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ORIGINAL STUDY

Some Concepts Related to Supra Soft v� Open

Yasmin A. Hamid*, Luma S. Abdalbaqi

Department of Mathematics, College of Education for Women, Tikrit University, Iraq

Abstract

This article introduce a new idea in the field of topological space which is supra soft v� open set and this concept is
another generalization of a soft open set as well as the concept of supra soft v� closure is studied. Furthermore, the
notion of supra soft v� interior is introduced and some properties of this concept were discussed. Finally, the concept of
supra soft v� exterior is introduced and basic properties of this concept are investigated.

Keywords: Open set, Open, Interior point and closure

1. Introduction and basic concepts

G eneral topology normally considers local
properties of spaces, and is closely related to

analysis.
The concept of supra topological space was pro-

posed by Mashhour [1] in 1983 as a generalization of
the concept of topological space.
Soft set theory is a tool for solving problems with

uncertainty, the concept of soft set was first intro-
duced by Molodtsov [2] in 1999.
The concept of soft topology was studied by Kar-

ata in 2011 [3].
The concept of supra soft topological space was

studied by El-Sheikh and El-latif [4] in 2014 as a ge-
neralization of the concept of soft topological space.
The concept of an v� open set was first introduced

in 2023 by Sameer and Abdalbaqi [5].
The concept of semi-open set was studied by

Levine [6] in 1963 which is a generalization of an
open set.
The notion of a � open set was studied in Ref. [7]

as a generalization of open set, where H⊆ X is a a e
open iff H⊆ðintðclðintðHÞÞÞÞ.
The idea of b � open set was studied in

Ref. [8], where H⊆X is a b e open iff H⊆
ðclðintðclðHÞÞÞÞ.
The main contribution in the spaces of supra soft

topology are studying by Al-shami in 2019 [9,10] and
2022 [11].

In this paper we introduce and study the concept
of supra soft v� open set another generalization of
an open set.
Let X be a universal set and E is a set of param-

eters. If S ~E is a universal soft set and f Fkgk2J,
k � 2, be a collection of supra soft topologies on S ~E

and S V ~⊆ S ~E . Then S V is called supra soft v�
open set in S ~E if there is S T2

T
k2J

Fk such that

S Fs S T ~⊆S V where S V sS F and S T ¼ S F

where S V ¼ S F. The set of all supra soft v� open
in S ~E is denoted by S vOS

~E
and (X ;S vOS

~E
;E ) is

called supra soft v� space
The complement of a supra soft v� open set is

called supra soft v� closed set and the set of all
supra soft v� closed is denoted by S vCS

~E
.

2. The main results

Definition (2.1). Let (X ;S vOS
~E
;E ) be a supra soft

v� space. A supra soft v� closure of S V ~⊆S ~E is
denoted by clS vðS V Þ and defined as the intersec-
tion of all supra soft v� closed sets that contains S V .

Theorem (2.2). clS vðS V Þ is the smallest supra soft
v� closed set that contain S V .

Proof. An arbitrary intersection of supra soft v�
closed sets is a supra soft v� closed, so we get
clS vðS V Þ is a supra soft v� closed set.
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S V ~⊆clS vðS V Þ by the definition of clS vðS V Þ.
Let S V

* be a supra soft v� closed set that contain
S V . Then S V

* includes the intersection of all
supra soft v� closed sets that contains S V . Hence,
clS vðS V Þ~⊆S V

*. This completes the proof.

Corollary (2.3). Suppose that S V ~⊆S ~E , then S V is
a supra soft v� closed if and only if S V ¼
clS vðS V Þ.

Theorem (2.4). If ðX ;S vOS
~E
;E Þ is supra soft v�

space and S V 1 ;S V 2
~⊆S ~E . Then

1. S V 1
~⊆S V 2 , then clS vðS V 1Þ~⊆clS vðS V 2Þ:

2. clS vðS V 1
~SS V 2Þ ¼ clS vðS V 1Þ ~

S
clS vðS V 2Þ:

3. clS vðS V 1
~TS V 2Þ~⊆clS vðS V 1Þ ~

T
clS vðS V 2Þ.

4. clS vðclS vðS V ÞÞ ¼ clS vðS V Þ, for any S V ~⊆S ~E :
5. clS vðS fÞ ¼ S f and clS vðS ~E Þ ¼ S ~E .

