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Lung Cancer
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¢ Department of Mathematics and Statistics, College of Arts and Sciences, Bowling Green State University Ohio, USA

Abstract

The lungs play a vital role in supplying oxygen to every cell, filtering air to prevent harmful substances, and sup-
porting defense mechanisms. However, they remain susceptible to the risk of diseases such as infections, inflammation,
and cancer that affect the lungs. Meta-ensemble techniques are prominent methods used in machine learning to enhance
the accuracy of classifier learning systems in making predictions. This work proposes a robust predictive model using a
meta-ensemble method to identify high-risk individuals with lung cancer, thereby taking early action to prevent long-
term problems benchmarked upon the Kaggle Machine Learning practitioners' Lung Cancer Dataset. Three machine
learning ensemble models—Random Forest, Adaptive Boosting (AdaBoost), and Gradient Boosting—were used to
develop the meta-ensemble models proposed in this paper, whereby the three ensemble models were adopted as base
classifiers while one of them was adopted as the meta-classifier. In addition, two of the ensemble models were used as
base classifiers, while the third was used as a meta-classifier to evaluate lung cancer risk prediction. Different graphs
were evaluated to show that people with these features are liable to develop lung cancer. The proposed model has
immensely improved prediction performance. The meta-ensemble models were simulated using the Python simulation
environment, and the 5-fold cross-validation technique was used. The model validation was carried out using several
known performance evaluation methodologies. The results of the experiments showed that gradient boosting achieved a
maximum accuracy of 100%, an area under the curve (AUC), and a precision of 100%. The proposed model was compared
with novel machine learning methods and popular state-of-the-art (SOTA) deep learning techniques. It was confirmed
from the results that the model in this study had the best accuracy at lung cancer risk prediction. This study's results can
be utilized to enhance the performance of actual patient risk prediction systems in the future.

Keywords: Meta-ensemble model, Lung cancer, Machine learning, Ensemble models, Risk prediction

1. Introduction

D espite recent technological developments, the
medical sciences are still not fully equipped to
prevent and cure cancer. The main focus of the
medical science community's technological
advancement efforts is the containment and treat-
ment of cancer diseases [1,2]. When it comes to
death rates, cancer is recognized as the most serious
complex disease, and lung cancer is the deadliest
cancer in the world [3]. It has a greater impact on

individuals and is now ranked seventh in the death
rate index [4]. The World Health Organization
(WHO) estimates that alcohol, tobacco, high body
mass index (BMI), inadequate consumption of fruits
and vegetables, and insufficient physical exercise
may be responsible for around 33% of cancer-
related fatalities. Your chances of acquiring cancer
may be increased by specific risk factors, including
the use of tobacco, a high intake of alcohol, being
exposed to air pollution, radiation, sun exposure, or
other unprotected UV light, the absence of physical
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exercise, and starchy meals, sweets, processed
grains, red and processed meat, sugar-filled bever-
ages, and salty snacks, all of which are signs of an
unhealthy diet [5,6].

According to the National Cancer Institute (2021),
the likelihood of developing cancer increases with
age. Generally, this risk continues to rise until in-
dividuals reach the age of 80, after which it begins to
decline. The accumulation of risk factors over life,
the length of time spent exposed to carcinogens, and
aging's less efficient cell repair processes might all
contribute to this. Your risk of cancer may also be
increased by some pre-existing medical problems
that induce inflammation [7,8]. It is a condition with
a significant burden of symptoms, psychological
anguish, and a low quality of life [9]. Lung cancer
accounted for 1.8 million new instances of death in
2020, or 18% of all cancer-related deaths. Lung
cancer had a far poorer 5-year survival rate (7%—
25%) than other major malignancies [10]. Owing to
lung cancer's high death rate, the illness's mortality
distribution resembled that of its incidence, leading
to a significant worldwide disease burden [11].

The yearly death toll of lung cancer is higher than
that of colon, breast, and prostate cancer put
together. Although some people believe that lung
tumors are more deadly since they are frequently
discovered at a later stage of the disease, treating
lung cancer is one of the biggest obstacles to
increasing patient survival. Diseases that are in their
early stages can be operated on. However, systemic
therapies are frequently the sole choice if cancer has
spread throughout the lung and metastasized to
other tissues [12]. There are several types of lung
cancer, and it is important to treat each one differ-
ently. Lung cancers may be divided into approxi-
mately two main subgroups: small cell lung cancer
(NSCLC), which makes up around 85% of instances
and is further divided into lung squamous cell car-
cinoma (LSCC), large cell lung cancer (LCC), and
lung adenocarcinoma (LUAD). Non-small cell lung
cancer (SCLC) makes up the remaining 15% of oc-
currences of lung cancer [3].

Lung cancer is quite common in underdeveloped
nations, where locals account for over half of all
cases. Lung cancer ranks third among cancers in
women and is the most common cancer in males
[13]. The goal of treating any cancer is to eradicate or
eliminate the malignant cells while sparing healthy
ones. Radiation, chemotherapy, and surgery are the
most commonly utilized conventional therapeutic
modalities. These treatments can be used alone or in
combination. Surgical resection is the most reliable
and successful course of treatment for individuals
with lung cancer [14].

Machine learning is crucial in the early phases of
safe human existence for identifying and antici-
pating medical problems. The diagnosis procedure
is streamlined and facilitated using machine
learning (ML) [15]. For a time now, machine
learning has dominated the medical industry. The
health sector in every nation currently makes use of
machine learning techniques. Actual illness detec-
tion may be explored using machine learning. Trait
extraction is one of the major applications of ma-
chine learning. For instance, every characteristic of a
disease has a genuine information container [16,17].

Machine learning improves data analysis by
examining actual characteristics or information and
determining the root of the issue. It enables medical
professionals to identify the root of an illness. Image
processing: Using a variety of machine learning al-
gorithms, precise and practical photo analysis has
been discovered. To save time and money and in-
crease their value, this enables doctors to identify
ailments earlier [18—20]. Drug production: Consid-
ering the rise in various diseases and the known
amount, medications should have several functions.
This issue has been solved by machine learning,
which enables the pharmaceutical business to profit
from its use. Improved illness forecasting, thanks to
machine learning (ML) technology. ML controls the
forecasting of early disease outbreaks so that
necessary measures may be taken [4].

Nonetheless, it is more probable that a varied
group of people would make wiser judgments than
a single person. The same principle applies to ma-
chine learning, where a variety of models is always
preferable to an individual model. Ensemble
method is the term for the machine learning method
that achieves diversity. It generates a model that
may be used as a classifier or a repressor using
training labels and training data as input. To reduce
the mistakes caused by each algorithm and obtain a
completely developed overall performance via a
combined solo-ensemble model, ensemble-based
learning chains many algorithms depending on the
problem [21].

