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ORIGINAL STUDY

d-Small Intersection Graphs of Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let R be a commutative ring with unit and U be a unitary left R-module. The d-small intersection graph of non-trivial
submodules of U, denoted by GdðUÞ, is an undirected simple graph whose vertices are the non-trivial submodules of U,
and two vertices are adjacent if and only if their intersection is a d-small submodule of U. In this article, we study the
interplay between the algebraic properties of U, and the graph properties of GdðUÞ such as connectivity, completeness
and planarity. Moreover, we determine the exact values of the diameter and girth of GdðUÞ, as well as give a formula to
compute the clique and domination numbers of GdðUÞ.

Keywords: Module, d-Small intersection graph, Connectivity, Domination, Planarity

1. Introduction

T he study of algebraic structures, using the
properties of graph theory, tends to an exciting

research topic in the last decade. Bosak in 1964 [9]
introduced the concept of the intersection graph of
semigroups. Beck [7] introduced the concept of the
zeroedivisor graph of rings. The intersection graph
of ideals of a ring was considered by Chakrabarty,
Ghosh, Mukherjee and Sen [10]. The intersection
graph of ideals of submodules of modules have
been investigated in [1]. Numerous other classes of
graphs related with algebraic structures have been
also actively examined, for instance, see [2e6].
The small intersection graph of a module [13] is

another principal graph associated to a ring. The small
intersection graph of submodules of a module U,
indicated by GðUÞ is a graph having the set of all non-
trivial submodulesofU as its vertex set and twovertices
N and L are adjacent if and only if N∩L is small in U.
Inspired by preceding studies on the intersection

graph of algebraic structures, in this paper, we
defined GdðUÞ the d-small intersection graph of
submodules of a module.
In Section 2, we show that GdðUÞ is complete if

either U is a module and direct sum of two simple
modules or U is d-hollow module. Also, if U is a
d-supplemented module, then diamðGdðUÞÞ � 2. We
proved that if jGdðUÞj � 3, then GdðUÞ is a star graph

if and only if dðUÞ is a non-zero simple d-small
submodule of U where every pair of non-trivial
submodules of U have non d-small intersection. We
establish that if jSdðUÞj2f1; 2g and under some
condition, then GdðUÞ is a planar graph. Also, GdðUÞ
is not a planar graph, whenever jSdðUÞj � 3. In
Section 3, we show that if U ¼ 4n

i¼1Ui, with Ui are
distinct simple left R-module, then GdðUÞ is a planar
graph if and only if n � 4.
Throughout this paper R is a commutative ring

with identity besides U is a unitary left R-module.
We mean a non-trivial submodule of U is a non-zero
proper submodule of U. A submodule N ðwe write
N � UÞ of U is called small in U ðwe write N≪UÞ, if
for every submodule L � U, with N þ L ¼ U implies
that L ¼ U. A submodule L � U is said to be essential
in U, indicated as L�e U, if L∩N ¼ 0 for every non-
zero submodule N � U. A module U isnamed sin-
gular if Uy K

L for some module K and an essential
submodule L�eK. Following Zhou [17], a submodule
N of a module U is called a d-small submodule ðwe
write N ≪d UÞ, if, whenever U ¼ N þ X with U

X sin-
gular, we have X ¼ U. It is obvious that every small
submodule or projective semisimple submodule of U
is d-small in U. A nonzero R-module U is called
hollow [resp., d-hollow], if every proper submodule
of U is small [resp., d-small] in U [14]. A non-zero
module U named local if it is hollow and finitely
generated [16]. A submodule P of a module U is
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maximal iff it is not properly contained in any other
submodule of U. An R-module U is said to be local if
it has a unique maximal submodule. The set is of
maximal submodules of U is denoted by maxðUÞ.
The Jacobson radical of an R-module U, indicated by
RadðUÞ, is the intersection of all maximal sub-
modules of U. By dðUÞ we will denote the sum of all
d-small submodules of U as in [17, Lemma 1.5 (1)].
Also, dðRÞ ¼ dðR R). Since RadðUÞ is the sum of all
small submodules of U, it follows that RadðUÞ � dðUÞ
for a module U. A module U is called d-local if
dðUÞ≪d U and dðUÞ is maximal [14]. The module U is
named simple if it has no proper submodules, and U
is said to be semisimple if it is a direct sum of simple
submodules. The socle of a module U, denoted by
SocðUÞ, is the sum of all simple submodules ofU. The
references for module theory are [16,17]; for graph
theory is [8].
For a graph G, VðGÞ and EðGÞ denote the set of