Proof.
1. Since clS vðS V 2Þ is a supra soft v� closed set that

contain S V 2 and S V 1
~⊆S V 2 , then clS vðS V 2Þ is

a supra soft v� closed set that contain S V 1 , but
clS vðV 1Þ is the smallest supra soft v� closed that
contain S V 1 , thus clS vðS V 1Þ~⊆clS vðS V 2Þ.

2. Since S V 1
~⊆S V 1

~SS V 2 and S V 2
~⊆S V 1

~SS V 2 ,
then by [1] we get, clS vðS V 1Þ~⊆clS vðS V 1

~SS V 2Þ
and clS vðS V 2Þ~⊆clS vðS V 1

~SS V 2Þ. So, we have
clS vðS V 1Þ ~

S
clS vðS V 2Þ~⊆clS vðS V 1

~SS V 2Þ.
Now, clS vðS V 1Þ, clS vðS V 2Þ are supra soft v�
closed sets that contains S V 1 ;S V 2 respectively,
then clS vðS V 1Þ ~

S
clS vðS V 2Þ is a supra soft v�

closed set that contains S V 1
~SS V 2 , but

clS vðS V 1
~SS V 2Þ is the smallest supra soft v�

closed set that contain S V 1
~SS V 2 , thus

clS vðS V 1
~SS V 2Þ~⊆clS vðS V 1Þ ~

S
clS vðS V 2Þ: This

is completes the proof.
3. Since S V 1

~TS V 2
~⊆S V 1 and S V 1

~TS V 2
~⊆S V 2 ,

then by [1] we get, clS vðS V 1
~TS V 2Þ~⊆clS vðS V 1Þ

and clS vðS V 1
~TS V 2Þ~⊆clS vðS V 2Þ. So, we have

clS vðS V 1
~TS V 2Þ~⊆clS vðS V 1Þ ~

T
clS vðS V 2Þ.

4. Since clS vðclS vðS V ÞÞ is a supra soft v� closed
set that contain clS vðS V Þ and S V ~⊆clS vðS V Þ,
then clS vðclS vðS V ÞÞ is a supra soft v� closed
that contain S V . But clS vðV Þ is the smallest
supra soft v� closed that contain S V . Thus
clS vðS V Þ~⊆clS vðclS vðS V ÞÞ: Clearly
clS vðclS vðS V ÞÞ~⊆clS vðS V Þ. Consequentially,
clS vðclS vðS V ÞÞ ¼ clS vðS V Þ.

5. Direct.

Definition (2.5). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S V ~⊆S ~E . A point d 2X is a supra

soft v� limit point of S V if ðS M � S d Þ
~T S V sS f cS M 2S vOS

~E
containing d .

The set of all supra soft v� limit points of S V is
denoted by DS vðS V Þ.

Theorem (2.6). Let S V ~⊆S ~E . Then S V is supra
soft v� closed if and only if DS vðS V Þ~⊆S V .

Proof. Assume S V is supra soft v� closed and
d 2DS vðS V Þ. If d ;S V , then d 2S V

c, but S V
c

2S vOS
~E
, then ðS V

c � S d Þ ~
T

S V ¼ S f, which

implies that d ; DS vðS V Þ contradiction. Hence
d 2S V and DS vðS V Þ~⊆S V :

Conversely: suppose DS vðS V Þ~⊆S V . To prove S V

is supra soft v� closed, we must prove
S V

c2S vOS
~E
. Now, let d 2S V

c, then d ;S V ,

hence d ; DS vðS V Þ, thus d S M 2S vOS
~E

con-

taining d s.t ðS M � S d Þ ~
T

S V ¼ S f.
Thus S M

~T S V ¼ S f since d ;S V . Consequen-
tially, S M ~⊆S V

c. This completes the proof.

Theorem (2.7). Let S V ~⊆S ~E . Then DS vðS V Þ is a
supra soft v� closed.

Proof. To prove DS vðS V Þ is a supra soft v� closed,
we must prove DS vðDS vðS V ÞÞ⊆DS vðS V Þ. Let
d 2DS vðDS vðS V ÞÞ. Then d is a
supra soft v � limit point of DS vðS V Þ. Hence
ðS M � S d Þ ~T DS vðS V Þsf cS M 2S vOS

~E
con-

taining d , thus ðS M � S d Þ ~T S V sS f

cS M 2S vOS
~E
containing d , which implies d is a

supra soft v� limit point of S V that is
d 2DS vðS V Þ. Therefore DS vðS V Þ is a supra soft
v� closed.