Accuracy and reliability are crucial prerequisites
for machine learning techniques in medical diag-
nosis and cancer prediction [22]. The related works
that were conducted previously in this field,
emphasizing ensemble methods for improving per-
formance, were presented [23]. Evaluated various
ensemble learning techniques on the Surveillance,
Epidemiology, and End Results (SEER) dataset to
predict the 5-year survival rate for lung cancer.
Five well-known ensemble techniques—Bagging,
Dagging, AdaBoost, MultiBoosting, and Random
SubSpace—as well as eight classification
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algorithms—RIPPER, Decision Stump, Simple Cart,
C4.5, SMO, Logistic Regression, Bayes Net, and
Random Forest—as base classifiers were assessed for
lung cancer survival prediction. Rapidminer Studio
7.1 and the Weka toolkit 3.8 were utilized to prepare
the data and create the predictive models. The ac-
curacy and area under the ROC curve (AUC) are
used to assess the prediction's performance. Among
the four ensemble methods, the AdaBoost algorithm
demonstrated the highest efficiency in enhancing the
performance of base classifiers.

[24] Employed 14 machine learning methods,
including Naive Bayes, Bayesian Network, SGD
(stochastic gradient descent), K-nearest neighbors,
support vector machine, artificial neural network,
logistic regression, LMT (logistic model tree),
random forest, random tree, rotation forest, J48,
RepTree (reduced error pruning tree), and Ada-
BoostM]1, to create effective models to identify high-
risk people for developing lung cancer. The research
used a publicly available dataset (Kaggle). With an
accuracy, precision, recall, and F-measure of 97.1%
and an AUC of 99.3%, the experiment results
demonstrated that the suggested model, Rotation
Forest, performed better than the other models [25].
We applied several classifiers as well as ensembles
to a benchmark dataset from the UCI repository,
which evaluated the discriminative power of mul-
tiple predictors to improve the effectiveness of lung
cancer detection through symptoms. Support Vector
Machine, Naive Bayes, C4.5 Decision Tree, Neural
Network, Multi-Layer Perceptron, and Gradient-
Boosted Decision Tree are the classifiers. A com-
parison is made between the performance and
popular ensembles like Majority Voting and
Random Forest. Experiments were conducted using
the Rapid Miner tool. Performance evaluations
revealed that the gradient-boosted tree performed
90% accurately, outperforming both ensemble clas-
sifiers and all other individuals.

The researcher conducted diagnoses on patients
suspected of having lung cancer and utilized data
from public datasets such as “Cancer Patient,”
“Survey Lung Cancer,” and “Cancer_Data” for an
experiment. The research process encompassed
exploratory data analysis (EDA), pre-processing,
and classification, where EDA aimed to identify data
types, missing values, attribute correlations, and
outliers, while pre-processing involved data clean-
ing and discretization. Randomized oversampling
was employed to address imbalanced data, followed
by classification using the Gradient Boosted Deci-
sion Tree (GBDT), with experiments conducted on

both imbalanced and balanced data scenarios.
Testing involved varying learning rates and the
number of trees through randomized search tuning,
with training and testing data distribution utilizing
5-fold cross-validation. The dataset was also classi-
fied using k-nearest neighbor and support vector
machine algorithms. Results indicated superior
performance with balanced data compared to
imbalanced data, with the GBDT achieving accu-
racies of 97% for “cancer patient” and 99% for
“cancer_data” [26]. The study advances under-
standing by employing machine learning tech-
niques to detect lung cancer early, aiming to
enhance patient survival rates. The research com-
prises five stages, including data collection, pre-
processing, partitioning for training and testing with
10-fold cross-validation, model training, and evalu-
ation. Through experimentation with CatBoost and
Random Forest classification methods, particularly
with hyperparameter tuning via Bayesian optimi-
zation, the study demonstrates superior perfor-
mance of the Random Forest model, achieving high
accuracy (0.97106), precision (0.97339), recall
(0.97185), f-measure (0.97011), and AUC (0.99974) in
lung cancer detection [27].

The study examined various research articles on
lung cancer prediction models employing machine
learning and ensemble learning techniques. Addi-
tionally, they introduce novel ensemble learning
methods developed using oversampling SMOTE on
a survey dataset of 309 individuals with or without
lung cancer. The ensemble techniques utilized, such
as XGBoost, LightGBM, Bagging, and AdaBoost,
undergo evaluation via a k-fold 10 cross-validation
method, with predictive attributes encompassing
age, smoking habits, physical symptoms, and life-
style factors. The analysis reveals that XGBoost
outperforms other ensemble techniques, achieving
an accuracy of 94.42%, precision of 95.66%, recall of
94.46%, and AUC of 98.14% [28]. [29] Developed and
created a multi-parameter artificial neural network
to predict the risk of lung cancer. Utilizing individ-
ual health data, the study was able to accurately and
precisely predict the risk of lung cancer. To train
and validate the ANN model, adult data from the
1997—2015 National Health Interview Survey was
utilized. 79.8% (95% CI: 75.9%—83.6%), 79.9%
(79.8%—80.1%), and 0.86 (0.85—0.88) were the
sensitivity, specificity, and AUC for the training set.
Specificity was 80.6% (80.3%—80.8%), AUC was 0.86
(0.84—0.89), and sensitivity was 75.3% (68.9%—
81.6%) for the validation set. The findings show that
high specificity and moderate sensitivity are
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achieved when lung cancer is detected through the
use of an artificial neural network (ANN) based on
personal health data.

[30] Pioneered an advanced learning algorithm
rooted in AdaBoost for lung cancer detection via
electronic nose (eNose) analysis. Breath signals
were collected from volunteers, including both
healthy individuals and those with lung cancer, and
their features were optimized. The resulting
improved AdaBoost classifier demonstrated excep-
tional precision of 98.47% in distinguishing between
lung cancer patients and healthy subjects, with high
sensitivity (98.33%) and specificity (97%), and
remarkable stability across 100 randomized tests
[31]. Introduced a novel classifier called Ada-
GridRF, which utilized adaptive boost-based grid
search optimization to fine-tune the hyper-
parameters of the base random forest model, effec-
tively identifying malignant and non-malignant
nodules in CT images. The proposed method
offered enhanced performance speed and decreased
computational complexity. Comparative analysis
with other hyperparameter optimization techniques
and traditional approaches demonstrated superior
performance, surpassing even state-of-the-art deep
learning methods like transfer learning and con-
volutional neural networks. Experimental results
showcased the Ada-GridRF method achieving
outstanding performance metrics, including 97.97%
accuracy, 100% sensitivity, 96% specificity, 96.08%
precision, 98% F1-score, 4% false positive rate, and
99.8% area under the ROC curve (AUC), with only
8 ms required for training.

