\ .
\ AL-Bahir A

\ JournalferEngineering and Pure Sciences ﬂ R
\ BIEPS AHI
\

L R T S

Volume 3 | Issue 1 Article 2

Laplace Homotopy Perturbation Method (Lhpm) For Solving Systems Of N-
Dimensional Non-Linear Partial Differential Equation

Kabir Oluwatobi Idowu
Department of Mathematics, Purdue University

Toluwanimi Grace Akinwande
Department of Mathematics, Federal University of Agriculture, Abeokuta

Ibrahim Fayemi
Department of Mathematics, Federal University of Agriculture, Abeokuta

Umar Muhammad Adam
Department of Mathematics, Federal University, Dutse

Adedapo Chris Loyinmi
Department of Mathematics, Tai Solarin University of Education

Follow this and additional works at: https://bjeps.alkafeel.edu.ig/journal

Recommended Citation

Idowu, Kabir Oluwatobi; Akinwande, Toluwanimi Grace; Fayemi, Ibrahim; Adam, Umar Muhammad; and Loyinmi,
Adedapo Chris (2023) "Laplace Homotopy Perturbation Method (Lhpm) For Solving Systems Of N-Dimensional Non-
Linear Partial Differential Equation," Al-Bahir. Vol. 3: Iss. 1, Article 2.

Available at: https://doi.org/10.55810/2313-0083.1031

This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an
authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.ig.


https://bjeps.alkafeel.edu.iq/journal/
https://bjeps.alkafeel.edu.iq/journal/
https://bjeps.alkafeel.edu.iq/journal/vol3
https://bjeps.alkafeel.edu.iq/journal/vol3/iss1
https://bjeps.alkafeel.edu.iq/journal/vol3/iss1/2
https://bjeps.alkafeel.edu.iq/journal?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol3%2Fiss1%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.55810/2313-0083.1031
mailto:bjeps@alkafeel.edu.iq
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Abstract

In this research, we proposed coupling the Laplace transform method and the homotopy Perturbation Method
(LHPM). We employed the fusion of the Laplace method to make up for the shortcomings of other semi-analytical
approaches like the homotopy perturbation method, variation iteration method, and the Adomian decomposition
method. We aim to obtain an approximate and semi-analytic solution of the n-dimensional system of nonlinear partial
differential equations. N-dimensional partial differential equations with nonlinear terms are known as nonlinear partial
differential equations. They have been used to solve mathematical problems like the Poincaré conjecture and the Calabi-
Yau conjecture and describe physical systems, from gravity to fluid dynamics. Therefore, we proffer a semi-analytic
solution in the form of a Taylor multivariate series of displacements x, y, and time t using the proposed method. A side-
by-side comparison was carried out to compare the exact solution with the new solution using 3-dimensional graphs, and
thus the graph analysis followed. Results show excellent agreement, and the emergence of this method as a viable
alternative demonstrates its viability by requiring fewer computations and being much easier and more convenient than
others, making it suitable for widespread use in engineering as well.

Keywords: Laplace transform, Homotopy perturbation method, System of partial differential equation, Semi analytic
approach

1. Introduction partial differential equations, we employed the Lap-
lace homotopy perturbation method. The method in-
volves the merging of two different methods, namely
the Laplace transform and the homotopy perturbation
method, to provide a more efficient solution for the
system [10].

Initially, He [17] combined the traditional homotopy
method and the perturbation method to create a new
approach to solving linear and nonlinear initial and

ystems of non-linear partial differential equations

arise in many areas of mathematics, physics, and
engineering to study real-life phenomena [1-3]. It is
necessary to provide solutions to this real-life issue
[4,5]. Several methods have been adopted in the past to
solve this issue, which include the differential trans-
formation method [6], the deep learning approach [7], -
the homotopy perturbation method [8—10], the boundary value problems. Originally developed‘ to
homotopy analysis method [11,12], the fractional make the most of both homotopy and perturbation

homotopy method [13], the elzaki differential trans- techniques, the homotopy perturbation method has
form [14—16], etc. since been tweaked to achieve faster convergence, less

computational overhead, and more precise results.

However, in the quest for a more reliable and effi- ) ) )
There is a large category of functional equations for

cient method of solution for a system of non-linear
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which the Homotopy Perturbation Method (HPM) has
been used [8,9,14,18—29]. HPM and other semi-
analytical methods allow for the calculation of partial
differential equations over a limited range with many
iterations [23,24,30,31].