Theorem (2.8). If S V ~⊆S ~E . Then S V
~SDS vðS V Þ

is a supra soft v� closed.

Proof. To prove S V
~SDS vðS V Þ is a supra soft v�

closed, we must prove ðS V
~SDS vðS V Þ Þ c is a

supra soft v� open.
Let d 2ðS V

~SDS vðS V Þ Þ c. Then
;S V

~SDS vðS V Þ, thus d ;S V and
d ;DS vðS V Þ. This implies that there is
S M 2S vOS

~E
containing d such that ðS M � S d Þ

~T S V ¼ S f, but d ;S V , then S M
~T S V ¼ S f.
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We claim that S M
~T DS vðS V Þ ¼ S f. Let z2 S M ,

since S M
~T S V ¼ S f, then ðS M � S z Þ ~

T
S V ¼

S f, hence z;DS vðS V Þ.
Thus S M

~T DS vðS V Þ ¼ S f.
Now, S M

~T½S V
~SDS vðS V Þ � ¼ ½S M

~T V � ~S ½S M
~T DS vðS V Þ� ¼ S f.
Then S M ~⊆½S V

~SDS vðS V Þ � c. Hence proved.

Theorem (2.9). clS vðS V Þ ¼ S V
~SDS vðS V Þ for

any S V ~⊆S ~E :

Proof. From Theorem (2.8), we have
S V

~SDS vðS V Þ is a supra soft v� closed. Since
S V ~⊆S V

~SDS vðS V Þ, but by Theorem (2.2), we
have clS vðS V Þ is the smallest supra soft v� closed
that contain S V . Then clS vðS V Þ~⊆
S V

~SDS vðS V Þ. To prove
S V

~SDS vðS V Þ~⊆clS vðS V Þ. Since S V ~⊆clS vðS V Þ,
then it only remains to prove DS vðS V Þ~⊆clS vðS V Þ,
that is we must prove DS vðS V Þ~⊆fT

i2І
fS V i : S V i is

supra soft v� closed that contains S V g.
Let d 2DS vðS V Þ. Then ðS M � S d Þ ~T S V sS f

cS M 2S vOS
~E
containing d . Hence ðS M � S d Þ

~T S V isS f cS M 2S vOS
~E
containing d , ci2 І.

Thus d 2DS vðS V i Þ. But S V i is supra soft v�
closed set ci2І, then by Theorem (2.6), we have
ci2І; DS vðS V i Þ~⊆S V i , hence ci2І,
d 2S V i

~⊆S V .

Thus d 2fT
i2І

fS V i : S V i is supra soft v� closed that

contains S V g that is d 2 clS vðS V Þ which implies
that DS vðS V Þ~⊆clS vðS V Þ.
So, we have S V

~SDS vðS V Þ~⊆clS vðS V Þ:
Therefore, clS vðS V Þ ¼ S V

~SDS vðS V Þ.

Example (2.10). Let X ¼ fu1; u2; u3g and E ¼ fe1;
e2g. Then

Where:

S V 1 ¼fðe1;fu1gÞ; ðe2;fu2g Þg;

S V 2 ¼fðe1;fu1gÞ; ðe2;fu1;u2g Þg;

S V 3 ¼fðe1;fu1gÞ; ðe2;fu2;u3g Þg;

S V 4 ¼fðe1;fu1gÞ; ðe2;X Þg

S V 5 ¼fðe1;fu1;u2gÞ; ðe2;fu2g Þg;

S V 6 ¼fðe1;fu1;u3gÞ; ðe2;fu2g Þg

S V 7 ¼fðe1;X Þ; ðe2;fu2g Þg;

S V 8 ¼fðe1;fu1;u2gÞ; ðe2;fu1;u2g Þg;

S V 9 ¼fðe1;fu1;u2gÞ; ðe2;fu2;u3g Þg;

S V 10 ¼fðe1;fu1;u3gÞ; ðe2;fu1;u2g Þg;

S V 11 ¼fðe1;fu1;u3gÞ; ðe2;fu2;u3g Þg;

S V 12 ¼fðe1;fu1;u2gÞ; ðe2;X Þg;

S V 13 ¼fðe1;fu1;u3gÞ; ðe2;X Þg;