[32] Introduced a two-phase approach to predict
lung cancer survival, beginning with classification to
estimate five-year survival probability, followed by
regression to predict actual survival duration in
months. Utilizing the SEER database, feature selec-
tion techniques such as RFE-RF and LASSO are
employed to reduce dimensionality, while machine
learning models trained with five-fold cross-vali-
dation show ensemble methods outperforming
other algorithms, including Logistic Regression
(LR), Random Forest (RF), Multilayer Perceptron
(MLP), Adaboost, and Naive Bayes (NB), in terms of
performance metrics. Notably, the combination of
the LGBM classifier with RFE-RF achieves the
highest classification accuracy of 89.6% and an AUC
score of 92.03 for survival durations up to 11 months.
At the same time, in regression analysis, the LGBM
regressor outperforms its counterparts with an MAE
value of 7.53 and a RMSE value of 10.49 [4]. We
applied various techniques, such as random forests,
K-nearest neighbors, logistic regression, support

vector classifiers, and radial basis function net-
works, to classify lung cancer data that was available
in the UCI machine learning repository into benign
and malignant categories. To classify the input data
from cancer to non-cancerous, they were first pre-
processed and converted into binary form. This was
done using a well-known Weka classifier technique.
The comparative approach showed that the recom-
mended Radial Basis Function (RBF) classifier had
an excellent accuracy rate of 81.25 percent.

[33] Used the AlexNet model for a deep-learning
lung cancer prediction framework with the AlexNet
model. The dataset was collected from several
sources, including hospitals and open-source soft-
ware. The study collected 100 images, of which 50
were of cancer and the remaining 50 were of
normalcy. They employed data augmentation tech-
niques for improved accuracy because the dataset
was smaller. The Python Keras library acknowl-
edges the picture growth processes. Convolutional
neural networks (CNN) were used to train the
model. To identify lung cancer, pre-trained Image-
Net models such as LeNet, AlexNet, and VGG-16
were employed. The final fully connected layer of
the model's features was applied individually as
input to the softmax classifier. The accuracy ob-
tained by combining the Softmax layer and AlexNet
has reached 99.52% [21]. Gathered reports on lung
biopsies, from which histological images are pro-
duced. To create a dataset, methods for image pro-
cessing and data augmentation are used on the
gathered histopathological images. This dataset is
used to train three distinct models: ResNet50, vari-
ants-Inception-V3, and convolutional neural net-
works. Ensemble learning techniques were
employed to help reduce the high variance of un-
seen data measured on training and validation
datasets and give better accuracy than a single
model.

[34] Proposed a KL divergence-based gene selec-
tion strategy for lung cancer prediction. The TCGA
and ICGC portals provided the data that was used.
The lung adenocarcinoma (LUAD) samples' RNA-
seq gene expression data were taken from the
TCGA and ICGC datasets. The data is processed
using Python in the study so that TensorFlow and
Sklearn can recognize the training format. The
optimal model was determined and verified using
the k-fold cross-validation technique. On the vali-
dation set, the deep learning model method based
on KL divergence gene selection has an AUC of 0.99
[35]. We compared and analyzed several methods,
like watershed segmentation, artificial neural net-
works, support vector machines, convolutional



40 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;5:36—57

neural networks, image enhancement, and image
processing, to identify and diagnose lung cancer
early on. The Super Bowl Dataset 2016, LIDC-IDRI,
and LUNA16 were the datasets used for training.
The techniques were applied to facilitate the process
and increase accuracy.

This present study proposes a pioneering effort to
adopt an ensemble model that combines the pre-
dictions of ensemble base classifiers as input to the
meta-classifier to make the final prediction of lung
cancer occurrence. Three ensemble models—Ran-
dom Forest, Adaptive Boosting (AdaBoost), and
Gradient Boosting—were used to develop the meta-
ensemble models to identify those at high risk of
lung cancer. These models utilize prevalent habits
and symptoms or signs as input features to predict
the likelihood of the disease. The performance was
evaluated in terms of accuracy, precision, F1-score,
recall, and area under the ROC (Receiver Operating
Characteristic) curve (AUC). The experimental per-
formance revealed that gradient boosting had su-
perior accuracy when used as a meta-classifier. This
assists in greatly improving the accuracy of lung
cancer risk prediction. The proposed model had the
best accuracy, which outperformed the other state-
of-the-art (SOTA) work. This research work will
provide great insight to assist doctors in enhancing
the performance of actual patient risk prediction
systems in the future. To verify the efficiency of the
proposed work, a comparison of the performance of
lung cancer prediction models is shown in Table 1.

2. Materials and methods
2.1. Technique of data collection and pre-processing

This study required the development of a pre-
dictive model for the risk of lung cancer. Data
collected from an online resource was accessed by
Kaggle machine learning practitioners on
November 10, 2023, and can also be accessed from a
data repository located online. The dataset contains
information about lung cancer patients, which was
downloaded from the repository as a.data file
format and pre-processed into a comma-separated
variable (.csv) file format.

2.1.1. Technique for collecting useful data

The dataset used in this study was obtained from
an online repository from Kaggle machine learning
practitioners and can be found at https://www.
kaggle.com/datasets/ajisofyan/survey-lung-cancer/.
Additionally, the dataset is available online at
https://data.world/sta427ceyin/survey-lung-cancer.

This can be accessed through the Data World
repository.

The collected dataset contained 309 lung cancer
patient records, which consisted of 16 attributes that
were either nominal or numerically valued. The
dataset, which was obtained in data file format from
the repository, had the attributes used to charac-
terize the data in the first row, after which the data
about every lung cancer patient was defined. The
collected dataset was used to identify the features
considered to increase the risk of lung cancer.
Among the 16 attributes, 15 were used as the input
variables, while 1 was used as the target variable for
the risk of lung cancer.

2.1.2. Technique for pre-processing collected data

Following the process of identifying and collecting
the dataset required for constructing the meta-
ensemble model aimed at predicting the risk of lung
cancer. The collected data was pre-processed by
checking the shape, data types, and missing data
values of the dataset. The oversampling SMOTE
method was used to handle the imbalanced data.
We have to note that there was not much processing
done on the dataset used, as there were no missing
data values. Still, since the simulation environment
only required numerical data, the nominal data was
then converted.