vertices and edges, respectively. The set of vertices
adjacent to vertex v of the graph G is called the
neighborhood of v besides indicated by NðvÞ. The
order of G is the number of vertices of G besides we
indicated it by jGj. G is finite, if jGj<∞, else, G is
infinite. If u and v are two adjacent vertices of G, then
wewrite u� v, i.e. fu;vg2EðGÞ. The degree of a vertex
n in a graph G, indicated by degðnÞ, is the number of
edges incidentwith n. Letu and vbevertices ofG. Anu,
v� path is a path (trail) with starting vertex u and
ending vertex v. For distinct vertices u and v, dðu; vÞ is
the least length of an u, v� path. If G has no such a
path, then dðu;vÞ ¼∞. The diameter ofG, indicatedby
diam ðGÞ, is the supremum of the set fdðx; yÞ: u and v
aredistinct vertices ofGg. A cycle in agraph is apathof
length at least 3 throughdistinct verticeswhich begins
and ends at the same vertex. The girth of a graph G,
indicatedbygrðGÞ, is the lengthof a shortest cycle inG,
provided G contains a cycle; otherwise; grðGÞ ¼ ∞. A
graph is said to be connected (or joined), if there is a
path between every pair of vertices of the graph. A
joined graph which does not contain a cycle is named
a tree. IfG is a tree consisting of one vertex adjacent to
all the others then G is named star graph. G is com-
plete if it is connected with diam ðGÞ � 1. A complete
graph with n distinct vertices, indicated by Kn. A cli-
que of a graph is its maximal complete subgraph and
the number of vertices in the largest clique of graphG,
symbolized by uðGÞ, is called the clique number of G.
Lemma 1.1. [17] Let Z � U. The next are

equivalent:

(1) Z≪d U.
(2) If U ¼ W þ Z, then U ¼ W 4 Y for a projective

semisimple submodule Y with Y � Z.

Lemma 1.2. [17, Lemma 1.3] Let U be an
R-module.

(1) For submodules N, Z, L of U with Z � N, we
have
i. N ≪d U iff Z≪d U and N=Z≪d U=Z.
ii. N þ L≪d U iff N ≪d U and L≪d U.

(2) Z≪d U and f : U/N is a homomorphism, then
f ðZÞ≪d N. In particular, if Z≪d U � N, then
Z≪d N.

(3) Let Z1 � U1 � U, Z2 � U2 � U and U ¼ U14U2.
Then Z14Z2 ≪d U14U2 iff Z1 ≪d U1 and
Z2 ≪d U2.

Lemma 1.3. [17, Lemma 1.5] Let U and N be
modules.

(1) dðUÞ ¼ PfL� UjL is a d-small submodule of Ug.
(2) If f : U/N is an R-homomorphism, then

f ðdðUÞÞ⊆ dðNÞ. Also, d (RR ÞU ⊆ dðUÞ.
(3) If U ¼ 4i2IUi, then dðUÞ ¼ 4i2IdðUiÞ.
(4) If every proper submodule of U is contained in a

maximal submodule of U, then dðUÞ is the
unique largest d-small submodule of U.

2. Connectedness and completeness

In this Section, we generalizing the definition of
[13], we consider a graph GdðUÞ as follows:
Definition 2.1. Let U be an R-module. The d-small

intersection graph of U, symbolized by GdðUÞ, is
defined to be a simple graph whose vertices are in
one-to-one correspondence with all non-trivial
submodules of U and two vertices N and L are
adjacent, and we write N� L, if and only if
N∩L≪d U.
Remark 2.2.

(1) Consider the Z-module Z6. The nonzero proper
submodules of Z6 are 2Z6 and 3Z6. Obviously,
2Z6∩3Z6 ¼ 0≪d Z6 and so GdðZ6Þ is 2Z6 � 3Z6.

(2) It is clear that the graph GðUÞ introduced in [13]
is a subgraph of GdðUÞ.

(3) The d-small submodules of a singular module
are small submodules [17]. Clearly when U is
a singular module, we get that GdðUÞ is the
small intersection graph GðUÞ of U introduced
in [13].

A null graph is a graph whose vertices are not
adjacent to each one other (i.e., edgeless graph).
Theorem 2.3. Let U be a not simple module. Then

GdðUÞ is a null graph if and only if every pair of non-
trivial submodules of U, have non d-small
intersection.
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Proof. Assume GdðUÞ is an edgeless graph. Pre-
sume for contrary that there exist A, B � U such that
A∩B≪d U. At that time A� B, hence GdðUÞ is not
null, which is a contradiction to the hypothesis
“GdðUÞ is an edgeless graph”. The reverse is easy.
Example 2.4. GdðZ4Þ and GdðZÞ are edgeless

graphs.
Proposition 2.5. Let U be an R-module. At that

point GdðUÞ is complete, if one of the following
holds.