This paper proposes an LPHM to fix this deficiency.
This novel approach meets all conditions. A couple of
iterations yield precise outcomes over a broad

spectrum. This study solves three n-dimensional
systems of nonlinear partial differential equations
using the Laplace transform homotopy perturbation
method (LHPM). Comparing the current approach to
the exact solution proves its efficacy.

The semi-analytic method has been applied to
solve several linear and non-linear differential
equations [32—34].

2. Laplace homotopy perturbation (method of solution)

Consider the following system of Partial Differentiation Equation

PU+T:(u,v) +Wi(u,v) =M

PU+T,(u,v) +W,(u,v)=h,

In operator form; with the initial conditions of the form;

U(x,0) =g1(%)

V(x,0) =& (%)

(4)

Where p, is the first order Partial differential operator T; and T, are linear differential operators; W7 and W,
are the non-linear differential operators and h; and h, are the non-homogenous terms and U and V are

functions of x and t.

Taking the Laplace transform on both sides of equations (1) and (2) and applying the prescribed initial

conditions; (3) and (4), we obtain
L[PtU] + L[T1 (u, ’U)] + L[W1 (u, ’U)] = L[hl]

L[P,U] + L[T(u,0)] + L[Ws (11, v)] = L[]

()
(6)

Operating the differentiation property of the Laplace transform gives

L =8®

. +%L[h1] —%L[Tl(ujv)] —%L[Wl(u,v)]

V)= L)~ LT (0]~ (LW (0,0)

(7)

(8)

The operation of the Laplace transform disintegrates the unknown functions U(x, ) and V(x,t) given by an

infinite series of components

U(x,t)= ip"un (x,¢)

V(x,t)= i p"Uu(x,1)

Substituting (9) and (10) into equations (7) and (8) gives;

L[ip”un(x,t)] :glsﬁ%uhl} —%L

1
)
S

W, i p ", (x, 1) i " (x, t)]
n=0 n=0

Ty i "ty (x,1) i P (x, t)]
n=0 n=0
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S

55t 52 L

T, Z Py (x, 1) Z p"u(x, t)]
n=0 n=0

13

By applying the Homotopy-Perturbation technique and the linearity of Laplace transform, where p an

embedding parameter is; in equations (11) and (12) we will have

%L[hl] — %L Li; 0"uy, (x, 1) ni; P 0, (x, t)]

L [ip”un(x,t)] _&6

S

1 [oe] (o]
_EL [W1 Z ", (x,t) Z v, (x, t)}
n=0 n=0

) L 22 e S
L[Zp"w,ﬂ] &, ] ] :
"~ —%L W, ; Pty (3, £) ; oo (x, t)]

(14)

Operating the inverse Laplace transform on both sides of equations (13) and (14) and comparing the co-

efficients of like powers of p, we obtain the following approximations:

14 SMQZL_l

S
0 U :L_l _82(3"):|
S

pliuy=L" :%L(hl)} —L! EL(uo,vg)] —L! EL(Wﬂumvo))}

1 1 1
,01 101 = Lil gL(hz):| — Lil [gL(ﬂo,Uo)] — Lil [gL(Wz(ug,Ug)):|
Proceeding in similar manner, we have a recursive relation for n > 1 given by;

P iy, =171 EL(hk)] —L! {:L(uk,vk)] —L! EL(Wl(uk,vk))}
P o =171 EL(hk)] —L! EL(uk,vk)} —L! EL(Wz(uk,vk))]

3. Applications

Case 1
Consider the following system of three-dimensional partial differential equation

Uu-viu,-viu,=1-x+y+t

Vi—UV,— VU, =1-x—y—t



14 AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2023;3:11—27

With initial conditions;

Ux,y,0)=x+y—1
V(x,y,0) =x—y+1

Ux,y,t)=x+y+t—1

The exact solutions are given by; Vxy,0) —x—y—t+1

Taking the Laplace transform of the equations (15) and (16)
LU= LVU 1+ LIV,U 1+ L(1) = L(x) + L(y) + L(?) an
sLIU(x,y,8)]-U(x,y,0)=L[ VUX] +LIV,U, 1+ L(D) = L(x)+ L(y) + L(?)

