
Volume 4 Issue 2 Article 1

Parallel algorithm for testing the singularity of an N-th order matrix Parallel algorithm for testing the singularity of an N-th order matrix

Ehab Alasadi
Kerbala University: University of Kerbala madhatiyah, Babil IRAQ

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Alasadi, Ehab (2024) "Parallel algorithm for testing the singularity of an N-th order matrix," Al-Bahir: Vol. 4: Iss. 2,
Article 1.
Available at: https://doi.org/10.55810/2313-0083.1055

This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an
authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.iq.

https://bjeps.alkafeel.edu.iq/journal/
https://bjeps.alkafeel.edu.iq/journal/
https://bjeps.alkafeel.edu.iq/journal/vol4
https://bjeps.alkafeel.edu.iq/journal/vol4/iss2
https://bjeps.alkafeel.edu.iq/journal/vol4/iss2/1
https://bjeps.alkafeel.edu.iq/journal?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol4%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol4%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55810/2313-0083.1055
mailto:bjeps@alkafeel.edu.iq

Parallel algorithm for testing the singularity of an N-th order matrix Parallel algorithm for testing the singularity of an N-th order matrix

Source of Funding Source of Funding
No external funding

Conflict of Interest Conflict of Interest
No conflict of interest

Data Availability Data Availability
public available data

Author Contributions Author Contributions
The author solely contributed to all aspects of this work, including conceptualization, methodology, data
curation, software, formal analysis, writing – original draft preparation, review and editing, and project
administration.

This original study is available in Al-Bahir: https://bjeps.alkafeel.edu.iq/journal/vol4/iss2/1

https://bjeps.alkafeel.edu.iq/journal/vol4/iss2/1

ORIGINAL STUDY

Parallel Algorithm for Testing the Singularity of an
N-th Order Matrix

Ehab Abdulrazak Alasadi

Dept. Islamic Science, Kerbala University, Kerbala, 65001, Iraq

Abstract

Analyze the possibilities of implementing a parallel algorithm to test the singularity of the N-th order matrix. Design
and implement in (C/Cþþ) a solution based on sending messages between nodes using the PVM system library.
Distribute the load among the nodes such that the computation time is as small as possible. Find out how the execution
time and calculation acceleration depend on the number of nodes and the size of the problem (indicate the table and
graphs). Based on the results, estimate the communication latency, for what size the task is (well) scalable on the given
architecture, and what is the maximum size when the calculation is still bearable on the available architecture by divide
the program into master -slave model which is able to send tasks and collect the results to receive it by master computer.

Keywords: Pthread, PVM, Parallel program, Masteryslave model

1. Introduction

P VM to have big tasks and you could to dive it to
small tasks and collect the results to the master

Computer and display the result on the Screen the
aim of the research is how to reduce the exception
time when we have big tasks so the effective
methods to use the PVM its makes it possible to
develop applications on a set of heterogeneous
computers connected by network that appear logi-
cally to the users as single parallel computer, the
PVM offer the powerful set of process control and
dynamic recourses Management functions, its pro-
vides programmers with the library of routines for
initiation and termination of tasks synchronizations
and the alteration of virtual machine configuration
its also facilities messages passing vie number of
simple constructs, PVM application is made from
the number of tasks that cooperate to jointly provide
a solution to single problem a task may alternate
between computation and communication sequen-
tial tasks in which each task has its own locus of
control and Sequential tasks communication by ex-
change tasks. and what can the expected solution
can be affect ! network speed, processing speed,
Algorithm selection and number of nodes [1].

2. Program parameters

The research consists of five files:
master.c e the main part of the assignment.

Contains code running on the master node.
slave.c e contains code for other child nodes.
matrix.txt e input file, contains the matrix entered

in the format specified in the entry (the line of the
matrix corresponds to the line of the file and the
column values are separated by spaces or tabs).
Readme - Describes how to compile master.c and

slave.c files.
Dps.doc e documentation for implementation

and testing.