S V 14 ¼fðe1;X Þ; ðe2;fu2;u3g Þg;

S V 15 ¼fðe1;X Þ; ðe2;fu1;u2g Þg;

S V 16 ¼fðe1;fu2;u3gÞ; ðe2;fu1;u3g Þg;

S V 17 ¼fðe1;fu2;u3gÞ; ðe2;fu3g Þg

S V 18 ¼fðe1;fu2;u3gÞ; ðe2;fu1g Þg;

S V 19 ¼fðe1;fu2;u3gÞg;

S V 20 ¼fðe1;fu3gÞ; ðe2;fu1;u3g Þg;

S V 21 ¼fðe1;fu2gÞ; ðe2;fu1;u3g Þg

~PðF ~E
Þ¼

8>>>>>><
>>>>>>:

S F;S ~E
;S V 1 ;S V 2 ;S V 3 ;S V 4 ;S V 5 ;S V 6 ;S V 7 ;S V 8 ;S V 9 ;S V 10 ;

S V 11 ;S V 12 ;S V 13 ;S V 14 ;S V 15 ;S V 16 ;S V 17 ;S V 18 ;S V 19 ;S V 20 ;
S V 21 ;S V 22 ;S V 23 ;S V 24 ;S V 25 ;S V 26 ;S V 27 ;S V 28 ;S V 29 ;S V 30 ;
S V 31 ;S V 32 ;S V 33 ;S V 34 ;S V 35 ;S V 36 ;S V 37 ;S V 38 ;S V 39 ;S V 40 ;

S V 41 ;S V 42 ;S V 43 ;S V 44 ;S V 45 ;S V 46 ;S V 47 ;S V 48 ;S V 49 ;S V 50 ;S V 51 ;
S V 52 ;S V 53 ;S V 54 ;S V 55 ;S V 56 ;S V 57 ;S V 58 ;S V 59 ;S V 60 ;S V 61 ;S V 62

9>>>>>>=
>>>>>>;
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S V 22 ¼fðe2;fu1;u3g Þg;

S V 23 ¼fðe1;fu3gÞ; ðe2;fu3g Þg;

S V 24 ¼fðe1;fu3gÞ; ðe2;fu1g Þg;

S V 25 ¼fðe1;fu2gÞ; ðe2;fu3g Þg;

S V 26 ¼fðe1;fu2gÞ; ðe2;fu1g Þg;

S V 27 ¼fðe1;fu3gÞg;

S V 28 ¼fðe1;fu2gÞg;

S V 29 ¼fðe2;fu1g Þg;

S V 30 ¼fðe2;fu3g Þg;

S V 31 ¼fðe1;fu1gÞg

S V 32 ¼fðe2;fu2gÞg

S V 33 ¼fðe1;fu1;u2gÞg

S V 34 ¼fðe1;fu1;u3gÞg

S V 35 ¼fðe2;fu1;u2gÞg

S V 36 ¼fðe2;fu2;u3gÞg

S V 37 ¼fðe1;X Þg

S V 38 ¼fðe2;X Þg

S V 39 ¼fðe1;fu1gÞ; ðe2;fu1g Þg;

S V 40 ¼fðe1;fu1gÞ; ðe2;fu3g Þg

S V 41 ¼fðe1;fu1;u2gÞ; ðe2;fu3g Þg;

S V 42 ¼fðe1;fu2gÞ; ðe2;fu3g Þg

S V 43 ¼fðe1;fu2gÞ; ðe2;fu2g Þg;

S V 44 ¼fðe1;fu3gÞ; ðe2;fu1;u2g Þg

S V 45 ¼fðe1;fu3gÞ; ðe2;fu2g Þg;