Ul(x, y,O) 1
s

LU (x,7,5)] = Lipo g+ i 1+ Loy - Lo+ Loy + Lee
S i S S S S

S

L[V,] =L{UV,] +L[U;V,] + L(1) — L(x) — L(y) — L(#)
sL[V(x,y,s)] — V(x,y,0) = L[LIVX} +L [utvy} +L(1) = L(x) — L(y) — L(t)

(18)
1 1 1 1
LV (x,y.5)] = L& y’ U += v+ [utvy] +<L(1) — <L) —<L(y) —<L(t)
Taking inverse Laplace transform for equation for equation (17)
L'[L(U(x,y,s))]=L" {U(x—yo)} +L™1 FL(VUX)} +L™1 FL(Vth)]
1 s 1s 1 s 1 (19)
+L! {EL(l)] —L! {EL(x)} +L! {EL(y)} +L™1 [EL(t)}
U(x,y,t)=L" [M] +L71 EL(VU,C)] +L7! EL(VtU )} +t—xt+yt+%t2 (20)
L YLV (x,y,s))] =L [M} +L! FL(UVX)} 4L FL(UtVy)}
1 s 1s 1 S 1 1)
st )| - L] -1 )| - Lo
V(x,y,t)=L" {M} +L7! EL(UV,C)} +L7! EL(UtVy)} +t—xt—yt— %ﬁ (22)
Suppose the solution of the equations (20) and (22) has the form;
U(x,y, 1) =limp" Uy (x,y, ) = ;p"un (23)
V(x,y,t) =limp"V, (x,y,t) = ;p"vn (24)

Now applying the Homotopy-Perturbation method to equations (23) and (24) substituting equations (20)
and (22) into equations (5) and (6); we obtain

g P (5)(2)

n=0
1 [ 0V, - 0Uy
S ) (&)

(25)
+L71t

12
b=t oyttt
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n=0 n=0 =0
(26)
+L71 %L((ni;p"a;”) ((;p”a;;n> +t—xt—yt —%F}
Expanding equation (25) and comparing the coefficient of the like powers

Uy =L" 'Uo(x7y,0)]
I

pl:U =L71 %L<VO%) +L %L(% aaLyI >] +t —xt+yt+%t2

prilp=L" %L<V %): +L” }L(W% ] +L” EL(% 66_1;1” +L EL<% aE)—L;O)] +t—xt+yt+%t2

e P o ) [ ) L)

4L EL(a—V2 auo)} +t—xt+yt+%t2

TL 1L oV, oy,
s g ot Oy

1 1
P Uy =L l—L +t—xt+yt+§t2

o0 a -
ZVn Uy_,
— ox

n=0

Expanding equation (26) and comparing the coefficient of the like powers

V.
pO : VO = 1 70<x’ y, 0):|

L S

(1 oV, 1. /oUy oV 1
1. _r-1[2 0 -1|= 0 0 _ _ g2
pl:Vi=L7"L uo—ax>]+ LL(—ay —atﬂw xt —yt — ot

L
[ 1% 4|1 oV oy 0V,
_ ”W)]“ [EL(“W)]“ [L(at ay)]

At ave] L, L 1
L LL % oy +t—xt—yt— ot

0> Vo=L1=L

o ) o o) )] ()

U, 8V, 1
+L1LL( t 0>]+t—xt yt — ~t?

{ L(aul 1% :

ot oy ot oy

= 6U 6Vk n

1. | S, Vi, 1,
- +t—xt—yt—t
s Zun ax X y 2

n=0

karl . Vk+l — Lfl L

n=0



16

Then.
U=x+y—1
Vo—X—y+1
Uy =2t + —t?
Vi = 1

0.

1
Uz:—gtB
V. —lr2+1t 2t
272 6

1 1
Us = -t + —

l3 3° " 24

1
Vs = ——t?
. 22" *

AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2023;3:11—27

h Therefore, the solution is given by;

Case 2

14+x+y+2t 1 4 ¥ ]t3+
= — X _—_— e ces
y 5040 © 40° 2

1 1 1
v—1+x—y+2t+—t — o

40 2

Consider the following system of equations

UX—VUt—FUVt:—l—Fexsm(t)

Vi +UVy + ViU,

1 — € cos(t)

With the boundary conditions:

U(0,£) =sin(t)

V(0,t) =cos(t)

The Exact solution is given as

u(x, t) = e"sint,

v(x, t) = e *cost.