3. Program datasets

The matrix values entry using a text file contains
the matrix specified columns and rows (separated
by space or tabs) and uses “fopen” to real elements
from input text file and the result will be saved an
output text file:
//Master.c code
#include <stdio.h>
#include <pvm3.h>
#include <stdlib.h>
#include <math.h>

Received 15 October 2023; revised 19 November 2023; accepted 4 December 2023.
Available online 11 January 2024
E-mail address: ehab.a@uokerbala.edu.iq.

https://doi.org/10.55810/2313-0083.1055
2313-0083/© 2024 University of AlKafeel. This is an open access article under the CC-BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

mailto:ehab.a@uokerbala.edu.iq
https://doi.org/10.55810/2313-0083.1055
http://creativecommons.org/licenses/by-nc/4.0/

#include <string.h>
#include <malloc.h>
#include <time.h>
clock_t spust;
clock_t zastav;
clock_t cas ¼ 0;
double dlzka,priemer;
long nacitajn(){

long n ¼ 0;
FILE *in;
char cc,c;
if((in ¼ fopen(“matrix.txt","rt")) ¼¼ NULL)

{
printf(“miss open file.yn");
return 1;
}

while ((cc ¼ getc(in)) ! ¼ EOF){
if (cc ¼¼ 'yn') nþþ;
}
fclose(in);

return n;

4. Analysis

4.1. Basic terms

A distributed system is an application comprising
of several components running simultaneously on
different computers. These computers must be able
to communicate with each other and be able to work
independently.
Parallel computing is the simultaneous computa-

tion of one task on multiple processors in order to
speed up the calculation. The processor can be
either a CPU in a computer or a single node (com-
puter) in a distributed system. Distributed systems
are used for parallel computing in various branches
of science. In these systems, the task is divided into
several subtasks, which are independent of each
other, and these are then calculated simultaneously
on individual computers, thereby shortening the
calculation time. Such systems are either homoge-
neous or heterogeneous [11].

4.2. PVM

PVM (Parallel Virtual Machine) is a software
package that allows the creation of heterogeneous
computer clusters by connecting computers with
UNIX or Windows system, interconnected by a
network. This system is freely available, highly
portable and easy to use, which has contributed to
its widespread scientific use.

A PVM is a so-called message passing system, i.e.
system in which parallel tasks synchronize and ex-
change information by sending messages.
The PVM system itself consists of a daemon that

runs on each cluster node and a library that is
compiled into the user program. A program using
library services can be written in various program-
ming languages, the most commonly used of which
are C, Cþþ and FORTRAN. This library offers
functions for creating new tasks and well as for
communicating between them. The PVM daemon
then handles the physical execution of these tasks
and the transfer of messages [1].

4.3. Program architecture

Program divided tasks into master-slave will be
created. Master's task will be to Process input data
(number of nodes on which the computation will be
executed, dividing data for processing in slave
nodes, process the data from slave nodes and eval-
uate results (storing the results in files). The slave's
task will be to decide whether a matrix (sent by
master) is/is not a singular And to send the result
back to master, contains functions and code
executed by the master node. The parameter of this
program is the number of nodes. However, it is not
mandatory. If the number of nodes is not entered,
the default number of nodes ¼ 2 is selected. The
next step is to load the matrix using the main pro-
gram (mastro). Based on the entered number of
nodes, the program calculates how many columns
the slave will count and immediately sends the
assigned columns to it. This is repeated for each
slave. In order for the slave to start counting, it is
necessary to send it also pivots. Pivots are calculated
by the master and sent to all slaves who are still
participating in the calculation (see Fig. 1).
1- Request
2 - Process
3 -Reply
///Slave .c. code, master wait for the result from

slave
//int main (int argc, char ** argv) (see Fig. 2)
{
long i,j,k,n,sh,hh;
int my_tid ¼ pvm_mytid();
int master_tid ¼ pvm_parent();
pvm_recv(-1, �1);
pvm_upklong(& n,1,1);
pvm_upklong(& sh,1,1);
pvm_upklong(& hh,1,1);
double *matrix¼(double*)malloc(sizeof(double)*

(hh-sh)*n);

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87 81

for(j ¼ 0; j < hh-sh; jþþ) pvm_upkdouble
(matica þ j*n,n,1);
double *pivot¼(double *)malloc(n*sizeof(double));
for(;;)

{
pvm_recv(-1, �1);
pvm_upklong(& k,1,1);
pvm_upkdouble(pivot,n,1);

Fig. 1. Masteryslave model [6].