2.2. The meta-ensemble model's description

The meta-ensemble model developed in this work
incorporated the use of Random Forest (RF), Ada-
Boost, and Gradient Boosting (GB) classifiers as base
learners, while Gradient Boosting (GB) was used as
a meta-classifier, using the dataset collected for the
risk of lung cancer. This research makes use of a
framework that uses three ensemble models as base
classifiers, while GB is used as the meta-classifier.
The meta-classifier took as input the predictions of
the three base learners’ ensemble models to make
the final prediction to develop the meta-ensemble
model that was required for the prediction of the
risk of lung cancer. To determine how the base
learners' predictions were merged to produce the
optimal prediction ensemble accuracy, the meta-
learner was employed.

Below is the step-by-step representation of the
meta-ensemble models:

e Base Ensemble Models:

Base Ensemble Model 1: Random Forest.
Base Ensemble Model 2: Gradient Boosting Ma-
chine (GBM).


https://www.kaggle.com/datasets/ajisofyan/survey-lung-cancer/
https://www.kaggle.com/datasets/ajisofyan/survey-lung-cancer/
https://data.world/sta427ceyin/survey-lung-cancer
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Table 1. Comparison of the performance of lung cancer prediction models.

Author Name and
Reference

Dataset Collected

Models

Performance of the Proposed
Models

Safiyari et al. (2017)
[23]

Dritsas et al. (2022)
[24]

Faisal et al. (2018)
[25]

Setiawan et al.
(2023) [26]

Zamzam et al.
(2024) [27]

Mamun et al. (2022)
[28]

Gregory et al. (2018)
[29]

Hao et al. (2023) [30]

Subramanian et al.
(2020) [31]

Bhattacharjee et al.

(2022) [32]

Aggarwal et al.
(2024) [33]

Suvarchala et al.
(2021) [4]

Liu et al. (2022) [34]

The Proposed

SEER dataset (643,924)

Kaggle dataset (309)

UCI repository (32)

Cancer Patient, Survey
Lung Cancer, and
Cancer_Data datasets
Kaggle dataset (309)

Kaggle dataset (309)

National Health Adult
dataset (1997—2015)

Electronic Nose (eNose)
device dataset

(142)

Hospitals and
Open-Source Software
Dataset (100 images)
Computed Tomography
(CT) Images

SEER
Dataset

UCI repository (32)

TCGA and ICGC dataset

Kaggle dataset (309)

Bagging, Dagging,

AdaBoost (proposed),

MultiBoosting, Random

SubSpace, RIPPER,

Decision Stump, Simple Cart, C4.5, SMO,
Logistic Regression,

Bayes Net and Random Forest

Naive Bayes, Bayesian Network, Stochastic
Gradient Descent, K-Nearest Neighbors,
Support Vector Machine, Artificial Neural
Network, Logistic Regression, Logistic
Model Tree, Random Forest, Random Tree,
Rotation Forest (proposed), J48, reduced
error pruning tree, and AdaBoostM1

MLP, Neural

Network, Naive Bayes, Support

Vector Machine, Majority Voting, Gradient
Boosted Tree (proposed), and Random
Forest

Gradient Boosted Decision Tree
(proposed), k-nearest neighbor, and
support vector machine

CatBoost and Random Forest (proposed)

XGBoost (proposed), LightGBM,
Bagging, and AdaBoost

Artificial Neural Network (proposed)

AdaBoost (proposed)

AlexNet, Softmax (Proposed),
LeNet, and VGG-16

Ada-GridRF Classifier (proposed)

LGBM with RFE-RF classifier (proposed),
Logistic Regression, Random Forest,
Multilayer Perceptron, Adaboost, and
Naive Bayes,

Random Forests, Radial Basis Function
Networks (proposed), K-Nearest
Neighbors,

Logistic Regression, Support Vector, and
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Base Ensemble Model 3: AdaBoost.

e Base Ensemble Model Predictions:

Base Ensemble Model 1 predicts: y1.
Base Ensemble Model 2 predicts: y2.
Base Ensemble Model 3 predicts: y3.

o Meta-Learner:

The predictions from the base ensemble models
(yl, y2, y3) are used as input to a meta-learner,
which is a higher-level model that combines these
predictions.

e Final Prediction:

The trained meta-learner generates the final pre-
diction using the base ensemble models' predictions
as input. Fig. 1 displays the framework that was
utilized to create the meta-ensemble model that was
employed in this work.

2.2.1. Random forest (RF) classifier

Random forest is a popular machine-learning
technique for classification and regression applica-
tions. It is part of the ensemble learning methods
that combine several decision trees to provide more
accurate predictions [36,37]. The following elements
are included in the Random Forest classifier's
mathematical expression:

e Decision Trees: This is a diagram that looks like
a flowchart, in which every internal node stands
for a feature, every branch corresponds to a
decision based on that feature, and every leaf
node is for the final class prediction.
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o Decision Tree Ensemble: Random Forest creates
a decision tree ensemble. A Random Forest
classifier generates a collection of decision trees
T.1, T 2, ..., T_N, where N is the number of
trees in the forest, given a training dataset con-
taining features X and matching labels Y.

e Random Feature Selection: For every tree,
Random Forest selects a random subset of fea-
tures from the original feature set to introduce
randomness. By doing this, over-fitting is
decreased and generalization is enhanced since
each tree is guaranteed to learn distinct parts of
the data.

Mathematically, the Random Forest classifier's
prediction for a given input data point x looks like
this [36]:

For classification tasks:

Let H(x) represent the Random Forest classifier's
output for input x.

H(x) is equal to the mode of T_1(x), T_2(x), ..., T-N(x)
1)

where the most common class prediction among
each decision tree for input x is indicated by the
mode,

For regression tasks:

For each input x, let H (x) be the output of the
random forest regression.

H(x) is equal to the mean of T_1(x), T-2(x), ..., T-N(x)
(2)

where mean is the average prediction of each
decision tree for input x.

Data Preparation Lung Cancer Risk

Dataset

) 4

Pre-Processed
Dataset

Data Pre-Processing

.......................................................................................