(1) If U is d-hollow.
(2) If U ¼ U14U2 is a module, where U1 and U2 are

simple R-modules.

Proof. (1) Let U be a d-hollow module. Presume
that А1, А2 are two different vertices of the graph
GdðUÞ. From this time А1 and А2 are two nonzero
d-small submodules of U. As А1∩А2 � Аi, for i ¼
1; 2, by Lemma 1.2, А1∩А2 ≪d U, hence GdðUÞ is a
complete graph.
(2) Assume that U ¼ U14U2 with U1 besides U2

are simple R-modules. So, U1 þU2 ¼ U and U1∩
U2 ¼ f0g. Then every non-trivial submodule of U is
simple. Let A, B be binary different vertices of
GdðUÞ. At that moment they are the non-trivial
submodules of U which are simple besides minimal.
Furthermore, A∩B � A;B and if A∩Bsð0Þ, then
minimality of A and B implies that A∩B ¼ A ¼ B,
a contradiction. Thus, A∩B ¼ ð0Þ≪d U, henceforth
GdðUÞ is complete.
By Part 1 of Proposition 2.5, we have the next

corollary.
Corollary 2.6. Let R be a ring and U be a module

over R. Then the next hold:

(1) If VðGðUÞÞ is a totally ordered set, at that time a
graph GðUÞ is complete.

(2) If U is a d-local module, at that point the graph
GdðUÞ is complete.

(3) Every one nonzero d-small submodule of U is
adjacent to all other vertices of GdðUÞ besides the
induced subgraphs on the sets of d-small sub-
modules of U are cliques.

Proof. (1) Suppose VðGðUÞÞ is a totally ordered set.
Then all two nontrivial submodules of U are com-
parable. Evidently, for all R � U, R≪U, besides so
R ≪d U. Hence, U is a d-hollow R-module. So, by
Proposition 2.5 (1), GdðUÞ is complete.
(2) Suppose that U is a d-local R-module, at that

time dðUÞ≪d U besides dðUÞ is maximal. Now, let w
be a nonzero submodule of U. To prove that w �
dðUÞ, by contrary way, assume w is not subset of
dðUÞ, so dðUÞ þw ¼ U since dðUÞ is maximal. Hence

w ¼ U since dðUÞ≪d U, a conflict. Thus, w � dðUÞ.
So, w is d-small submodule of U. Thus, U is d-hol-
low. So, by Proposition 2.5 (1), GdðUÞ is complete.
(3) Evident.
Example 2.7. For every c2Z with c � 2 besides for

all prime number p, Zpc is a local Z-module, then it
is hollow and so is d-hollow. Also, let R ¼ Z, p be a
prime and U ¼ Zp∞ , the Pr €u fer p-group, then every
proper submodule of R-module U is d-small in U.
Moreover, dðUÞ ¼ U. Hence for every prime num-
ber p, the Z-module Zp∞ is d-hollow. By Proposition
2.5 (1), GdðZpcÞ and GdðZp∞Þ are complete graphs.
Remark 2.8 [17]. For a ring R,

(1) dðRÞ ¼ the intersection of all maximal essential
left ideals of R.

(2) dðRÞ ¼ the largest d-small left ideal of R.
(3) dðRÞ ¼ R if and only if R is a semisimple ring, see

[17, Corollary 1.7].

Proposition 2.9. Let R be an integral domain with
dðRÞs0 besides let U be a finitely generated torsion-
free R-module. Then GdðUÞ is connected and
diamðGdðUÞÞ � 2.
Proof. Since U is finitely generated, then dðUÞ is

the largest d-small submodule of U according to
Lemma 1.3(4). Also, the largest d-small left ideal of R
is dðRÞ by Remark 2.8. By Lemma 1.3(2),
dðRÞU � dðUÞ. Thus, dðRÞU≪d U. Since U is torsion-
free and dðRÞs0 then dðRÞUs0. Therefore, dðRÞU is
a vertex in GdðUÞ. But X∩dðRÞU≪d U for every non-
zero submodule X of U by Lemma 1.2(1). So, there
exists an edge among vertex dðRÞU besides X of
GdðUÞ. Also, for all two vertices X;Y in the graph
GdðUÞ, there exists a path X � dðRÞU � Y of length 2
in GdðUÞ . This completes the proof.
Theorem 2.10. Let a ring R be a sum R ¼ 4i2ITi of

simple left ideals Ti, i2I. At that point the next
statements hold:

(1) diamðGdðRÞÞ ¼ 1,
(2) The graph GdðRÞ is a complete graph.