LIU] - L[VU]+L
sL[U(s,t) — U(0,1)]

LIV,] + LIV,
sL[V(s,t) — (

O'_'

h

_L[] + L[¢* sin(t)]

~LIVU,) — LUV,] - L[] + Lie* sin(£)]
+§L[Vut] —%L[UVt] —%L[l] +§L[e" sin(t)]

[ U] = —L[1] — L[e" cos(t)]
— —L[UV,] + L[V,U] - L1] - L[¢* cos(#)

(31)
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V(0,)
S

LV(s, 0] =~ 0 LUV~ LVl — CLft] L Lfe* cos(t)] (32)

Taking the inverse Laplace Transform of equations (3) and (4);

(L7 U(x,t)]] =L7" [@] +L7! EL[VUA] L EL[UVJ]

(33)
L' EL[l}} +L71 EL[ex sin(t)]}
U(x,t)=L" [@} +L7! EL[VU@} — L1 EL[uvt]} — x4+ € sin(t) — sin(t) (34)
LYL[V(s,t)]]=L" {V(S’t)} —L! FL[LIth]} — Lt ﬁL[VtUx]} —L! ELD]} —L! {L[e" cos(t)}] (35)
V(s,t)=L""1 [@} —L1 EL[Uth]} —L1 [%L[Vtux]} —x —cos(t) + e ¥ cos(t) (36)
Suppose the solution of equations (34) and (36) has the form;

U(x, )= limp"U (5, 1) = gp"un (37)
V(.= limgVi . = ni;p"vn (38)

Now applying the Homotopy-Perturbation Method to equations by substituting (34) and (36) into (37) and

(38), we obtain;
1 - 10
L71 L n i n n

—x+ € sin(t) — sin(¢)

—x —cos(t) + e cos(t)
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Expanding equation (39) and comparing the coefficient of the like powers;

, [Up(0,¢)
0. ) S hd
p Uy s ]
(1 oy ] 1 [ aVy]]
.77 —7-1|2 U I O i i _ i
p:Uj=L _sL[VO or || L _SL_ant“ X + € sin(f) — sin(¢)
(1 ol ] 1 [. oly]] 1 1% 1 aV,
2:U, =L " |=L|Vo—2| | + L' |=L|Vi==2| | =L ! e e = A ) Al
pilh =L { ot || 55 | LUy LU
p3 U3:L71 1L VO% +L71 1L Vl% +L Vz% —L71 1L UO%
s ot s ot || s ot
1

o] L]
o

Expanding equation (40) and comparing the coefficient of the like powers;

ZU aVk 1

1
P U =171 [EL

=, OUq
; Vi ot

o

1. [oU, 8V, ] oV, aU,
pt:Vy=—L"1 gL 6—t06_x0] —L'-L 6t0 axOH —x+ e * cos(t) — cos(t)
1 [al, 0V;]] 1. [aU, oV, L[V ou 1_ oV, oU,
2.V, =L VoD | =2 2 | o e e 2 Ll Bt [} U S o Dkt
Pt s” ot ox || 5" ot ox ot ox s | ot ox
1 [oU, 0V,]] 1 [oU, oV- L [ou oV 1. [0V, U
3 V :_L_l 7L 0 2 _L_1 7L 1 1 L 1 2 0 _L_ 7L 0 2
P Vs s | of ox st ox || T of ox s | ot ox
1 1 }

[ [ov; ol [T, [aV, ol
L LL{Gt axH_L L {Gt ax]

1 2. oU, 0Vi_ 1 2 9V, 0Vi_
k+1 V. —L71 nt n k—n —Lil L n k—n
Pk L ;at ox s | Lot ot
l Uy = sint,
Vo = cost,
U, = €*sint — sint,
Viy = —x+e*cost — cost,

1
=€ —e*—2x— Exz cos(t),
V, = —e*cos’t + € sin’t 4+ 2 cos®*t + xcost — 1,
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Therefore we have

1
u =e"sint+e"—e"‘—zx_fxzcos(t).;_...‘
v=—e"cos’t +e*sin’t +e*cost + 2cos’t +xcost —x—1+....

Case 3

ou dwov 10w d*u

o oxor 20tae M
00w du _
ot of ox2

2
L L

The exact solution is given by:
u(x,t) =2 -t +1,
v(x,t) =22+ -1,

w(x,t) =2 - -1,

Taking the Laplace transform, inverse Laplace transform and simplifying equations (41)—(43).
For (41):

L[U) = LIW.V] + 3 LIWU,.] — 4L}t

sL[U(x,s)] — U(x,0) = LW, V;] + %L[thlxx] — 4L [xt]

