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REVIEW

Sensitivity Analysis of Prior Distributions in
Regression Model Estimation

Ayoade 1. Adewole "*, Oluwatoyin K. Bodunwa *

! Department of Mathematics, Tai Solarin University of Education [jagun Ogun State Nigeria
2 Department of Statistics, Federal University of Technology Akure.Ondo State Nigeria, Nigeria

Abstract

Bayesian inferences depend solely on specification and accuracy of likelihoods and prior distributions of the observed
data. The research delved into Bayesian estimation method of regression models to reduce the impact of some of the
problems, posed by convectional method of estimating regression models, such as handling complex models, avail-
ability of small sample sizes and inclusion of background information in the estimation procedure. Posterior distri-
butions are based on prior distributions and the data accuracy, which is the fundamental principles of Bayesian statistics
to produce accurate final model estimates. Sensitivity analysis is an essential part of mathematical model validation in
obtaining a robust inference. Prior sensitivity analysis was examined in regression model, via Bayesian regression and
Bayesian quantile regression analysis; results obtained across the sensitivity analysis were compared using RMSE and
BIAS statistic as model performance evaluation. Empirical studies using Nigeria Economic variables were employed to
analyze the variation in prior sensitivity. Different hyper parameters of the priors were used to check for sensitivity of
the prior distributions, it was ascertained that Bayesian method under the frame work of regression quantiles performs
well with small variance and sample size than Bayesian regression methods.

Keywords: Bayesian inferences, Prior sensitivity, Posterior distributions and regression models

1. Introduction compute predictions or perform the model com-
parison [4]. Accounting for uncertainty is para-

egression analysis unveils the relationship ~ mount to Bayesian analysis, as the computations
between a response variable and predictor assqc1ated w1th most common tasks such as esti-
variables. Researchers are inquisitive of the mations, predictions, evaluation of hypothesis are
behavior of a dependent variable y; given the in-  typically integrations in nature. In some circum-
formation contained in a set of explanatory variables ~ Stances, it is possible to carry out such integration
x;. However, performing a regression does not exactly either, by taking advantage of conjugate
automatically infer a reliable relationship between  Structure in the prior-likelihood or by using dy-
the variables but rather, selecting an estimator that ~hamic programming when the dependencies be-
gives a precise and reliable parameter estimate [1] tween rando.m V‘arlables are approprle?tely simple
Bayesian regression analysis is a statistical para- [5_?]- Bayesian 1nfergnce 15 chara'cte{rlzed by the
digm that answers research questions about un- de.rlvatlon Of a posterior frqm a 1'1k911h00d and a
known parameters using probability assertions; it ~ PTiOT- Poe?t.eno.r distribution is ba51c‘ally. dependent
provides appropriate theory for accommodating N2 specification and accuracy (?f a likelihood and a
uncertainty in model selection [2,3]. Bayesian PTior robus‘tness of Bayesian 1pferences depends
models is about integration of posterior estimates, ~ S°lely on this accuracy. In Bayesian context, the so-
measures of uncertainty, eliminate nuisance vari- called 1nf(?rmat1\{e prior has a fupdamental impact
ables or missing data and averages models to On posterior estimates of some important models
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such as latent growth models [10], confirmatory
factor model [11], Logistic regression [12] among
others, as it was explored by researchers. Sensitivity
analysis, is a technique in Bayesian models used to
explored the behaviors of how different priors
impact posterior analysis under various specified
scenarios. It plays an important role in validating
inferences in Bayesian model [13] under which the
prior is considered as an integral part of the model
building. It is argued that the combined practice of
building models using informative priors and eval-
uating models, using prior sensitive measure, ad-
vances knowledge of model formation in Bayesian
analysis [14]. Assessing the sensitivity of the
Bayesian posterior inference, ]|15] proposed a new
class of prior distributions that accounts for uncer-
tainty in the data sequences. The researchers
derived this class of prior from initial prior distri-
bution and the likelihood distribution. The research
revealed how sensitivity analysis can be performed
using a standard MCMC methods for any model
with closed likelihood form [16]. introduced a
practical and computationally efficient methods of
sensitivity analysis by estimating properties of pos-
teriors, resulting from power-scaling the prior or
likelihood by means of importance sampling esti-
mation procedures; a diagnostic approach that can
show the presence of prior-data conflict or likeli-
hood non-informativity. More so, the research
demonstrated the workflow of sensitivity analysis
on case studies of real data using models that varies
in complexity, from simple linear models to
Gaussian process models [17]. explored the efficacy
of Bayesian and Non-Bayesian methods by esti-
mating the effect of hypothetical exposure which is
influenced by measurement error of sensitivity
analysis [18]. investigated the sensitivity using two
different prior specifications on parameters for se-
lection mechanism under Bayesian nonignorable
selection models. In quantifying the sensitivity of
prior assumption, the deviance information crite-
rion and the conditional predictive ordinate were
used as a means of comparison for goodness of fit
under the two specifications of the priors. It was
shown from their research that MLE prior yields
better fit than the uniform prior. Besides [19],
develop a general sensitivity measure based on the
Hellinger distance to assess sensitivity of the pos-
terior distributions regarding changes that occurs in
the prior distributions for the precision parameters
[20]. examined Prior sensitivity analysis of logistic
regression model and its robustness to outliers,
applying the procedures in estimating the vulnera-
bility to poverty and anxiety. The results of the ap-
plications showed that the L-Logistic regression

models provide a better fit than the corresponding
beta regression models.