Proof. (1) Let R ¼ 4i2ITi, where each Ti are sim-
ple left ideals, i2I . By Remark 2.8(3), we have
dðRÞ ¼ R. So, each Ti is d-small submodule of R R.
Now, let Ti and Tj are two non-zero ideals of R, then
Ti∩Tj is d-small in R R, and thus, there exists an edge
between the vertices Ti and Tj in GdðRÞ, for all i; j2I.
Hence, the graph GdðRÞ is connected besides diam
ðGdðRÞÞ ¼ 1.
(2) It follows from the proof of (1).
Definition 2.11. [12] Let U be a module besides let

N and L be submodules of U. L is named a d-sup-
plement of N in U if U ¼ N þ L and N∩L≪d L (and
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so N∩L≪d U). N is named a d-supplement sub-
module if N is a d-supplement of some submodule
of U. U is named a d-supplemented if every sub-
module of U has a d-supplement in U.
Proposition 2.12. Let h � U. Then any d-supple-

ment of h in U is adjacent to h in GdðUÞ.
Proof. Let h be a submodule of U and let g

d-supplement of h in U. Hence U ¼ h þ g and h ∩
g ≪d g , and so h ∩g ≪d U. Thus g adjacent to h in
GdðUÞ.
We now state-owned our next result, which gives

us certain information on the structure of the
d-small intersection graphs of d-supplemented
modules.
Proposition 2.13. Let U be a d-supplemented

module. Then GdðUÞ is connected and
diamðGdðUÞÞ � 2.
Proof. Let N; L are submodules of U. Since U is

d-supplemented, then there exists submodule K of U
such that Nþ K ¼ U, N∩K≪d K, and so N∩ K≪d U.
One can consider binary likely cases for N∩ K.
Case 1: If N∩K ¼ ð0Þ, then N4K ¼ U.
Now, if L � N, then L∩K≪d U. Thus L� K� N is a

path of length 2 in GdðUÞ. If L � K, then L∩ N ≪d U.
Thus N and L are adjacent vertices in the graph
GdðUÞ. Hence, GdðUÞ is joined besides
diamðGdðUÞÞ � 2.
Case 2: If N∩Ksð0Þ. Since N∩K is a d-small sub-

module of U, thus N � N∩K � L is a path of length 2
in GdðUÞ. Hence, GdðUÞ is joined besides
diamðGdðUÞÞ � 2.
The next examples show there are connected

graphs GdðUÞ with diamðGdðUÞÞ � 2 whenever U is
not d-supplemented.
Example 2.14. (1) The Z-module U ¼ 4∞

i¼1Ui with
each Ui ¼ Zp∞ where p is prime number is not d-
supplemented see [12]. It is easy to see that GdðUÞ is
connected and diamðGdðUÞÞ � 2.
(2) The Z-module Q is not d-supplemented see

[12]. Now, from [12] that Let Q1 ¼ fa=b2Q j 2 does
not divide bg and Q2 ¼ fa=b2Q j 2 divides bg. Then
Q ¼ Q1 þ Q2. Since Q=Q1 and Q=Q2 are singular
Z-modules, Q1 and Q2 are not d-small submodules
in Q. Hence, any proper submodule L of Q with
Q1 � L we have L is not adjacent to Q1. So, GdðQÞ �
2. But GdðQÞ is connected graph.
Lemma 2.15. Let U be a module.

(1) Let N � U be a finitely generated submodule
with N � dðU). Then N ≪d U.

(2) Let N � U be a semisimple submodule with N �
dðU). Then N ≪d U.

Proof. (1) Suppose that N � U is finitely gener-
ated. Then, N ¼ Pr

i¼1Rni for some ni2N, 1 � i � r.

Since Rni � dðUÞ, Rni ≪d U. According to Lemma
1.2, N ≪d U.
(2) By [15, Lemma 2.2].
Proposition 2.16. For an R-module U with GdðUÞ

and dðUÞsð0Þ. The following conditions hold:

(1) If N is a direct summand submodule of U with
ð0ÞsdðNÞ≪d U, then GdðUÞ contains at least one
cycle of length 3.

