters on
diclofenac sodium release and swelling ability ki-
netics from pure PEG and PEG—PCL hydrogels,
they synthesized two kinds of hydrogels using the
ROP and click chemistry methods. According to the
study, the molecular weight and the relative hy-
drophobic/hydrophilic composition of PEG must be
considered when evaluating the enlargement pro-
cess and release mechanism. The Korsmeyer-Peppa



AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2023;2:101—-110 107

model provided the most satisfactory fit for the
swelling and release data. The degree of expansion
and flexibility of networks will decrease with greater
cross-link density and PCL concentration [71].

The negative thermosensitive swelling behavior is
caused by the presence of hydrophilic and hydro-
phobic block copolymers in diacrylates derived
from PEG for drug delivery and Poly-e-caprolactone
(PCL) for tissue regeneration. As a result of in vitro
degradation, degradation occurred after 3—8
months. Pharmaceutical applications are suitable
for these hydrogels due to their degradability,
biocompatibility, functionality, and elasticity
[1,10,71,72].

4.1.3. PHEMA-co-DMAEMA-based hydrogels

The hydrogel can fulfill the release drift which is
required for many drugs because zero-order drug
kinetics is crucial for their delivery. Glucose-in-
tensity hydrogels are capable of releasing additional
insulin [73]. Some of these polymers are pH-sensi-
tive, such as poly (DIDEEMA), and glucose oxidase,
which exchanges glucose for gluconic acid, which
regulates insulin release [71,73]. In their study,
Traitel et al.,, 2000, modeled in vivo insulin release
by encapsulating glucose oxidase, catalase, and in-
sulin in poly (2-hydroxyethyl methacrylate-co-N, N-
dimethylamino ethyl methacrylate). Consequently,
these hydrogels are not pH-sensitive and contain
glucose that diffuses into them when they are
exposed to physiological fluids, where glycogen

oxidase acts as a catalyst for converting glucose to
gluconic acid causing swelling and insulin release.
Furthermore, chemically crosslinked hydrogels are
unstable in water and swell more when exposed to
glucose than those that are not crosslinked [74]. For
an explanation of the chemistry behind oxidation
and catalysis, consider the following equation:

Glucose + O, + H,O GOy Gluconic Acid + H,0O,
H,0, SR 150, + H,

According to Fig. 6, the above is a summary of
how swelling and tissue release occurs.

4.2. Agriculture industry

One promising approach to nutrient release into
plants has been investigated more recently by
incorporating hydrogels containing fertilizer [75].
Leaching, chemical processes, excessive rainfall,
and other factors contribute to the loss of nutrients
applied to the soil [76,77]. To encourage soil fertility,
several polysaccharides have been utilized as fer-
tilizer release systems, such as chitosan, pectin, and
carboxymethyl cellulose [78]. Hydrogel demon-
strated as a soil conditioner by several researchers.
For instance, according to Agaba et al., the moisture
retention of a particular soil affects plant growth.
This is because water affects the properties of the

Insulin Crosslinked p-Hema
! Crosslinked p-HEMA- DMAEMA
{::.(Z Catalase hydrogeks
T, mine groups
@ GluOx e protonated amine groups

@ Oxygen @ +Glucosonic acid
@ Glucose @ Water
.@ -Gluconate
Hydrogen Peroxide

Fig. 6. Schematic of Unswollen/swollen hydrogels as presented on p (HEMA-DMAEMA) [74].
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soil, such as aeration, temperature, fertilizer trans-
portation, water uptake, and transformation [79].

According to Demitri et al., the development of a
carbodiimide-crosslinked hydrogel formulation can
be applied to arid and desert environments to
deliver water and nutrients. In the authors' opinion,
the principal advantage of hydrogels is that they can
control the release of water displaced by drying soil.
Consequently, soil humidity will remain high for
some time. Hydrogel also increases the porosity of
the soil, allowing root roots to receive more oxygen
[80].

According to Parvathy et al, hydrogels affected
the physical-chemical and biological characteristics
of soil, when g-poly (acrylamide) was saponified
cassava starch. Additionally, the same hydrogels
were used to investigate the effects of chili
(Capsicum annum L.) growth parameters in various
irrigation periods. Using superabsorbent matrices,
which can control the release of adsorbed water, we
found that the amount of moisture retained in the
soil is directly related to the concentration.
Furthermore, researchers noted that hydrogels may
also serve as alternative options for combating
global climate change as they can improve soil
characteristics, particularly when moisture avail-
ability is low. Several of these matrices were
demonstrated to have excellent slow-release prop-
erties and very effective water retention capabilities,
which indicates that they are suitable for agricul-
tural use since they minimize fertilizer loss and
improve water efficiency [81].

Various types of poly (2-acrylamido-2-methyl-1-
propanesulfonic acid) (PAMPS) hydrogel were
tested under various conditions by Radwan et al. To
optimize the process, several variables were
changed. A potential application for this hydrogel in
agriculture was also tested. In the study, several
factors were optimized, including water tempera-
tures, cross-linking agents, and pH [82]. Several
polysaccharides-based controlled-release formula-
tions including hydrogels are presented in an article
by Campos et al. Polysaccharides, in the authors'
opinion, offer the following advantages over syn-
thetic polymers: they are eco-friendly, have a high
holding capacity, are relatively inexpensive, and are
biodegradable [83].

Hydrogel irrigation technology can only be used
to apply fertilizer, herbicides, and germicides to
plants with minor drawbacks, according to Neethu
et al. [84]. Hydrogel agriculture can be practiced
without reducing crop yield or nutritional value
without drastically reducing the use of synthetic
fertilizers. Sustainable agriculture in arid and semi-
arid regions and areas with similar ecological

constraints would benefit from this practice. Agro-
ecosystems are prevented from pollution due to
potassium polyacrylate, which is non-toxic and safe
for use [84].

5. Conclusions

This review provides an overview of the literature
concerning hydrogels in the last twenty years. It
describes how hydrogels are classified based on
their chemical and physical properties with a special
focus on chemically responsive hydrogels for phar-
maceutical, agrochemical, and industrial applica-
tions. The research direction for this review suggests
identifying polymers that behave in different ways
depending on stimuli (physical, chemical, and
biochemical) in addition to studying future genera-
tions of hydrogels that swell spontaneously when
contacted with cancer cells and lungs. As the ma-
terials absorb a lot of aqueous fluids within a short
period, they can be used in applications such as the
desalination of water and eco-sustainable
agriculture.
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