Base Classifiers Random Forest (RF)

Gradient Boosting (GE)

AdaBoost

Meta Classifier

Meta-Ensemble Model

Gradient Boosting
(GB)

Y

Meta-Ensemble

Fig. 1. Framework of meta-ensemble model using machine learning ensembles.
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The following stages are involved in building a
random forest classifier:

e Bootstrapped Sampling: The forest has N deci-
sion trees. From the original training dataset, N
subsets are randomly picked (with replacement).
Each subset is called a bootstrap sample.

o Tree Construction: Create a decision tree for
each bootstrap sample using the chosen features
(sometimes a random selection of all features)
and the corresponding labels.

e Ensemble Creation: The Random Forest
ensemble is created by combining the separate
decision trees.

e Prediction: To generate a prediction for a new
set of data, run the input through each decision
tree in the ensemble. The final prediction may
then be obtained by either an average (regres-
sion) or a majority vote (classification).

The Random Forest classifier is a powerful and
extensively utilized machine learning algorithm
because of its ability to handle complex datasets,
reduce over-fitting, and provide accurate pre-
dictions in various applications [38,39].

2.2.2. Gradient boosting (GB) classifier

Applying the Gradient Boosting (GB) Classifier is
a prominent technique in ensemble learning for
classification tasks. By combining many weak lear-
ners—usually decision trees—gradient boosting is a
potent boosting method that produces a powerful
prediction model [40,41]. Several components are
included in the mathematical representation of the
Gradient Boosting Classifier:

e Decision Trees: Like the Random Forest, the
Gradient Boosting Classifier employs decision
trees as its base learners. But to avoid over-
fitting, the trees in gradient boosting are often
shallow (sometimes called “weak” learners).
Boosting Process: Gradient boosting revolves
around the concept of boosting. It is an iterative
process of consecutive learning that develops the
ensemble. The goal of every succeeding model
(tree) is to fix the errors that the earlier models
committed.

Objective Function: The loss (error) between the
predicted values and the actual labels is repre-
sented by the objective function that the
Gradient Boosting Classifier optimizes. The
training procedure aims to reduce the objective
function that measures the model's performance.

Gradient Boosting Classifier's mathematical fore-
cast for a given input data point x looks like this [40]:

Let H(x) represent the Gradient Boosting Classi-
fier's final prediction for input x, and let H_0(x)
represent the beginning prediction (often a con-
stant) for input x.

H(0)+m*3.i=1"N¢i*hi(x) = H(x) (3)

where:

N is the number of boosting iterations (the num-
ber of trees in the ensemble).

7 (eta) is the learning rate, which controls the step
size at each iteration.

¢_i is the weight (also known as the “shrinkage”)
applied to the i-th tree's predictions.

The prediction of the i-th decision tree for input x
is h_i(x).

New decision trees are added iteratively to the
ensemble, known as the boosting process. The new
tree concentrates on the data points where the
earlier models were incorrect at every iteration. The
contribution of every new tree to the final prediction
is determined by the learning rate m. Although the
training process takes longer with smaller values of
n, improved generalization is frequently the result.

By generating decision trees and modifying
weights to reduce prediction errors, the Gradient
Boosting Classifier builds the ensemble while opti-
mizing the objective function.

Because it can handle complicated datasets, handle
missing values well, and perform classification tasks
with high accuracy, the Gradient Boosting Classifier
is widely utilized in many different machine learning
applications. However, it necessitates meticulous
adjustment of hyperparameters, including the
learning rate and the number of boosting iterations,
to achieve optimal performance [42].

2.2.3. AdaBoost (Adaptive boosting) classifier

Another well-liked ensemble learning technique
for binary classification problems is the AdaBoost
(adaptive boosting) classifier. A powerful predictive
model is produced by merging several weak
learners, usually known as decision stumps (shallow
decision trees with a single split) [43,44]. The
following elements are included in the mathemat-
ical statement of the AdaBoost classifier:

e Weak Learners (Decision Stumps): In AdaBoost,
the weak learners are often straightforward
classifiers. A decision stump is a one-level de-
cision tree that uses a threshold value and a
single feature to predict a result.

e Weighted Data Points: Based on how well the
data points were classified in earlier iterations,
weights are added to them in each AdaBoost
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algorithm iteration. Data points that are incor-
rectly identified are given larger weights, mak-
ing them more significant for later iterations.

o Alpha Values: Each weak learner in AdaBoost is
given an alpha value that indicates how much of
a contribution it made to the final prediction.
The precision of the weak learners affects the
alpha values. An improved weak learner's alpha
rating indicates how important they are to the

group.

In terms of mathematics, the AdaBoost classifier's
prediction for a given input data point x is expressed
as follows [45]:

Let H(x) be the AdaBoost classifier's final predic-
tion for input x.

Sign(Z.i=1"Na.i*h.i(x))=H(x) 4)

where:

N is the total number of indecisive learners (weak
learners) in the group.

The i-th weak learner's alpha value is represented
by a_i.

The prediction made for input x by the i-th weak
learner (decision stump) is denoted by h_i(x). Either
+1 or —1 is returned based on the classification
decision.

The following steps are included in the AdaBoost
algorithm:

e Initialize Data Weights: Set all data points in the
training dataset to the same weights.

o Iterative Training: Carry out several iterations
(usually N iterations), each of which entails the
following steps:

1. Using the existing data weights, train a weak
learner (decision stump) on the training set.

2. Using the training set, determine the weak
learner's weighted error rate.

3. Determine the weak learner's alpha value by
calculating the weighted error rate.

4. Adjust the data weights by assigning incorrectly
categorized data points a greater weight and
correctly classified data points a lower weight.

¢ Ensemble Creation: Create the final ensemble by
combining the weak learners based on their
alpha values.

e Prediction: The last prediction is obtained by
weighted voting of the predictions of each weak
learner in the ensemble, which is used to pro-
duce predictions for new data.

When it comes to processing complicated datasets
and attaining high accuracy in binary classification

tasks, the AdaBoost classifier is efficient. By assign-
ing greater weight to samples that were incorrectly
categorized, it adjusts to the properties of the data,
enabling it to concentrate on cases that are chal-
lenging to classify and enhancing performance. Its
performance, however, might be adversely affected
by outliers and noisy data because of its sensitivity
[46,47].

2.3. Environment for model simulation

Since the supervised machine learning ensembles
necessary for building the predictive model for lung
cancer risk were identified, data obtained from
Kaggle was utilized to simulate the model. The
simulation was conducted using the Python pro-
gramming language and a set of machine learning
ensembles.