(2) If T is a non-trivial semisimple or finitely
generated submodule of U contained in dðU). At
that time dðT; dðUÞÞ ¼ 1 and dðT; LÞ ¼ 1 for every
non-trivial submodule L of U.

Proof. (1) Since N is a direct summand of U, there
is Z � U such that N4Z ¼ U. Then dðNÞ4dðZÞ ¼
dðUÞ, according to Lemma 1.3. Since dðNÞ � N and
N∩dðZÞ � N∩Z ¼ ð0Þ, by the modular law, dðUÞ∩N ¼
½dðZÞ þ dðNÞ�∩N ¼ ½dðZÞ∩N� þ dðNÞ ¼ dðNÞ. Thus,
dðUÞ∩N ¼ dðNÞ. Then dðUÞ∩N ≪d U. Also,
dðNÞ ¼ N∩dðNÞ≪d U and dðNÞ ¼ dðNÞ∩dðUÞ≪d U
and we have, dðN; dðUÞÞ ¼ 1, dðN; dðNÞÞ ¼ 1 and
dðdðNÞ; dðUÞÞ ¼ 1. Hence, ðN; dðNÞ; dðUÞÞ is a cycle.
Thus, GdðUÞ contains at least one cycle of distance 3.
(2) Let T � U be a non-trivial semisimple or

finitely generated submodule. At that moment by
Lemma 2.15, T ≪d U. Since T � dðUÞ,
T ¼ T∩dðUÞ≪d U and since T∩L � T, T∩L≪d U for
every other non-trivial submodule L of U via
Lemma 1.2. Hence dðdðUÞ;TÞ ¼ 1 and dðL;TÞ ¼ 1.
Proposition 2.17. Let U be a R-module. If U has at

least one non-zero d-small submodule, at that point
GdðUÞ is a connected graph besides
diamðGdðUÞÞ � 2.
Proof. Let F2GdðUÞ be a non-zero d-small sub-

module of U. Let A and B be two non-adjacent
vertices of GdðUÞ. It is clear that A∩F � F≪dU, and
F∩B� F≪dU. Thus A∩F≪dU; and F∩B≪d U by
Lemma 1.2. So, A� F � B is a trail of length 2. So,
GdðUÞ is a joined graph besides diamðGdðUÞÞ � 2.
Corollary 2.18. Let dðUÞsð0Þ, if one of the next

holds. Then GdðUÞ is a joined graph,

(1) There exists a non-trivial submodule of U which
is semisimple or finitely generated contained in
dðUÞ.

(2) U is a finitely generated module.

Proof. (1) It follows from Proposition 2.17 and
Lemma 2.15. (2) Clear.
Proposition 2.19. If GdðUÞ has no isolated vertex,

then GdðUÞ is connected and diamðGdðUÞÞ � 3.
Proof. Let A and B be two non-adjacent vertices of

GdðUÞ. Since GdðUÞ has no isolated vertex, there exist
submodules A1 and B1 such that A∩A1 ≪d U and
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B∩B1 ≪d U. Now, if A1∩B1 ≪d U, then
A� A1 � B1 � B is a path of length 3. Otherwise A�
A1∩B1 � B is a trail of size 2. Showed that
diamðGdðUÞÞ � 3 besides GdðUÞ is a joined graph.
Proposition 2.20. Let U be a not simple R-module

which is semisimple R-module. At that point the
next declarations hold:

(i) GdðUÞ has no isolated vertex.
(ii) GdðUÞ is joined besides diamðGdðUÞÞ � 3.

Proof. (i) Let Z be a vertex of the graph GdðUÞ.
Since U is a semisimple module, then every sub-
module of U is a direct summand of U by [16, 20.2, p.
166]. Thus there exists a submodule Y of U such that
U ¼ Z4Y. Hence Z∩Y ¼ ð0Þ≪d U besides as a
result, there exists an edge among vertex Z of GdðUÞ
besides another vertex of GdðUÞ. At that time Z is
non-isolated vertex. So, GdðUÞ has no isolated
vertex.
(ii) By Proposition 2.19 besides Part (i).
Now we use SdðUÞ which symbolizes the set of all

non-zero d-small submodules of U.
Proposition 2.21. Let n be a positive integer. In

R-module U with jSdðUÞj ¼ n and jGdðUÞj � 2.

(i) If N2SdðUÞ, then deg ðNÞs0.
(ii) uðGdðUÞÞ � n.
(iii) If uðGdðUÞÞ<∞, then the number of d-small

submodules of U is finite.