Fig. 2. Design flowchart.

82 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87

for (j ¼ 0; j < hh-sh; jþþ)
for (i ¼ k þ 1; i < n; iþþ)
matrix[j*n þ i] ¼ matrix[j*n þ i] - pivot[i] *

matrix[j*n þ k];
if (k � sh-1 && k < hh-1)
{

pvm_initsend(PvmDataDefault);
pvm_pkdouble(matrixþ(kþ1-sh)*n,n,1);
pvm_send(master_tid, 0);

}

if(k¼¼hh-1) pvm_exit();

}
pvm_exit();
return 0;
}

4.4. Known procedures for solving this problem

The determinant can be calculated in several
ways:
i- line number
j- column number

jAj¼
Xk

i¼1

aijCij; ð1Þ

M� matrix, which is created by overlapping
column j and row i

Cij≡ð�1ÞiþjMij ð2Þ
However, this algorithm is not suitable for

parallel processing.
Method by adjusting to the upper triangular

shape using the Gaussian elimination method and
multiplying the elements on the main diagonal:
We obtain this shape by applying:

� by multiplying the row by a non-zero constant c
� by exchanging two lines
� by adding c multiple of the row to the second
row

5. Proposal

The assignment gives me the task of determining
whether the entered matrix is singular. Because a
square matrix is singular if and only if its determi-
nant is equal to zero. It follows that it is necessary to
calculate the determinant. There are several
methods for calculating the determinant. I will use
the Gaussian elimination method to solve this
problem. The advantage of this method is the pos-
sibility to parallelizing the task.
Input: Square matrix (read from file).

Output: determinant of the matrix and compari-
son of the determinant with zero [9].

5.1. Algorithm

One main initialization task will be chosen,
creating as many subtasks as needed and sending
them a range of columns to work on. The column
range is assigned to the TID. Each task reads the
entire matrix from the input file. During the
Gaussian elimination method, the subtask holding
the current pivot calculates and sends the corre-
sponding number of multipliers to tasks with higher
TIDs. Then each task performs the necessary cal-
culations and sends its partial determinants to the
initialization task, which calculates the final size of
the determinant.
Algorithm start reading matrix from input text file

and program divided into Master-Slave parts [2].
The Master eSlave Model (PVM)

� PVM is not restricted to this model.
� Useful programming paradigm and simple to
illustrate

� The master calls pvm_mytid() to
1. Allow it to use the PVM system, and
2. Enable interprocessor communications
� It then call pvm_spawn() to execute a given
number of slave programs on other machines

� Each slave program must also call pvm_mytid()
to enable processor communications

� Subsequently, pvm_send() and pvm_recv() are
used to pass messages between processes

� When finished, all the PVM programs should
call pvm_ exit() to finish.

5.2. Synchronization

waits for tasks on nodes that are still computing to
be completed before each new pivot selection

5.3. Program environment

The Cþþ environment under the UNIX OS will
be used to develop algorithms for calculating the
singularity of the matrix.
Functions:
pvm_mytid find the id of the current job
pvm_parent find parent id
pvm_spawn starts the pvm application
pvm_upkstr extracts the message from the buffer
pvm_initsend initialize the broadcast buffer
pvm_pkstr places the string in the broadcast

buffer

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87 83

pvm_send send message to target process,
pvm_send send a message to the target process

specified by its tid
pvm_exit deletes the program from pvm, [10,12].

5.4. Data collection

Using functions
getrusage() - returns the time that the process has

consumed (either by executing its own program or
in the kernel). Of course, it does not include the time
when the process was not running at all (eg when it
was waiting) (see Tables 1 and 2).
clock_t times(struct tms *buf) does the same as the

previous one, but also returns the number of pro-
cessor ticks since the system was started premises.