Python is a high-level programming language that
has a reputation for being easy to understand and
straightforward. Guido van Rossum invented it, and
it was originally made available in 1991. Pro-
grammers may express ideas in fewer lines of code
using Python's clear syntax and emphasis on code
readability as compared to other languages [48,49].
Among Python's principal attributes are:

o Easy to Learn: Simple and clear grammar makes
Python an easy language for novices to learn. It
lowers software maintenance costs while
emphasizing readability.

o Interpreted: Python is an interpreted language,
meaning that each line of code is carried out
individually. As a result, testing and develop-
ment may go more quickly and don't require an
additional compilation stage.

o Cross-platform: Python works with a variety of
operating systems, such as Windows, Linux,
macOS, and many more. This facilitates the
writing of code that can run unchanged across
several operating systems.

e Huge Standard Library: Python comes with a
huge library of modules and functions that can
be used for a wide range of applications,
including web development, networking, file I/
O, and more. For many typical jobs, this removes
the need to develop code from the start.

o Third-Party Libraries: A wide range of third-
party libraries and frameworks are available for
Python, thanks to its thriving ecosystem.
NumPy, Pandas, Django, Flask, and TensorFlow
are a few examples of libraries that expand
Python's  capabilities for certain fields
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encompassing scientific computing, web devel-
opment, machine learning, and data analysis.

e Object-Oriented Programming (OOP): Python
has support for OOP, which enables pro-
grammers to write modular and reusable code. It
is appropriate for developing large-scale sys-
tems since it has features like classes, inheri-
tance, and polymorphism.

e Dynamic Typing: Python has dynamic typing,
which implies that variables' types are decided
upon at runtime. While this offers flexibility,
type handling, and variable assignments must
be carefully considered.

Python is a versatile language with many uses,
such as scientific computing, web development,
automation, machine learning, data analysis, and
artificial intelligence. It is a well-liked option among
developers due to its adaptability, ease of use, and
robust community support [50,51].

2.3.1. Results evaluation extraction using confusing
matrix

It was necessary to overlay the classification re-
sults on a confusion matrix, as seen in Fig. 2, to
assess the effectiveness of the meta-ensemble
models employed to predict the risk of lung cancer.
A confusion matrix is a table that has four different
combinations of the actual and expected values. In
other words, it serves to elucidate the performance
of a classification model, sometimes referred to as a
“classifier,” when it is applied to a set of test data
whose true values are known [52]. This contributes
to providing information regarding the accuracy of
the data classification. By counting the instances in
which the model was properly and wrongly cate-
gorized, it provides a visual representation of per-
formance. The figures for false positives (FP), false
negatives (FN), true positives (TP), and true nega-
tives (TN) are displayed in two rows and two col-
umns [53].

P Actual N

TP FP

FN TN

Predicted N

Fig. 2. Confusion matrix for model performance evaluation.

2.3.2. Explanation of performance evaluation metrics
used to validate models

The prediction model's performance can be eval-
uated using the true positive/negative and false
positive/negative values that were obtained from
the confusion matrix. The following are explana-
tions of the metrics' definitions and expressions [54]:

a. Precision: Precision is the ratio of accurate

affirmative  predictions to all positive
predictions.
TP
Precision —
recision = (5)

b. Recall (Sensitivity): Recall is the ratio of accurate
positive predictions to all predicted outcomes.

TP

Recall= TP 1N (6)

c. F1 Score: The precision and recall harmonic

means are combined to get the F1 score. The F1

score achieves a maximum of 1 and a minimum

of 0. It offers an equilibrium between recall and
precision.

F1Score — 2« (precision x recall)

7)

Precision + recall

d. One of the most important performance evalu-
ation metrics is accuracy, which is just the per-
centage of properly predicted observations to all
observations.

Accuracy = TP+1IN (8)
Y=TP TN +FP 1 FN

e. ROC Curve: A graphical depiction of the
model's performance at the lowest possible
classification threshold is the Receiver Oper-
ating Characteristic Curve. It is a statistic for
evaluating issues with binary categorization.
Plotting the True Positive Rate (TPR) against the
False Positive Rate (FPR) at different threshold
values is a probability curve that mainly dis-
tinguishes between “signal” and “noise.” The
curve displays two parameters: TPR and FPR. A
True Positive Rate and a False Positive Rate are
obtained, respectively, using equations (9) and
(10).

True Positive Rate (Sensitivity/Recall): The ratio of
correctly predicted positive observations to the total
number of real positives.
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TP
TP +FN ®)
False Positive Rate (1-specificity/false alarms):
This is the proportion of all genuine negative

True Positive Rate =

observations to all falsely predicted positive
observations.

FP
False Positive Rate = ———— 1
alse Positive Rate P TN (10)

f. Area under the Curve (AUC): AUC calculates
the area under the ROC curve and expresses
how well the classifier can differentiate between
positive and negative instances. It provides a
single value that represents the model perfor-
mance across different threshold values. A
random model has an AUC of 0.5 while the
model with perfect discrimination has an AUC
of 1. Higher AUC values generally indicate bet-
ter overall performance.

3. Results and discussion

3.1. Results of pre-processing and data collection

Data for this study was gathered from Kaggle
Machine Learning Practitioners, an online re-
pository. The target class, which determined the risk
level of lung cancer, was one of the 16 attributes that
made up the 309 records for the data collected for
this study. The 16 attributes found in the gathered
dataset were labeled using both categorical and
numeric values. The patient's current age was indi-
cated by a numerical label. The categorical or
nominal attributes included the patient's gender,
smoking status, yellow fingers, anxiety, peer pres-
sure, chronic illness, fatigue, allergy, wheezing,
alcohol intake, coughing, difficulty swallowing,
shortness of breath, chest pain, and the patient's risk
of lung cancer.

The male gender has a total number of 162, which
accounts for 52%, while the female gender has a
total number of 147, which accounts for 48% of the
dataset. The youngest patient's age was 21, and the
oldest was 87 years old. The description of the
dataset according to the identified attributes, as
presented in Table 2, was provided using a fre-
quency distribution table. The shape of the datasets
was checked, which was (309, 16). The dataset con-
tains 33 duplicate instances and was removed,
which reduced the shape of the dataset to (276, 16).
The dataset has a target distribution imbalance
issue. The imbalanced issue was handled using the
random oversampling SMOTE method, which
made the dataset balanced. The data types of the

Table 2. Frequency distribution of the data collected based on the
attributes.