Proof. (i) Let N2SdðUÞ. Suppose that the order of
GdðUÞ is jGdðUÞj ¼ n � 2 where n is integer number.
Let K be any non-zero submodule of U. Then K∩
N � N ≪d U. By [17, Lemma 1.3(1)], K∩N ≪d U and
thus an edge exists among vertex N of GdðUÞ and
another vertex of GdðUÞ. At that point N is cannot an
isolated vertex. Thus, deg ðNÞs0.
(ii) Let SdðUÞ¼ fNj N ≪d Ug and let jSdðUÞj ¼ n.

Suppose that Z and W are two distinct elements of
SdðUÞ. Then Z and W are non-zero d-small sub-
modules of U. Thus Z∩W ≪d U according to [17,
Lemma 1.3(1)]. So, Z and W are adjacent vertices.
Thus, the induced subgraph on the set SdðUÞ is a
complete subgraph of GdðUÞ. From this time,
uðGdðUÞÞ � n.
(iii) It is clear from (ii).
Theorem 2.22. Let dðUÞ be a non-zero simple

d-small submodule of U and let jGdðUÞj � 2. Then
GdðUÞ is a star graph whenever GdðUÞ is a tree graph.
Proof. Since dðUÞs0, then dðUÞ is a vertex in

GdðUÞ. Now, dðUÞ is simple d-small, so dðUÞ a unique
non-zero d-small submodule of U. But, dðUÞ∩
N ≪d U for every 2VðGdðUÞÞ . Thus then GdðUÞ
contains a vertex dðUÞ which is adjacent to each

other vertex. Now, suppose that IsdðUÞ and JsdðUÞ
are two distinct vertices of GdðUÞ. Now, if I∩J ≪d U.
Then I� dðUÞ� J, which is a contradiction since
GdðUÞ is a tree. Thus, I∩J is not a d-small submodule
of U. So, I and J are not adjacent. Thus, GdðUÞ is star
with center dðUÞ.
Let G be a graph. The chromatic number of G is

defined to be the smallest number of colors cðGÞ
needed to color the vertices of G so that no two
adjacent vertices share the same color. One has the
next corollary by Theorem 2.22.
Corollary 2.23. Let U be a module with

0sdðUÞ≪d U and jGdðUÞj � 3. Then the next con-
ditions are equivalent:

(1) GdðUÞ is a star graph,
(2) GdðUÞ is a tree,
(3) cðGdðUÞÞ ¼ 2,
(4) dðUÞ is a simple submodule of U such that every

couple of non-trivial submodules of U, have non
d-small intersection.

Proof. (1) / (2) and (2) / (3) The implications are
obvious.
(3) / (4) On contrary, suppose 0sK � dðUÞ. At

that point K≪d U. If L2VðGdðUÞÞ. It is easy to see
that (N, dðUÞ, L) is a circuit (cycle) of length 3 in
GdðUÞ, which contradicts cðGdðUÞÞ ¼ 2. As a result,
dðUÞ is simple. Now, take up that Y;62VðGdðUÞÞ
such that 6∩Y≪d U. (6, dðUÞ, Y) is a circuit in
GdðUÞ, which contradicts cðGdðUÞÞ ¼ 2.
(4) / (1) It is obvious that dðUÞ is adjacent to each

other vertex in GdðUÞ. Now, suppose that NsdðUÞ
and LsdðUÞ are two distinct vertices of GdðUÞ, such
that N and L are adjacent. Thus, X∩Y ≪d U, a
contradiction. Hence, GdðUÞ is a star graph.
Proposition 2.24. Let U be a module and

jSdðUÞj � 1. If GdðUÞ does not contain a cycle, then
GdðUÞ ¼ K1 or GdðUÞ is a star graph.
Proof. Supposing that the graph GdðUÞ contains no

a cycle. To prove jSdðUÞj< 2, by contrary way, let
Z≪d U besides W ≪d U. So ZþW≪d U by Lemma
1.2, and hence, Z� ðZþWÞ �W is a cycle of length
3, which is a illogicality. Then jSdðUÞj< 2. As
jSdðUÞj � 1, then jSdðUÞj ¼ 1. Hence, U has a
unique non-zero d-small submodule. Let N2SdðUÞ.
For every vertex L of GdðUÞ, if L ¼ N, then GdðUÞyK1

and if LsN, as L∩N ≪d U, we deduce GdðUÞyK2. Let
J ¼ fvij vi sN; i2Ig. At that time every two
random distinct vertices vi and vj, isj, are not
adjacent and for isj, vi � N�vj is a path besides
hence GdðUÞ is a star graph.
Theorem 2.25. Let GdðUÞ be a graph of a module U.

