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ORIGINAL STUDY

Enhanced Acousto-Optic Properties of Silicon
Carbide-Based Layered Structure

Namrata D. Soni

Department of Physics, Hansraj College, University of Delhi, Delhi, India

Abstract

This study investigates the feasibility of using silicon carbide-based layered surface acoustic wave (SAW) devices in
acousto-optic applications. The acousto-optic properties of the temperature-stable layered structure TeO5/SiC/128°Y-X
LiNDbO; are investigated through theoretical analysis. This analysis includes the evaluation of key parameters such as the
overlap integral, figure of merit, and diffraction efficiency. The SAW propagation characteristics and field profiles
required for these calculations are obtained using SAW software. Results show that the layered structure has high
diffraction efficiency of nearly 96% and a promising value for the acousto-optic figure of merit, indicating potential use
in low driving power acousto-optic devices. The study concludes that the 3C—SiC-based layered structure possesses
excellent acousto-optic properties and has potential for use in acousto-optic devices that can withstand harsh environ-

mental conditions.
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1. Introduction

he domain of photonics encompasses a variety

of acousto-optic devices such as tunable opti-
cal filters, modulators, Q-switches, optical de-
flectors, etc. [1—-5], which find applications in
diverse fields like optical metrology, neuroscience,
high content screening, military, agronomy, enter-
tainment, etc. [6—10]. The basic principle underlying
the functioning of an acousto-optic device is the
diffraction of an optical wave by a high-frequency
acoustic wave traveling on a piezoelectric crystal.
The efficacy of an acousto-optic device depends
upon the properties of the material medium on
which the acoustic wave propagates [11,12]. So far,
acoustic devices based on Lithium Niobate
(LiNbOs3), Lithium tantalate (LiTaOj3) single crystals,
and various layered structures like ZnO/SiO,/Si,
TeO,,x/LiNbO;, BeO/LiNbO;, LiNbOjz/Sapphire,
ZnO/Diamond, etc, have been investigated
[11,13—17]. With the advent of technology, multi-
layered acoustic devices are preferred over the sin-
gle crystal-based acoustic devices, as in the former,
various  properties like acoustic  velocity;

electromechanical coupling coefficient and temper-
ature coefficient of delay (TCD) can be easily tuned
according to the application's needs [18—20].

The field of acousto-optics has witnessed signifi-
cant advancements in recent years, primarily driven
by the development of novel film preparation
techniques and the utilization of advanced materials
such as silicon carbide (SiC), zinc oxide (ZnO), zinc
sulfide (ZnS), and perovskite-based materials
[21—26]. These advancements have revolutionized
the design and performance of acousto-optic wave
devices, offering numerous advantages over con-
ventional techniques and alternative systems. One
of the key advantages of the film preparation tech-
niques employed in the fabrication of acousto-optic
wave devices is their superior control over the film's
thickness, composition, and morphology [22]. These
techniques, which include methods like pulsed laser
deposition, chemical vapor deposition, and sol—gel
synthesis, enable precise engineering of the film
properties at the nano-scale. This level of control
allows for the optimization of the acousto-optic
interaction, resulting in enhanced device perfor-
mance and improved efficiency [22].
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Recent reports uncover the potential of silicon
carbide for usage in a multi-layered acoustic device
[26—29]. In 2018, Soni reported a temperature-stable
TeO3; (0.0072)/3C—SiC  (0.092)/128°Y-X LiNbOj;
multi-layered SAW configuration based on the
sturdy crystalline 3C—SiC material and found it
suitable for high-frequency applications as it pos-
sesses high values of acoustic velocity (~ 4390 ms™1)
and electromechanical coupling coefficient (~ 9.8%)
[27,30]. The layered structure is reported to become
temperature-stable at a normalized TeO; over-layer
thickness of 0.007A. There exist reports that
demonstrate the significant use of SiC in the field of
photonics and optoelectronics [31—33]. It has been
well established that relative to materials like zinc
oxide (ZnO), zinc sulphide (ZnS), and perovskite-
based materials, silicon carbide (SiC) has an edge
for acousto-optic wave devices due to its physical
properties; wide band-gap as this versatility ex-
pands the potential applications of SiC-based
acousto-optic devices across a broad range of
wavelengths; material availability and cost-effec-
tiveness; high acousto-optic interaction efficiency
[34]. The main focus of this research is to investigate
and analyses the acousto-optic characteristics of
thermally stable TeO; (0.0071)/3C—SiC (0.09%1)/
128°Y-X LiNbOj; multi-layered configuration. The
objective is to understand how this configuration
performs in terms of its acousto-optic properties.

Hence, in the present study, the acousto-optic
properties (figure of merit, diffraction efficiency) of
the thermally stable TeOj; (0.0071)/3C—SiC (0.091)/
128°Y-X LiNbO; layered acoustic device are
explored using theoretical calculations. The ther-
mally stable multi-layered configuration TeO3/
3C—SiC/128°Y-X LiNbO; is found to be very
promising, as it presents a high value of acousto-
optic figure of merit M = 8.56 x 10~** s* kg™* and
high diffraction efficiency.