Attribute Distinct Most Next Most
Common Common
Gender 2 M (162) F (147)
Age 39 64 (20) 56 (19)
Smoking 2 2 (174) 1 (135)
Yellow Finger 2 2 (176) 1 (133)
Anxiety 2 1 (155) 2 (154)
Peer Pressure 2 2 (155) 1 (154)
Chronic Disease 2 2 (156) 1 (153)
Fatigue 2 2 (208) 1 (101)
Allergy 2 2 (172) 1 (137)
Wheezing 2 2 (172) 1 (137)
Alcohol Consumption 2 2 (172) 1 (137)
Coughing 2 2 (179) 1 (130)
Shortness of Breath 2 2 (198) 1(111)
Swallowing Difficulty 2 1 (164) 2 (145)
Chest Pain 2 2 (172) 1 (137)
Lung Cancer 2 True 270 False 39
(87.38%) (12.62%)

dataset were all integers except gender and lung
cancer, which were object values. The object values
were converted to integer values as required by the
simulation environment. The object values are
converted to integer values: gender: M—1, F-1, and
lung cancer: Yes-1, No-0. The dataset was split into
target and feature sets. The dataset does not have
much pre-processing, as there was no missing value
in the dataset used.

3.2. Discussion of identification and collection of
data

After the necessary datasets had been identified
and gathered for this research, a pair plot imported
from the Seaborn Library was used to present the
visualization of relationships between pairs of fea-
tures against the target variable. Fig. 3 shows the
pair plot for lung cancer risk prediction, which de-
scribes the dataset relationships based on the attri-
butes identified. The results of the pair plot showed
that, based on the relationship between the gender
of patients and other features, there are high oc-
currences of lung cancer in both males and females.
The results of the relationship between the patients’
ages and genders showed that the majority of both
genders have the occurrence of lung cancer between
the ages of 40 and 79 years of age. The relationship
between age indicated and smoking, yellow fingers,
anxiety, chronic disease, fatigue, wheezing, allergy,
alcohol consumption, coughing, peer pressure,
swallowing difficulties, shortness of breath, and
chest pain showed that patients who have the fea-
tures have a higher occurrence of lung cancer
compared to those who are without the features.
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Fig. 3. The pair plot of lung cancer risk prediction.

The results of the relationships among all the
remaining features showed that the majority of the
features had the occurrence of lung cancer.

A correlation matrix heatmap was used to show
the correlation coefficients between the attributes,
as shown in Fig. 4. Each cell in the heatmap repre-
sents the correlation between two attributes. A
correlation matrix is a table that shows the correla-
tion coefficients between many variables. The
numbers fall between —1 and 0. Perfectly positive
correlations are denoted by a 1, perfectly negative
correlations by a —1, and no correlations are deno-
ted by a 0. A heatmap is a type of graphical data

representation that is often used to visualize the
correlation matrix. The colors in the matrix indicate
the direction and degree of the connection between
the variables; darker colors usually indicate stronger
correlations. The results of the correlation matrix
heatmap indicate correlation coefficients of 1,
which showed a perfectly positive and stronger
correlation, such that as one attribute increases, the
other also increases. The diagonal values correlate
with 1 because each attribute perfectly correlates
with itself.

A count plot was used to show the visualization of
the distribution of binary features concerning the
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Correlation Heatmap
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Fig. 4. The correlation heatmap of the dataset.

target variable, as presented in Fig. 5. The features
indicate a blue box, while the target variable, which
is lung cancer, indicates an orange box. The results
of gender versus lung cancer showed that there are
more occurrences of lung cancer in males than in
females. The results of age versus lung cancer
showed that the risk of having lung cancer starts to
increase at the age of 40 and decreases at 80 years of
age. Smoking versus lung cancer indicates that
there are more occurrences of lung cancer in those
who are smoking than in those who are not. Yellow
fingers versus lung cancer indicates that those with
yellow fingers are at a higher risk of lung cancer
than those without yellow fingers. The results of
anxiety versus lung cancer, peer pressure versus
lung cancer, chronic disease versus lung cancer,
and swallowing difficulty versus lung cancer
showed that there is little difference between those
who possess the mentioned features versus lung
cancer, allergy versus lung cancer, wheezing versus
lung cancer, alcohol consumption versus lung
cancer, coughing versus lung cancer, shortness of
breath versus lung cancer, and chest pain versus

lung cancer, revealing that there is a higher
occurrence of lung cancer in those who have the
mentioned features than those who do not have the
features.

This work also presents a boxplot to show the
relationship between each feature and lung cancer,
as shown in Fig. 6. The results of the boxplot of
gender by lung cancer status showed that lung
cancer affects both genders. The results of age by
lung cancer status revealed that there is a very high
occurrence of lung cancer within the age range of
55—68 years. The results of smoking, anxiety, yellow
fingers, fatigue, chronic disease, chest pain, and
shortness of breath based on lung cancer status
showed that the higher the mentioned features, the
higher the risk of having lung cancer. That is, they
contribute to the risk factor of having lung cancer.
The results of peer pressure and coughing by lung
cancer status indicate that they have an impact on
the risk of having lung cancer. The results of the
boxplot of allergy, wheezing, alcohol consumption,
and swallowing difficulty showed that they have
little or no impact on the risk of lung cancer.
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Fig. 5. Visualization of the distribution of binary features against lung cancer.

3.3. Results of the meta-ensemble model
development and simulation

This section presents the meta-ensemble model
that is needed to predict the risk of lung cancer
according to the framework after the data have been
identified and described. The Python simulation

environment was used to develop the meta-
ensemble using Google Colaboratory (collab), from
which the model was developed. The dataset was
loaded from upload to session storage into the
simulation environment, and all the necessary li-
braries were imported from Ski Kit-Learn (Sklearn).
The base classifiers and the meta-classifiers were
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Fig. 5. (Continued).

also imported by using the three identified ML en-
sembles as base classifiers while using one of them
as a meta-classifier.

3.3.1. The meta-ensemble model Simulation's results
The meta-ensemble model was simulated using

the model that the Python simulation environment

offered by using Random Forest, AdaBoost, and

Gradient Boosting as the base learners, while
Gradient Boosting was used as the meta-classifier
using the 5-fold cross-validation training process.
As a result, the final meta-ensemble model for lung
cancer risk prediction was created using the pre-
dictions supplied by the base learners as the input
for the gradient boosting algorithm. The model
operated for 3 s, with a meta-ensemble accuracy of
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100%. The confusion matrix of the ensemble models
is presented in Fig. 7. The confusion matrix of the
models was also plotted using Seaborn, as shown in
Fig. 8.