L[U(x,s)] :%U(x, 0) +%L[Wth] +%L[thlxx} - §L[xt}

Taking the inverse Laplace transform of (4)
-1 1 1 |1 1|4
L [L[U(x, S)” =L E U(x, 0) + L EL[Wth] + L Z_SL[Wtuxx] —L EL[xt]
—71-1 1 -1 1 -1 l —_ L é.f
U(x,t)=L [s U(x,0)| +L . LW, Vi]| +L 25L[thlm] L -

U(x,t)=L" E U(x, 0)} +L1 EL[WXVt]} +L™1 [%L[Wtuxx]} — 2xt?
For (2):

L[V;] =L[W,Uy] + 6L[t]
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LIV (x,5)] - V(x,0) = L L[Will] + L[ (47)

Taking the inverse Laplace transform of (47)

LYL[V(x,s)]] =L} EV(x, 0)] +L7! EL[WtUM]} +L7! EL[t]}

Vo =L" wa’ 0)] +L7 EL[WtUH]} +6- ;
V(x,t)=L" EV(x, 0)] +L! E L[Wtuxx]:l 4382 )

For (3):

L[Wt] = L[Uxx} + L[Vth] + L[4-Xt] - ZL[ﬂ —2L [1}
SL[W(X, 0)] - W(xv 0) = ZL[uxx] + L[wat] + L[4xt] - ZL[t] - ZL[H

1 1 1 1 2 2
LW (x,9)| = W(x,0) +_ LlU] + LIVaW,] + Lidt] ~> L[t - “L[1 (49)
Taking the inverse Laplace transform of (8), we have:

L' LW(x,s)]]=L" EW(x, 0)] +L1 EL[UXX]] +L7! EL[VXWt]}

(50)
+L FL[M] - FL[t}] o Fm]}
s s s
N 1 1 £ P
LW )] =L |oW(x,0)| +L7 | ZL{Un] | +L7 | ZL[VaWi] | +4x - 5 =2 5 =28
-1 1 -1 1 -1 1 2
LW (x,s)]=L gW(x,O) +L gL[Uxx] +L gL[Vfo] +2xt? — £ — 2t (51)
Suppose the solution of 46, 48, and 51 have the form
U(x,t) = limp"U,(x,t) = ",
(1) = limp () =3
V(x,t) = imp"V,(x,t) = > p"V, 2
(x, 1) limp (x,t) nz:;p (52)
W(x,t) = imp"W,(x,t) = > p"W,
(x) = imp Wal )=

Now applying the Homotopy-Perturbation method to equations (46), (48) and (51) by substituting equation

(52) we have;
1 =, oW, <. 9V,
-1|= n n n n
o 1 - LLK;I) ax)(;l) at)
Zp" u,=L" [gug(x, 0)} +p — 2xt? (53)

(S
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© 11 © naWn © n62un
;p"Vn:L’ [gVo(%O)]er({ [ K;p o )(;P ax2>

mn;

=0

iP"Wn:Ll [%WO(X,O):|+ ( ) Fox -2t
vl (S5 (5]

Expanding (53) and compounding the coefficient of like powers of p

<

b

o

p’:Up=L" Euo(xa 0)}

(=Y

2
pl:Uy=L" 1[ L[aw" aV"H +L1 [%L{%a u"” — 2x#?

O0x Ot ot 0x?
oW, oV (oW, 0V,
2 0 1 1_0
e I k|
~ oW, 0*U, (1 [oW; 0°U,
e e e
oW, oV, 1. [oW; V- 1_[oW, 0V,
3, _ 0 2 - l_l -1t 2_0
pith=L7 [ [ ox H [s O0x 6t”+L LL{&X at”
1 1 _[ow, 0’U 1 [oW, 8*U,
-1 -1 = 1 1 =+ 2 0
‘L Lvo<x,o>]+L LL[at ax2”+L [2SL[—at a”

1_[oW,_, 0V,
k+1 . _r-1|= k—n n 1
p iU =L LL{ o at” +L

1 L oW, 0*Uy_,,
2s ot *x

For (54), we have;

p*:Vo=L" :%VU(X,O):|

pt:Vi=L" %L:% a;go:: +3£2

o P B

o ]

21
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1. [oW, 8*U,_
k+1 . V _ L—l _L n k—n
P ko [s { o 0

For (55), we have:

p": Wo=L"1 :%WO(x, 0)}

ot Wy=L" 1L a;gO +L7! :L a(,:i" aavf":_ +2xt? — 2 -2t

oo P (ol fof]

o P P o ]

1. [0°U, 1. [oUy_, oW,
+1 . —_7-1(Z -1\ n n
Wia =L [sL{asz—i_L LL[ ox ot ”

Therefore.