S V 46 ¼fðe1;fu2gÞ; ðe2;fu1;u2g Þg

S V 47 ¼fðe1;fu2gÞ; ðe2;fu2;u3g Þg

S V 48 ¼fðe1;fu1;u2gÞ; ðe2;fu1;u3g Þg

S V 49 ¼fðe1;fu1;u3gÞ; ðe2;fu1;u3g Þg

S V 50 ¼fðe1;fu2;u3gÞ; ðe2;fu1;u2g Þg

S V 51 ¼fðe1;fu2;u3gÞ; ðe2;fu2;u3g Þg

S V 52 ¼fðe1;fu2;u3gÞ; ðe2;fu2g Þg

S V 53 ¼fðe1;fu2gÞ; ðe2;fu2;u3g Þg

S V 54 ¼fðe1;fu3gÞ; ðe2;fu2;u3g Þg

S V 55 ¼fðe1;fu1;u2gÞ; ðe2;fu1g Þg

S V 56 ¼fðe1;fu1;u3gÞ; ðe2;fu1g Þg

S V 57 ¼fðe1;X Þ; ðe2;fu1g Þg

S V 58 ¼fðe1;X Þ; ðe2;fu3g Þg

S V 59 ¼fðe1;X Þ; ðe2;fu1;u3g Þg

S V 60 ¼fðe1;fu2gÞ; ðe2;X Þg

S V 61 ¼fðe1;fu3gÞ; ðe2;X Þg

S V 62 ¼fðe1;fu2;u3gÞ; ðe2;X Þg
Define F1, F2, F3 and F4 as follows:

F1¼fS F;S ~E
;S V 1 ;S V 9 g

F2¼fS F;S ~E
;S V 1 ;S V 48 ;S V 12 g

F3¼fS F;S ~E
;S V 1 ;S V 49 ;S V 13 g

F4¼fS F;S ~E
;S V 1 ;S V 50 ;S V 15 g

Then (X , F1;E ), (X , F2;E ) are supra soft spaces.
Now,

T4
k¼1 Fk ¼ fS F;S ~E ;S V 1g, so, we note that

S V 12
T4

k¼1 Fk and S V 1
~⊆S V i for all i ¼ 1;2;…;15,

then S V i for all i¼1,2,…,15 are supra soft v� open
It is clear that S F & S ~E supra soft v� open.
In the other hand, we note that S V 31 , S V 32 , …,
S V 62 are not supra soft v� open, because there is no
S T2

T4
k¼1 Fk such that S TsS F and S T ~⊆S V i ; i ¼

31; 32;…; 62. Thus,

S vOS
~E
¼
�
S F;S ~E

;S V 1 ;S V 2 ;S V 3 ;S V 4 ;S V 5 ;S V 6 ;S V 7 ;
S V 8 ;S V 9 ;S V 10 ;S V 11 ;S V 12 ;S V 13 ;S V 14 ;S V 15

�
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and

Therefore, (X ;S vOS
~E
;E ) is a supra soft v� space.

Now, clS vðS V 16Þ ¼ S V 16 and clS vðS V 32Þ ¼ S ~E

Proposition (2.11). Let X be a universal set and E is
a set of parameters with respect to X and let
f Fkgk2J, k � 2, be a collection of supra soft topol-
ogies on S ~E . If S T2Fk for all k2J, then

clFkðS T
cÞ¼ clS vðS T

cÞ¼S T
c:

Proof. Assume that S T2Fk for all k2J, then we
have S T2 S vOS

~E
, thus S T is a supra soft v� open,

therefore S T
c is a supra soft v� closed, so by Cor-

ollary (2.3), we have clS vðS T
cÞ ¼ S T

c:
Now, S T2Fk for all k2J, then S T is a supra soft
open set in (X , Fk; E ) for all k2J, that is S T

c is a
supra soft closed in (X , Fk; E ) for all k2J, thus
clFkðS T

cÞ ¼ S T
c.

Consequentially, clFkðS T
cÞ ¼ clS vðS T

cÞ ¼ S T
c.

Corollary (2.12). Let X be a universal set and E is a
set of parameters with respect to X and let f Fkgk2J,
k � 2, be a collection of supra soft topologies on S ~E .
If S T2

T
k2J

Fk.

Then cl

T
k2J

Fk

ðS T
cÞ¼S T

c¼ clS vðS T
cÞ:

Proof. Assume that S T2
T
k2J

Fk, then S T2Fk for all
k2J, hence by Proposition (2.11), we have
clFkðS T

cÞ ¼ S T
c ¼ clS vðS T

cÞ:
But, S T

c is a supra soft closed in (X , Fk, E ) for all
k2J, then S T

c is a supra soft closed in (X ,
T
k2J

Fk,

E ).

Therefore, cl

T
k2J

Fk

ðS T
cÞ ¼ S T

c ¼ clS vðS T
cÞ.

Definition (2.13). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S M ~⊆S ~E . A point d 2S M is called an
supra soft v� interior point of S M if there is S V 2
S vOS

~E
such that 2S V ~⊆ S M .