Similarly, when Random Forest, AdaBoost, and
Gradient Boosting were used as the base learner
while Random Forest was used as a meta-learner,
and when Random Forest, AdaBoost, and Gradient
Boosting were used as the base classifiers while
AdaBoost was used as a meta-classifier, they gave
the meta-ensemble accuracy of 99.1% and 98.1%,
respectively. Also, when Gradient Boosting and
AdaBoost were adopted as base learners while
Random Forest was adopted as the meta-classifiers,
Random Forest and AdaBoost were adopted as base
classifiers while Gradient Boosting was a meta-
classifier, and when Random Forest and Gradient
Boosting were adopted as base classifiers while
AdaBoost was a meta-classifier, they had a meta-
ensemble accuracy of 96.3%, 100%, and 97.2%,

respectively. The meta-ensemble accuracy of the
above models revealed that gradient boosting ach-
ieved the best meta-ensemble accuracy using the 3
ensembles as base learners, after which was
Random Forest followed by AdaBoost, and also that
gradient boosting achieved the best meta-ensemble
accuracy using 2 ensembles as base learners, after
which was Random Forest followed by AdaBoost, as
shown in Table 3.

3.3.2. Model validation results using performance
evaluation measures

Several performance evaluation measures, which
were generated from the confusion matrices of the
simulation results, were used to assess the valida-
tion outcomes of the three ensemble models. The
number of accurate predictions, accuracy (expressed
as a percentage), precision, recall, fl_score, and
AUC ROC curves were used to access the model
validation findings. The ensemble with the highest
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values for fl_score, AUC ROC curves, accuracy,
precision, recall, and correct predictions is the best
model. Table 4 presents an overview of the findings
from the model validation process for the three
ensemble models created using the performance
evaluation metrics.

Out of the 276 dataset records utilized in this
study, the Random Forest model produced 275 ac-
curate classifications and 1 wrong one. The accurate
classification consisted of 238 positive and 37 nega-
tive cases, while the inaccurate classification con-
sisted of 1 negative case as positive and 0 positive
cases as negative cases. The model accuracy, preci-
sion, recall, f1_score, and AUC were 99.1%, 100%,
98.2%, 99.1%, and 100%, respectively.

The results of the gradient boosting model had
274 accurate and 2 inaccurate classifications out of
the 276 dataset records utilized in this study. The
accurate classification consisted of 237 positive and
37 negative cases, whereas the inaccurate classifi-
cation consisted of 1 negative case as positive and 1
positive case as negative. The model accuracy,

precision, recall, fl_score, and AUC were 97.2%,
100%, 95%, 97.3%, and 100%, respectively.

Out of the 276 dataset records utilized in this
study, the AdaBoost model produced 257 accurate
classifications and 19 wrong ones. The accurate
classification consisted of 232 positive and 25
negative cases, whereas the inaccurate classifica-
tion consisted of 13 negative cases as positive and
6 positive cases as negative cases. The model ac-
curacy, precision, recall, f1_score, and AUC were
94%, 93.1%, 95%, 94%, and 98%, respectively. The
results of the area under the ROC curves showed
that random forest and gradient boosting had the
best AUC and outperformed the other third
ensemble model, as presented in Fig. 9.

This research focuses on developing a meta-
ensemble model for predicting the occurrence of
lung cancer. The conclusion of the experimental re-
sults after applying SMOTE with 5-fold cross-vali-
dation showed that the gradient boosting model
achieved a maximum performance of 100% when the
three ensembles were used as base classifiers and
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Fig. 7. Results of confusion matrix for ensemble models performance
evaluation.

Random Forest Confusion Matrix

Gradient Boosting Confusion Matrix

Table 3. Results of meta-ensemble accuracy.

Classifiers

Base Meta Accuracy (%)

RF RF 99.1
GB

AdaBoost

RF GB 100
GB

AdaBoost

RF AdaBoost 98.1
GB

AdaBoost

GB RF 96.3
AdaBoost

RF GB 100
AdaBoost

RF

GB Adaboost 97.2

Table 4. Results of validation of ensemble models.

Classifiers Accuracy Precision Recall F1_score AUC
(%) (%) (%) (%) (%)
Random Forest 99.1 100 98.2 99.1 100
Gradient Boosting 97.2 100 95 97.3 100
AdaBoost 94 93.1 95 94 98

the gradient boosting was used as a meta-classifier.
The main contribution of this proposed work is the
use of the meta-ensemble method to improve the
prediction performance of lung cancer occurrence in
individuals. The meta-ensemble method presented
in this study can be integrated into the existing
health information system to improve the decision-
making process of medical experts regarding the risk
of lung cancer among patients.

The weakness of this research paper is also
pointed out. This study used a publicly accessible
dataset rather than one sourced from a hospital unit
or institute, which could have provided more
diverse and detailed data. Moreover, obtaining ac-
cess to sensitive medical information is challenging
due to privacy concerns. Nevertheless, the dataset
we utilized had valuable features that enabled us
to produce dependable and accurate research
outcomes.

AdaBoost Confusion Matrix

v
1 0 1

Fig. 8. Results of confusion matrix using seaborn.
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4. Conclusion

This research paper exploits ensemble learning
models to develop a meta-ensemble method that
identifies individuals showing signs of lung cancer
by considering various features, such as symptoms.
Three ensemble models, including RF, GB, and
AdaBoost, were evaluated in terms of accuracy,
precision, F1 score, recall, and AUC in the Python
simulation environment. It was deduced from this
study that according to the description of the data-
set, the majority of patients who have lung cancer
risk were part of the patients within the age range of
40—79 years of age but patients within the age range
of 55—68 years have the highest occurrence of lung
cancer; males have a higher occurrence of lung
cancer than females; the higher the patients who are
smoking, have yellow fingers, chronic disease, anx-
iety, fatigue, chest pain, and shortness of breath the
higher the risk of having lung cancer; patients with
peer pressure and coughing affect lung cancer risk;
patients who have wheezing, allergy, alcohol
consuming, and swallowing difficulty have little or
no effect on the risk of lung cancer.

It was also concluded from the results that
adopting Gradient Boosting as a meta-ensemble
model achieved the overall best meta-ensemble
accuracy, which is shown in Table 3, followed by
Random Forest and then AdaBoost. Additionally,
the results of the validation metrics were also
compared, as seen in Table 4. Random Forest out-
performed the other two ensembles in terms of ac-
curacy, recall, and F1 score, followed by Gradient
Boosting and AdaBoost. In terms of precision and
AUC, both Random Forest and Gradient Boosting

have the highest performance, followed by Ada-
Boost. Therefore, this research's results out-
performed better compared to the models of
references shown in Table 1.

Future work can focus on other diseases such as
diabetes prediction, respiratory diseases through
lung sound analysis employing deep neural net-
works, heart failure prediction, and tackling other
ailments using machine learning algorithms for the
betterment of humanity.
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