6. Testing data

Several matrices were used for testing. The basic
matrix was 5 � 5, the result of which was known to
me and therefore it was used for functionality
testing.
Furthermore, the 50 � 50 matrix was used,. It was

launched every time 20 times but always with a
different number of connected nodes. The result
was then averaged.
The measurement was carried out using the

function clock_t times(struct tms *buf).

� Manual

Using the assignment is very simple. Only one
parameter was implemented, namely the number of

nodes. The input file must be called matrix.txt and
must be located in the same directory as the
compiled master [3].

6.1. Speedup and time calculations

The purpose of this study was to use application
software and hardware systems (see Fig. 5).

Speedup¼SP¼TSðnÞ
TPðnÞ

Efficiency of the parallel algorithm:

System efficiency¼EP¼ T1ðnÞ
m:TðnÞ

T1- Duration of a parallel algorithm running on
a single CPU.
Multiprocessors and minicomputers can be used

to solve enormous issues that require considerable
memory and time to complete, [4,8].
Matrix dimensions: 50 tested
On time measurement was she employed

function clock_t times(struct tms *buf by which is
possible to Obtain three times: real, user and
system.
I managed to test the mentioned matrix with a

dimension of 50 � 50 and a limited number of nodes
(specifically 1,4,10,15). For one node, the results are
very favorable because if the program detects that it
will be calculated on only one node, a separate
function is performed that does not use pvm and
sending messages, which is a great advantage with

Table 1. Time calculation when matrix dimension ¼ 50.

Number of nodes Number of cycles Real time (S) Average time
for 1 cycle (S)

1 20 0.03 0,0015
4 20 0.21 0,0105
10 20 0.12 0,006
15 20 0.25 0,0125

Table 2. Time calculation when Matrix dimensions: 50.

Number of nodes Number of cycles Real time (S) Average time
for 1 cycle (S)

20 1 0.03 0,0015
20 2 0.98 0,049
20 2 1.05 0,0525
10 2 0.52 0,052
5 2 0.24 0,048
10 3 0.59 0,059
10 3 0.58 0,058
5 4 0.61 0,061
5 5 0.3 0,06
5 6 0.28 0,056
5 8 0.31 0,062
5 10 0.33 0,066

84 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87

such a small matrix. Very good results were ob-
tained even when using 10 nodes [5,7].
Since I was not satisfied with the amount of data

collected, I decided to build my own network of
connected computers. A network consisting of five
nodes was successfully assembled. The shortcoming
of this network was that it was also used by other
users during testing, therefore the results are
somewhat distorted (see Fig. 4).
Since this case it was a used network, the best

results were detected for matrices that used the least
number of nodes. As the number of nodes
increased, so did the number of sent messages,
which extended the length of the calculation.

6.2. Evaluation of the results

Network of five nodes was created. This was used
during the calculation and therefore the results are
distorted. Especially when using multiple nodes that
generate multiple messages.
Acceleration: this calculated from the formula:
Acceleration ¼ calculation time on one node/

calculation time on n nodes.
The above figure was created from the previous

formula. In both cases, it is rather a slowdown
because the calculation time on one node is very low
due to the already mentioned circumstances (see
Fig. 3).

Fig. 3. Time dependance on the number of nodes.

Fig. 4. System acceleration.

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87 85

When Speedup¼SP¼TSðnÞ
TPðnÞ

Ts ¼ time at one process.
Tp:time at n process.

6.3. Other possible modifications, improvements,
notes

The main improvements should definitely include
the treatment of the program for working with
larger matrices, where the computing power of
distributed computers would be shown to a greater
extent. Furthermore, the size of the message sent
using the slave process could be reduced, which
would reduce the demands on the network used.

6.4. Program limitations

According to the research, the program will be
adapted to work with real numbers. Another limi-
tation will be the amount of dedicated memory per
array elements load and the maximum amount of
allocated memory.