Uo—X + 1,
Vo—x—]
Wo—X—]

= —2xt?2 5

— 3t2,

= 2xt? —t2,

= 1(16x 2)t?

=3 — ]
1 2

= —(8x — 4)t“,

W, = x(4x — )t

U; = 3t* 4+ (x(8x — 4) + x(4x — 2))¢t2,
V3 = 2x(4x — 2)t2,
W3 = 2x%(4x — 2)t2,

The approximate solution is given by;

nw 142 —12,
v Xt —14+t2,
wax?—1-—t2
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Fig. 1. The approximate solution of U(x,t) using the Laplace Homotopy
Pertubation Method for case 1att =010 0.1 andx =010 0.1andy =1.

4. Numerical simulation

In this section, we checked for the eff conver-
gence, and authenticity of the proposed Laplace
Homotopy Perturbation Method (LHPM) in
providing an approximate and reliable solution to
the system of n-dimensional partial differential
equation by comparing results with the exact
solution.

Uy 4
2

Fig. 2. The Exact solution of U(x,t) for case 1 at t = 0 to 0.1 and x = 0 to
0.landy=1.

V(.5 1)

Fig. 3. The approximate solution of V(x,t) using the Laplace Homotopy
Perturbation Method for case 1.

5. Discussion of results

In the research work, an efficient hybrid method
has been utilized which involves the coupling of the
Laplace transformation method and the Homotopy
perturbation Method in finding the approximate
solution to the system of n = dimension partial

Vixpt)

Fig. 4. The Exact solution of V(x,t) for case 1.
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Fig. 5. The approximate solution of U(x,t) using the Laplace Homotopy
Perturbation Method for case 2 att = 0 to w and x = 0 to 0.1.

Fig. 7. The approximate solution of V(x,t) using the Laplace Homotopy
differential equation. The Laplace-Homotopy Perturbation Method for case 2 at t = 0 to w and x = 0 to 0.1.
Perturbation method has been implemented excel-
lently on the partial differential equation; thereby
obtaining a solution that is highly convergent and
accurate. Three different cases with initial conditions
were considered. The comparison consists of the
exact results extracted from prominent literature
that have implanted the normal analytical means
and Laplace Homotopy Perturbation results. The
results (Figs. 1—14) validated the efficacy and

Fig. 6. The Exact solution of U(x,t) for case 2 att = 0to wand x = 0to  Fig. 8. The Exact solution of V(x,t) for case 2 att = 0 to w and x = 0 to
0.1. 0.1.
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Fig. 9. The approximate solution of U(x,t) using the Laplace Homotopy
Perturbation Method for case 3 att = 0 to 0.1 and x = 0 to 0.1.

1.010
1.008
1.006
1.004
1.002
Uh 1
0998
099
0.994
0992

0 0

A
A

0.04 0.04

Fig. 10. The Exact solution of U(x,t) for case 2t = 0 to 0.1 and x = 0 to
0.1.

Fig. 11. The approximate solution of V(x,t) using the Laplace Homotopy
Perturbation Method for case 3 att = 0 to 0.1 and x = 0 to 0.1.

Fig. 12. The Exact solution of V(x,t) for case 2t = 0 to 0.1 and x = 0 to
0.1.
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Fig. 13. The approximate solution of W(x,t) using the Laplace Homotopy
Perturbation Method for case 3 att = 0 to 0.1 and x = 0 to 0.1.

reliability of the LHPM by showing a high level of
convergence results. Also, the result showed that
few iterations yield precise results across a broad
spectrum.

Fig. 14. The Exact solution of W(x,t) for case 2t = 0 to 0.1 and x = 0 to
0.1.

6. Conclusion

We have applied the Laplace homotopy pertur-
bation method to solve three systems of the n-
dimensional nonlinear partial differential equations.
Although several methods have been used previ-
ously for this purpose, however, to arrive at a more
accurate and efficient result, we introduced the new
hybrid method. The results obtained using the
LHPM showed that the method is valid, reliable, and
highly efficient in solving the system of n-dimen-
sional partial differential equations. The result also
showed that the method converges within a few it-
erations compared to all other semi-analytic
methods like VIM, HPM, Laplace, etc. As a result of
the fast convergence and efficiency of the Laplace
Homotopy Perturbation Method, we hereby
recommend this method (LHPM) for obtaining an
approximate solution, although the exact solution
can also be determined from the multivariate series.
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