Definition (2.14). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S M ~⊆S ~E . The set of all supra soft v�
interior points of S M is called supra soft v� interior
of S M and is denoted by lntS vðS M Þ.

Theorem (2.15).
lntS vðS M Þ¼ f[

i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�

Proof. Assume d 2lntS vðS M Þ, then d is an supra
soft v� interior point of S M , hence there is
S V 2S vOS

~E
such that d 2S V ~⊆ S M . Now, S V

is a supra soft v� open such that S V ~⊆ S M . So, we

have d 2fS
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
.

Which is implies that,

lntS vðS M Þ~∢f[
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
:

Now, let

d 2fS
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
: Then

there is supra soft v� open S V
*, S V

*~⊆ S M such
that d 2S V

*, hence d 2 S M is an supra soft v�
interior point of S M , that is d 2lntS vðS M Þ. Thus
lntS vðS M Þ~⊇
fS
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
.

This completes the proof.

Theorem (2.16). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S M ~⊆S ~E . Then lntS vðS M Þ is the
largest supra soft v� open set contained in S M .

Proof. From Theorem (2.15), we have

lntS vðS M Þ¼ f[
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
:

The arbitrary union of supra soft v� open is also
supra soft v� open. Hence lntS vðS M Þ is a supra soft
v� open set.

S vCS
~E
¼
�
S F;S ~E

;S V 16 ;S V 17 ;S V 18 ;S V 19 ;S V 20 ;S V 21 ;S V 22 ;
S V 23 ;S V 24 ;S V 25 ;S V 26 ;S V 27 ;S V 28 ;S V 29 ;S V 30

�
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Let S V i is supra soft v� open and S V i
~⊆ S M ci2

І. Then

f[
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
~∢S M :

Hence, lntS vðS M Þ~⊆S M .
Now, let S V i

* be a supra soft v� open such that
S V i

*⊆ S M . Then

S V i
*~∢f[

i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
;

that is, S V i
*~⊆lntS vðS M Þ.

Therefore, lntS vðS M Þ is the largest supra soft v�
open contained in S M .

Theorem (2.17). S M is a supra soft v� open if and
only if lntS vðS M Þ ¼ S M .

Proof. Assume S M is a supra soft v� open. From
Theorem (2.16), we have lntS vðS M Þ~⊆S M . But S M

is a supra soft v� open & S M ~⊆S M and lntS vðS M Þ
is the largest supra soft v� open set contained in
S M . Then S M ~⊆lntS vðS M Þ. Hence lntS vðS M Þ ¼
S M .
Conversely: suppose that ln tS vðS M Þ ¼ S M . By
Theorem (2.16), we have lntS vðS M Þ is a supra soft
v� open set. This completes the proof.

Theorem (2.18). Let (X ;S vOS
~E
;E ) be supra soft v�

space and S M ;S N ~⊆S ~E . Then

1. If S M ~⊆S N , then lntS vðS M Þ~⊆lntS vðS N Þ.
2. lntS vðS M

~TS N Þ~⊆lntS vðS M Þ ~TlntS vðS N Þ.
3. lntS vðlntS vðS M ÞÞ ¼ lntS vðS M Þ.
4. lntS vðS fÞ ¼ S f and lntS vðS ~E Þ ¼ S ~E .

Proof.
1. Suppose that S M ~⊆S N . Since lntS vðS M Þ is a

supra soft v� open set contained in S M , then
lntS vðS M Þ is a supra soft v� open set contained
in S N . But lntS vðS N Þ is the largest supra soft
v� open set contained in S N , which implies to
lntS vðS M Þ~⊆lntS vðS N Þ:

2. Let d 2lntS vðS M
~TS N Þ, then d is an supra soft

v� interior point of S M
~TS N , hence there is

S V 2S vOS
~E

such that d 2S V ~⊆ S M
~TS N .

Thus d 2S V ~⊆ S M and 2S V ~⊆ S N , therefore
d is an supra soft v� interior point of
S M and S N . Thus d 2lntS vðS M Þ and d 2
lntS vðS N Þ.

Consequentially, d 2lntS vðS M Þ ~TlntS vðS N Þ.
Hence, lntS vðS M

~TS N Þ~⊆lntS vðS M Þ ~TlntS vðS N Þ
3. The proof follows from Theorem (3.16).
4. Since S f and S ~E are supra soft v� open sets,

then by Theorem (2.17), the results follows.