7. Conclusion

A PVM is a software system that allows a group of
disparate computers to be used as a coherent and
flexible computing resource. Individual computers
can be connected by different types of networks
such as Ethernet, and FDDI, etc. the PVM utility
software runs on every computer in a user-specified
computer group and creates a unified, generic, and
powerful environment for programming distributed
applications. These can be used in various fields of
science and research.

Evaluation of the results, the program had to be
tested. Therefore, the network of 5 nodes was
created. This was used during the calculation and
therefore the results are distorted. Especially when
using multiple nodes that generate multiple mes-
sages. In these cases, it is rather a slowdown, since
the calculation time on one node is very low due to
the mentioned circumstances.

Conflict of interest

I hereby certify that there is not an actual conflict
of interest or potential for personal gain from any of
the organizations.

References

[1] Santos CMP, Aude JS. PM-PVM A portable multithreaded
PVM. In: Proceedings 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distrib-
uted Processing, IPPS/SPDP; 1999.

[2] Yang Tao. Lecture notes on parallel scientific computing
department of computer science university of California at
santa barbara. 1998.

[3] Geist Al, Adam Beguelin, Jack Dongarra, Jiang Weicheng,
Manchek Robert, Sunderam Vaidy. PVM: Parallel virtual
machine. The MIT Press; 1994.

[4] El-Rewini Hesham. Advance computer architecture and
parallel processing. NJ: John Wiley & Sons; 2005.

[5] Jordan HF, Jordan HE. Fundamentals of paralle computing.
Prentice Hall; 2002.

[6] Schneider electric, Master-Slave Principle, Digital image.
https://product-help.schneider-electric.com/ED/ES_Power/
NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/
DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_
Modbus_Protocol-2.htm#:~:text¼The%20master%2Dslave%
20principle%20is,at%20www.modbus.org. [Accessed 18
November 2023].

[7] Akl SG. The Design and analysis of parallel algorithms.
Englewood Cliffs, NJ: Prentice Hall; 1989.

[8] Gropp W, et al. The sourcebook of parallel computing.
Morgan Kaufmann; 2002.

Fig. 5. System Speedup.

86 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87

https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org
https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org
https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org
https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org
https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org
https://product-help.schneider-electric.com/ED/ES_Power/NT-NW_Modbus_IEC_Guide/EDMS/DOCA0054EN/DOCA0054xx/Master_NS_Modbus_Protocol/Master_NS_Modbus_Protocol-2.htm#:%7E:text=The%20master%2Dslave%20principle%20is,at%20www.modbus.org

[9] Joseph J, Fellenstein C. Grid computing. Prentice Hall; 2003.
[10] Craig J. MATH10212 linear algebra textbook, D. Poole, linear

algebra: a modern introduction. Thompson; 2006. ISBN 0-
534-40596-7.

[11] Maarten V, Andrew S. Distributed systems. third ed. Crea-
teSpace Independent Publishing Platform; 2017.

[12] Gederberg T. Parallel Processing using Parallel Processing
using PVM on a Linux Cluster. CENG 2007;6532.

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:80e87 87

	Parallel algorithm for testing the singularity of an N-th order matrix
	Recommended Citation

	Parallel algorithm for testing the singularity of an N-th order matrix
	Source of Funding
	Conflict of Interest
	Data Availability
	Author Contributions

	Parallel Algorithm for Testing the Singularity of an N-th Order Matrix
	1. Introduction
	2. Program parameters
	3. Program datasets
	4. Analysis
	4.1. Basic terms
	4.2. PVM
	4.3. Program architecture
	4.4. Known procedures for solving this problem

	5. Proposal
	5.1. Algorithm
	5.2. Synchronization
	5.3. Program environment
	5.4. Data collection

	6. Testing data
	6.1. Speedup and time calculations
	6.2. Evaluation of the results
	6.3. Other possible modifications, improvements, notes
	6.4. Program limitations

	7. Conclusion
	Conflict of interest
	Conflict of interest
	References