If jSdðUÞj � 2, then GdðUÞ contains at least one cycle
besides grðGdðUÞÞ ¼ 3.
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Proof. Presume that jSdðUÞj � 2. At that time U
has at least two nonzero d-small submodules, at a
guess T1 and T2. Since T1∩T2 � Ti, for i ¼ 1; 2, by
Lemma 1.2, T1∩T2 ≪d U. Also, T1∩ðT1 ∩T2Þ≪d U and
T2∩ðT1 ∩T2Þ≪d U. We consider two probable cases
for T1∩T2.
Case 1: If T1∩T2sð0Þ, then dðT1; T2Þ ¼ 1,

dðT1;T1∩T2Þ ¼ 1 and dðT2; T1∩T2Þ ¼ 1. Thus
ðT1;T1∩T2;T2Þ is a cycle of size 3. Also by Lemma 1.2,
T1 þ T2 ≪d U and since T1∩ðT1 þT2Þ≪d U and T2∩
ðT1 þ T2Þ≪d U, (T1;T1 þ T2;T2) is a cycle of length 3.
Similarly, ðT1 ∩T2;T1;T1 þT2Þ and (T1∩T2, T2, T1 þ
T2) are cycles of length 3 and
ðT1;T1 þT2;T2;T1∩T2;T1Þ is a cycle of length 4.
Case 2: If T1∩T2 ¼ ð0Þ, then (T1; T1 þ T2; T2) is a

cycle of size 3 in the graph GdðUÞ. As a result, GdðUÞ
contains at least one cycle and so grðGdðUÞÞ ¼ 3.
Example 2.26. Let U ¼ Z4F4K be a semisimple

module. Then, the subgraph Z� F � K � Z is a cli-
que. Also, grðGdðUÞÞ ¼ 3.
Let G is a joined graph and let X is a vertex of G, X

is named a cut vertex of G if there are vertices Z
besides W of G such that X is in every one Z, W�
path. Equally, X is a cut vertex of G if G� fXg is not
joined for a joined graph G.
Proposition 2.27. GdðUÞ has no cut vertex when-

ever jSdðUÞj � 2.
Proof. Take up T a cut vertex of GdðUÞ, as a result

GdðUÞyfTg is not joined. As a result there exist
vertices F, K with T lies on every single trail from F
to K. Since jSdðUÞj � 2, then U has at least two non-
zero d-small submodules, assume ð0ÞsN1 ≪d U,
ð0ÞsN2 ≪d U. Thus F∩N1 ≪d U, N1∩N2≪dU and N2∩
K≪d U. F � N1 � N2 � K is a trail in GdðUÞyfTg, a
illogicality. As a result GdðUÞ has no cut vertex.

3. Domination and planarity of GdðUÞ
In this Section, we study domination number and

the planarity of GdðUÞ. We recall that for a graph G, a
subset D of the vertex-set of G is called a dominating
set (or DS) if every vertex not in D is adjacent to a
vertex in D. The domination number, g (G), of G is
the minimum cardinality of a dominating set of G,
[11]. Here, a subset D of the vertex set VðGdðUÞÞ is a
DS iff for any nontrivial submodule N of U there is a
L in D such that N∩L≪d U.
Lemma 3.1. The next hold for an R-module U with

jGdðUÞj � 2:

(1) If D⊆VðGdðUÞÞ with either there exists a vertex
X2D which X∩Y ¼ ð0Þ, for every one vertex Y2
VðGdðUÞÞyD or D contains at least one d-small
submodule of U. Then D is a DS in GdðUÞ.

(2) If jSdðUÞj � 1, then for each Zs0 with Z≪d U,
fZg is a DS besides gðGdðUÞÞ ¼ 1.

Proposition 3.2. Let U ¼ N4L be an R-module,
where N and L are simple R-modules. Then
gðGdðUÞÞ ¼ 1.
Proof. Assume U ¼ N4L, with N and L are simple

R-modules. By Proposition 2.3 (1), is a complete
graph GdðUÞ. Let a be a random vertex of GdðUÞ. At
that time for every different vertex Y of GdðUÞ,
a∩Y ≪d U, so fag is a DS besides gðGdðUÞÞ ¼ 1.
Proposition 3.3. Let dðUÞs0 of a finitely generated

R-module U. Then fdðUÞg is a dominating set of
GdðUÞ and so the graph GdðUÞ is joined
(¼connected).
Proof. Assume R2GdðUÞ. If R is d-small then dðUÞ

is adjacent to R. Now, if R is not d-small. Since
dðUÞs0 in finitely generated module, at that point
dðUÞ≪d U. So, R∩dðUÞ≪d U. So, R is adjacent to
dðUÞ. This implies that fdðUÞg is a dominating set of
GdðUÞ, so GdðUÞ is connected as obligatory.
Theorem 3.4. Let jSdðUÞj � 2 besides jGdðUÞj � 3

of a module U. We have:

(1) If m and l are two d-small submodules of U then
there exists j2VðGdðUÞÞ such that
j2NðmÞ∩NðlÞ.