Proposition (2.19).
Let X be a universal set and E is a set of pa-
rameters with respect to X and let f Fkgk2J ,
k � 2, be a collection of supra soft topologies on
S ~E . If S T2Fk for all k2J, then

lntFkðS TÞ¼ lntS vðS TÞ¼S T :

Proposition (2.20).

If S T2
T
k2J

Fk. Then lnt

T
k2J

Fk

ðS TÞ ¼ lntS vðS TÞ.

Proof. The result is follows from Proposition (2.19).

Example (2.21). Let X ¼ fu1; u2; u3g and E ¼ fe1; e2;
e3g. Define F1, F2 as follows:

F1 ¼
�
S F;S ~E ; fðe1; fu1gÞ; ðe2; fu2g Þ; ðe3; fu3g Þg;
fðe1; fu1; u2gÞ; ðe2; fu2; u3g Þ; ðe3; fu2; u3g Þg

�
and

F2¼
�
S F;S ~E

;fðe1;fu3gÞ; ðe2;fu1g Þ; ðe3;fu2g Þg;
fðe1;fu1;u2gÞ; ðe2;fu2;u3g Þ; ðe3;fu2;u3g Þg

�
Then (X , F1;E ), (X , F2;E ) are supra soft topo-

logical spaces. Now,

F1

\
F2¼fS F;S ~E

;fðe1;fu1;u2g
�Þ; ðe2;fu2;u3g Þ; ðe3;fu2;u3g Þgg:
Consider:

S V 1 ¼fðe1;fu1;u2gÞ; ðe2;fu2;u3g Þ; ðe3;fu2;u3g Þg

S V 2 ¼fðe1;X Þ; ðe2;fu2;u3g Þ; ðe3;fu2;u3g Þg

S V 3 ¼fðe1;fu1;u2gÞ; ðe2;X Þ; ðe3;fu2;u3g Þg

S V 4 ¼fðe1;fu1;u2gÞ; ðe2;fu2;u3g Þ; ðe3;X Þg

S V 5 ¼fðe1;X Þ; ðe2;X Þ; ðe3;fu2;u3g Þg

S V 6 ¼fðe1;X Þ; ðe2;fu2;u3g Þ; ðe3;X Þg

S V 7 ¼fðe1;fu1;u2gÞ; ðe2;X Þ; ðe3;X Þg

Now, S V 12
T3

k¼1 Fk and S V 1
~⊆S V i for all i ¼ 1; 2;

…; 7, then S V i for all i ¼ 1; 2;…; 7 are supra soft v �
open.
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So, we have:

S vOS
~E
¼fS F;S ~E

;S V 1 ;S V 2 ;S V 3 ;S V 4 ;S V 5 ;
S V 6 ;S V 7g:

Now, S V 1 2Fk, for k ¼ 1; 2, then S V 1 2 F1
T
F2

and

lntFkðS V 1Þ ¼ S V 1 and lntF1

T
F2ðS V 1Þ ¼ S V 1 .

Also, lntS vðS V 1Þ ¼ S V 1 . This example verifies
Proposition (2.19) and Proposition (2.20).

Definition (2.22). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S M ~⊆S ~E . A point d 2S M is called an
supra soft v� exterior point of S M if there is S V 2
S vOS

~E
such that 2S V ~⊆ S M

c.

Definition (2.23). Suppose (X ; S vOS
~E
; E ) be a

supra soft v� space and S M ~⊆S ~E . The set of all
supra soft v� exterior point of S M is known as the
supra soft v� exterior of S M and is denoted by
extS vðS M Þ.

Theorem (2.24). Let (X ;S vOS
~E
;E ) be a supra soft

v� space and S M ~⊆S ~E . Then extS vðS M Þ ¼
lntS vðS M

cÞ.

Proof. Suppose that d 2extS vðS M Þ, then d is an
supra soft v� exterior point of S M , so there is
S V 2S vOS

~E
such that d 2S V ~⊆ S M

c, that is d is

a supra soft v� interior point of S M
c, hence d 2

lntS vðS M
cÞ, thus extS vðS M Þ~⊆lntS vðS M

cÞ.
Assume d 2lntS vðS M

cÞ, then d is a supra soft v�
interior point of S M

c, hence there is S V 2S vOS
~E

such that d 2S V ~⊆ S M
c, thus by the definition of

the supra soft v� exterior we have d is a supra soft
v� exterior point of S M , hence d 2extvðS M Þ.
Therefore, extS vðS M Þ~⊇lntS vðS M

cÞ.
Hence, extS vðS M Þ ¼ lntS vðS M

cÞ.