2. Theoretical calculations

The present study theoretically investigates the
acousto-optic properties, i.e.,, figure of merit and
diffraction efficiency of a temperature-stable multi-
layered TeO; (0.0072)/3C—SiC  (0.0921)/128°Y-X
LiNbOj configuration (shown in Fig. 1(a)).

Fig. 1. (b) shows the coordinate system consid-
ered in the present study to estimate the acoustic
properties. Here, X; is the direction of propagation
of the surface wave whose amplitude vanishes as X3
tends to the negative of infinity. The requisite field
profile and acoustic wave propagation characteris-
tics of the TeO; (0.0071)/3C—SiC (0.09%)/128°Y-X
LiNbO; layered structure have been determined

using the surface acoustic wave simulation soft-
ware [35].

The material parameters, such as elastic constants,
density, refractive index, dielectric constant, and
photo-elastic constants, used in the present study,
have been listed in Table 1.

2.1. Acousto-optic figure of merit

The efficacy of an acousto-optic device is essen-
tially determined by its figure of merit. The figure of
merit for the layered structure is defined as follows
[17]:

n®Pp?
=2 1)
pv3
Here, P and n are the respective appropriate
photo-elastic tensor and refractive index of the

wave-guiding layer.
2.2. Qverlap integral
To gauge the interaction between the acoustic and

optical fields, the parameter employed is the overlap
integral | Tma (f) ‘ The expression for ’an(f)’ is given

by [42]:
2
/U X3 U (X3)Uade3:|
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Here, U,y = [p: Sa(xs) + 7 : EpUp(x3)].

where U, and U, represent the field distributions
of the diffracted and un-diffracted modes, respec-
tively. ‘p’ and ‘r’ are appropriate photo-elastic and
electro-optic tensors, respectively.

2.3. Diffraction efficiency

Another significant factor in estimating the effec-
tiveness of an acousto-optic device is its ability to
diffract the optical signal, i.e., diffraction efficiency,
which can be calculated as follows [42]:

2

, |siny/DE(F),” + (£324)°
V/DE(f),} + (401)?

DE=DE(f),

where L is the interaction length or acoustic aper-
ture, A is the free space optical wavelength, K is the
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Fig. 1. (a): Configuration of layered Acousto-optic device proposed in present work. (b): The coordinate system used in the present work.

momentum vector of SAW, and A® is the variation
of the incident wave from the Bragg angle.

D), = (1) mn e O (o)

Table 1. Material parameters used in present study.

Material
TeOj3 (Tellurium SiC (Silicon LiNbOj3 (Lithium
trioxide) Carbide) Niobate)
[14,40] [36,38,39] [37,41]
Elastic Constants (10" Nm~—?)
Ci1 0.14 3.95 1.98
Css 2279
Ces 0.728
Cyy 0.265 2.36 0.5965
Cio 1.23 0.5472
Cy3 0.6513
Cua 0.0788
Piezoelectric constant (Cm™?)
€33 1.77
€31 0.30
€15 3.69
(S/)) 2.42
€14 —0.349
Dielectric constant (10~** Fm™")
€11 23.7 7.01 45.6
€33 26.3
Density (Kg m™3)
p 4578 3210 4628
Photo-elastic constants
Pu 0.0074 ~0.108 ~0.021
Pia 0.187 —0.0276 0.060
Py 0.34 0.172
Pz 0.0905 0.141
Ps3 0.24 0.118
Py —-0.17 —0.087 0.121
Pes —0.043
Py —0.052
Py —0.109

Refractive index
n 2.2 25 23

The acousto-optic diffraction efficiency varies
directly with the overlap | (f)| between the
acoustic and optical fields.

Equations (2), (3) and (4) are solved using a pro-
gram written in the C language to calculate the
overlap integral and hence the diffraction efficiency.

3. Result and Discussion

3.1. Figure of merit

The temperature-stable TeOz (0.0071)/3C—SiC
(0.091)/128°Y-X LiNbOj; multi-layered configuration
exhibits a high value of the figure of merit, i.e.,
M =856 x 10 ** s> kg "

The value of the acousto-optic figure of merit
obtained in this study is compared with that of some
well-known materials or layered structures used in
acousto-optic devices. The comparison is presented
in Table 2.

The temperature-stable multi-layered configura-
tion TeO3/3C—SiC/128°Y-X LiNbOj3 exhibits remark-
able acousto-optic properties, as highlighted in
Table 2. In fact, it boasts the highest reported acousto-
optic figure of merit among the various materials or
layered structures examined. The figure of merit for
this configuration is nearly seven times higher than
that of the commonly used acousto-optic crystal,
Tellurium dioxide (M = 1143.8 x 10 ° §* kg ™) [45].