(2) The graph GdðUÞ has at least one triangle.

Proof. It is clear.
Proposition 3.5. The next statements are equiva-

lent for an R-module U:

(1) If fm;lg2EðGdðUÞÞ, then there is no j2VðGdðUÞÞ
such that j2NðmÞ∩NðlÞ.

(2) U has at most one nonzero d-small submodule
such that -∩h is not a d-small for every couple of
non-d-small nontrivial submodules -; h of U.

(3) The graph GdðUÞ has no triangle.

Proof. (1) 0 (2) Take up that for all two adjacent
vertices of GdðUÞ, there is no j2VðGdðUÞÞ with
j2NðmÞ∩NðlÞ. Assume there exist nonzero sub-
modules N1 ≪d U and N2 ≪d U. Since N1∩N2 ≪d U,
they are adjacent vertices of the graph GdðUÞ besides
too, there is no j2VðGdðUÞÞ such that j2NðmÞ∩NðlÞ,
which is a illogicality by Theorem 3.4(1).
(2) 0 (3) Presume there is no nonzero d-small

submodules in U. As Z∩h is not d-small for every
couple of non-d-small nontrivial submodules Z; h of
U, GdðUÞ has no triangle. Besides, Let S be the
unique nonzero d-small submodule of U. At that
point for every three random vertices N1;N2; and N3

of the graph GdðUÞ, at least two of them are not
d-small. Let S ¼ N1. As N2∩N3 is not a d-small
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submodule of U, then N2 � S�N3 is a path. Also if
SsNi; for i ¼ 1; 2; 3. Since Ni∩Nj is not a d-small
submodule of U, for i; j ¼ 1; 2; 3 and isj, then
N1;N2; and N3 are not adjacent vertices in the graph
GdðUÞ. Hence, the graph GdðUÞ has no any triangle.
(3) 0 (1) It is clear.
Proposition 3.6. Let dðUÞs0 of a finitely generated

R-module U, then the graph GdðUÞ has a triangle.
Proof. Since U is finitely generated, from this time

ð0ÞsdðUÞ≪d U according to Lemma 1.3(4). Now
consider two possible cases for dðUÞ.
Case I: If dðUÞ is a simple submodule of U,

because dðUÞ ¼ P

i2L

Ui, where Ui ≪d U, ci2 L, we

choose G ¼ P

i2L�f1g
Ui. Then fU1; dðUÞ;Gg is a trian-

gle in GdðUÞ.
Case II: If dðUÞ is a non-simple submodule of U, at

that point there exists a non-trivial submodule Ζ �
U which Ζ3dðUÞ. Since dðUÞ≪d U, then, Ζ≪d U.
Thus for each vertex Н of GdðUÞ, fΖ; dðUÞ;Нg is a
triangle in GdðUÞ.
Definition 3.7. [8] If a graph G has a drawing in a

plane without crossings, then G is said to be planar.
Theorem 3.8. [8, Th. 10.30] A graph is planar if it

contains no subdivision of either K5 or K3;3.
Proposition 3.9. If jSdðUÞj ¼ 1 or jSdðUÞj ¼ 2, and

the intersection of every pair of non-small sub-
modules of U is a non-small submodule, then GdðUÞ
is a planar graph.
Proof. Similar to that in [13, Theorem 2.15].
Proposition 3.10. For any module U, if jSdðUÞj � 3,

then GdðUÞ is not a planar graph.
Proof. Suppose jSdðUÞj � 3. Then U has at least

three nonzero d-small submodules, at a guess M, N
and P. Any one of the vertices Mþ N, Nþ P and Mþ
P are non-zero submodules and adjacent to all of
submodules M, N and P in GdðUÞ. GdðUÞ contains a
complete graph K5 for example the subgraph

induced on the set f M, N, P, Mþ N, N þ Pg. By Th.
3.8, GdðUÞ is not planar.
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