Theorem (2.25). If S M ~⊆S ~E . Then extS vðS M
cÞ ¼

lntS vðS M Þ.

Proof. Assume that d 2extS vðS M
cÞ, then d is an

supra soft v� exterior point of S M
c, so there is

S V 2S vOS
~E

such that d 2S V ~⊆ðS M
cÞc, but

S M ¼ ðS M
cÞc which implies that d is an supra soft

v� interior point of S M , hence d 2lntS vðS M Þ, thus
extS vðS M

cÞ⊆lntS vðS M Þ.
Let d 2lntS vðS M Þ, then d is an supra soft v� inte-
rior point of S M , hence there is S V 2S vOS

~E
such

that d 2S V ~⊆S M . Now, S M ¼ ðS M
cÞc, then

d 2S V ~⊆ðS M
cÞc where S V 2S vOS

~E
, thus by the

definition of supra soft v� exterior we have d is a
supra soft v� exterior point of S M

c, thus
d 2extS vðS M

cÞ. Which implies that
extS vðS M

cÞ~⊇lntS vðS M Þ. Therefore, extS vðS M
cÞ ¼

lntS vðS M Þ.

Theorem (2.26). Assume S M ~⊆S ~E . Then
extS vðS M Þ ¼ ðclS vðS M ÞÞc.

Proof. Since

clS vðS M Þ ¼ gT
i2І fS V i : S V i is supra soft v �

closed that contains S M g,
then ðclS vðS M ÞÞc ¼ ð gT

i2І fS V i : S V iS V i is
supra soft v � closed and S M ~⊆S V i c i2ІgÞc
Now, S V i is supra soft v� closed and
S M ~⊆S V i c i2І, then S V i

c is a supra soft v�
open andS V i

c~⊆S M
c c i2І. Hence by De-Morgan

Laws we have:

ðclS vðS M ÞÞc¼ g[
i2І

�
S V i

c :S V i
c issuprasoftv�open

andS V i
c~∢S M

cci2І

�

But,
ln tS vðS M

cÞ ¼
gS
i2І

�
S V i

c : S V i
c is supra soft v�open

and S V i
c~⊆ S M

c ci2І

�
,

thus ðclS vðS M ÞÞc ¼ lntS vðS M
cÞ. But from Theorem

(2.24), we have
extS vðS M Þ ¼ lntS vðS M

cÞ. Hence extS vðS M Þ ¼
ðclS vðS M ÞÞc:

Corollary (2.27). Suppose S M ~⊆S ~E . Then
clS vðS M Þ ¼ ðextS vðS M ÞÞc.

Proof. The result follows by Theorem (2.26).

Proposition (2.28). If S M ~⊆S ~E . Then
ðclS vðS M ÞÞc ¼ lntS vðS M

cÞ.

Proof. The result direct by Theorem (2.24) and
Theorem (2.26).

3. Conclusions

The main results of this work are:

1 clS vðS V Þ is the smallest supra soft v� closed set
that contain S V .

2 clS vðS V Þ ¼ S V
~SDS vðS V Þ for any S V ~⊆S ~E :

3 lntS vðS M Þ ¼
gS
i2І

�
S V i : S V i is supra soft v�open

which contained in S M

�
.
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4 S M is a supra soft v� openif and only if
lntS vðS M Þ ¼ S M .

5 extS vðS M Þ ¼ lntS vðS M
cÞ.

6 If S M ~⊆S ~E . Then extS vðS M
cÞ ¼ lntS vðS M Þ.

With the ideas presented in this thesis, the
following are some ideas and suggestions problems
for the future works:

1. Studying some other concepts in supra soft v�
space such as pre-supra soft v� open, semi-
supra soft v� open, regular-supra soft v�
open, b- supra soft v� open, a- supra soft v�
open and trying to investigating their
relationship.

2. Introducing the concept of supra soft v� open in
fuzzy sets.

3. Studying the continuity, compactly and connec-
tivity in supra soft v� space.

4. Planning to be introduced the separation axioms
in supra soft v� space.
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