Table 2. AO Figure of merit of various acousto-optic materials or multi-
layered structures reported earlier and in present study.

Acousto-optic material/ AO Figure Reference
layered structure of Merit

x1075 &8 Kg’l)
LiNbO; 12.9 [43]
TeO, 1143.8 [44]
ZnO/AIN/Sapphire 3000.0 [42]

TeO3/3C—SiC/128°Y-X LiNbO3 8560.0 (Present work)
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This exceptional value of the acousto-optic figure
of merit signifies the potential of the TeO5;/3C—SiC/
128°Y-X LiNbOj configuration in the development
of high-performance acousto-optic devices. The
high figure of merit indicates that this configuration
can effectively modulate light with minimal power
requirements, making it highly desirable for en-
ergy-efficient acousto-optic applications.

These findings underscore the significance of the
proposed TeO5/3C—SiC/128°Y-X LiNbO; multi-
layered configuration in the field of acousto-optics.
Its superior acousto-optic figure of merit positions it
as a promising candidate for the design and
implementation of advanced acousto-optic devices
that demand low driving power. This configuration
holds considerable potential for a range of acousto-
optic applications, further emphasizing its techno-
logical importance and the possibilities it brings to
the field.

3.2. Overlap integral

The overlap integral of the TeO3/3C—SiC/128°Y-
X LiNbOj; multi-layered configuration is calculated
using Equation (2) by varying the acoustic depth
from 0 to 0.1A. Fig. 2 shows the variation of the
overlap integral factor with the normalized acoustic
depth. Our results indicate that the greatest over-
lap between the acoustic and optical fields occurs
in the absence of temperature-compensated TeO;
over-layer. With the integration of TeOj; layer, the
overlap integral factor slightly decreases, which
may be due to the integration of the over-layer
stiffening the surface and raising the stress,
altering the potential at the interface [46]. The
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Fig. 2. Overlap integral factor as a function of normalized acoustic depth
(-X3) in TeOs (0.0072)/3C—SiC (0.094)/128°Y-X LiNbO3 multi-layered
configuration.

higher value of overlap integral near the surface
suggests higher diffraction efficiency at lower
penetration depth.

3.3. Diffraction efficiency

The diffraction efficiency of the TeO; (0.0071)/
3C—SiC  (0.09%)/128°Y-X LiNbO; multi-layered
configuration is calculated as a function of normal-
ized penetration depth (-X3) using equation (3). The
results show that the maximum value of diffraction
efficiency (approximately 96.1%) is obtained at the
top of the silicon carbide layer, and it decreases
slightly (within 4%) with the addition of the tem-
perature-compensated TeO; over-layer. This
reduction in diffraction efficiency is insignificant
and can be overlooked for a "thermally stable" TeO;
(0.0070)/3C—SiC  (0.092)/128°Y-X LiNbO; multi-
layered acoustic device. Therefore, the results sug-
gest that this multi-layered configuration is an
effective device for acousto-optic applications, with
a diffraction efficiency of approximately 96.1%.

4. Conclusion

In conclusion, the investigated TeOz (0.0071)/
3C-SiC  (0.09%)/128°Y-X LiNbO; multi-layered
configuration demonstrates significant potential as
an efficient and low-power acoustic-optic device.
The obtained acousto-optic figure of merit
(M = 856 x 107" s> kg™ ") and high diffraction ef-
ficiency  (96.1%)  highlight its favourable
performance.

Comparatively, when compared to earlier estab-
lished materials and layered structures commonly
used in acousto-optic devices, the TeO; (0.007%)/
3C—SiC (0.091)/128°Y-X LiNbOj; configuration
showcases competitive advantages. It offers tem-
perature stability and enables precise control of the
acousto-optic interaction. In contrast to single crys-
tal-based acoustic devices, the multi-layered
configuration allows for tunability of key properties
such as acoustic velocity, electromechanical
coupling coefficient, and temperature coefficient of
delay.

Furthermore, the TeOs (0.0072)/3C—SiC (0.090)/
128°Y-X LiNbOj; configuration outperforms certain
well-known materials in terms of its acousto-optic
figure of merit and diffraction efficiency. These re-
sults emphasize its potential for advanced acousto-
optic applications, offering improved performance
and energy efficiency.

Overall, the TeO; (0.0072)/3C—SiC (0.091)/128°Y-X
LiNbO; multi-layered configuration exhibits prom-
ising features that position it as a compelling choice



52 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2023;3:48—53

for the development of next-generation acousto-
optic devices, surpassing some conventional mate-
rials and layered structures in terms of performance
and tunability. It not only exhibits excellent acousto-
optic performance but also offers the advantage of
requiring low driving power. Its suitability for
various applications in fields such as telecommuni-
cations, imaging, sensing, and optical signal pro-
cessing makes it an attractive option for further
exploration and utilization in practical scenarios.
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