Sensitivity analysis has been a major focus in
Bayesian model research [21]. However, the rate of
the research of analyzing the sensitivity of the prior
in Posterior distribution is gradually diminishing
[22,23] and empirical studies employing Bayesian
methods are seldomly reported [24]. Quantile
regression problem was first proposed by [25] as a
semi parametric extension of the linear model to
estimate rates of change in all parts of the distri-
bution of the response variable. The Bayesian
framework of quantile regressions implemented via
the Markov Chain Monte Carlo method for esti-
mating regression quantiles, provides a convenient
way of incorporating uncertainty into predictive
inferences [26]. Quantiles play a significant role in
modeling quality of service in the service industry
and also in modeling risk in the financial industry.
Sensitivity analysis of quantiles has been a long-
standing problem due to its volatilities. Mathemat-
ically speaking, the derivative of the value of the
financial product regarding the volatility is not
readily available. The breakthrough research was
done by [27—29]. This research will revisit the
essential part of model validation by not limiting the
sensitivity analysis to linear and Bayesian model
alone but extends the work to Bayesian analysis of
important class of quantiles. Furthermore, this work
evaluates the effect of autocorrelated error in prior
sensitivity of the regression models using both
informative and non-informative priors in a given
scenario; using likelihood—based approach. Also,
the violation of the independence of the error terms
may have severe negative impact on the inference if
the regression parameters are not estimated effi-
ciently. The research examined the predictive ability
of a fitted model from simulated data set that has
autocorrelated errors; this work is intense in
analyzing robust statistical procedures for esti-
mating parameters of regression estimates. This
research re-explored works on sensitivity analysis
empirically, by comparing the effects of different
priors by varying their hyperparameters on their
posterior estimates using Nigeria economic data.
The Sensitivities analysis in this work will provide
great insight in analyzing parameter used in cali-
brating the economic model. Comparison will be
made on different regression estimates to affirm the
goodness of fit using validation statistic.

2. Material and methods

This section described the methods involved in
estimating regression quantiles and Bayesian
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estimation of regression quantiles. It also depicts the
sensitivity analysis of Bayesian methods of regres-
sion analysis via Monte Carlo algorithm.

2.1. Linear regression model

Considering:
y=XB+e (1)

Where y is the vector of response variable, X is
matrix from predictor variable., 8 is the vector of
parameters to be estimated and, ¢ is the error vector

3. Method of estimating regression quantiles

Let
ve=x; B, + e, (2)

y: is the response variable and x; a k x 1 vector of
covariates for the #" observation. ¢ is the error term
whose distribution is restricted to have 7 quantile
equal to zero, that is

/ F.(&))de;=7 (3)
Q,(x)=x, 8 (4)

minimizing equation (4) gives a quantile esti-
mate 3, which is a vector of unknown parameter of
interest

8. =argming_p Y p. (i — %) (5)

t=1

where the loss function p is defined as

pr(u)=[r —I(u < 0)ju (6)

Solutions to the minimization cannot be derived
explicitly since the lost function is not differentiable,
linear programming method in ‘R” was designed to
obtain quantile regression estimates for 3,.

3.1. Bayesian estimation of regression quantiles

Considering the following standard linear model:

Ye=u(xe 1) + &
However

p(xe1) =x,_48 7)
t =1,...,n for a vector of coefficient 8
The 7" conditional quantile of y; given x; is
denoted as

q- (yt}xt) :x;ﬁ(T) (8)

Implementation of Bayesian quantile regres-
sion constitutes the erection of independent asym-
metric Laplace distribution with u(x;) = x;8 as the
likelihood, quantiles of interest (v) and specifica-
tions of priors on the model parameters and by
Bayes theorem the resulting posterior distribution is

7 (0]ye, x}, 7) < L(y:|0,x;, 7)o (6) 9)

where m(f) is the joint prior on regression
parameters.

The error term follows an independent asym-
metric Laplace distribution whose density function
is

fr=1(1=7)exp{—p,(u)} (10)

for 0<7<1, where p, is defined as the loss
function of quantile regression. The minimization of
the loss function of quantile regression,
p,(u) = u[r —I(u <0)] is exactly equivalent to the
maximization of a likelihood function of asymmetric
Laplace distribution Location and scale parameter u
and o were incorporated in density (11) respectively
to obtain

= )

g

(11)

The method of [30] that proposed a location
scale mixture of asymmetric Laplace to build a more
flexible MCMC scheme in drawing samples from
posterior distribution was adopted. This leads
equation (12) above to

" (g — 1B —uvf)2> 1

26%0v; 0v;

f(yt|x;a57,u-0,v,r) ocexp<_

: (12)

where v is the scaling factor for the error terms
which account for the spread of the distribution
across the entire quantiles. Bayesian inference de-
pends on prior and likelihood function, conjugate
prior from Normal. Uniform, Inverse gamma and
Jeffrey distributions was chosen separately. The full
conditional posterior distribution of 8, . o, v in (14)
is not of tractable form
The Gibb's sampler which is an iterative Monte
Carlo scheme designed to extract conditional pos-
terior distribution from intractable joint distribution
was employed for the estimation steps.

3.2. Methods of bayesian regression

Posterior distribution x likelihood function
o« prior distribution
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Posterior Distribution.

To obtain the posterior distribution of Normal
likelihood function and inverse gamma prior;
consider the Normal Likelihood for the observation
in equation (15)

W [ £ <yxml<yxm}
e
(2m)

where h = %
the inverse gamma prior defined as equation (16)
below
If x1|w, 0* ~ N(u,0? )iidand o® ~ IG(a, ) 4
Then

fy/B,n)= (14)

n 1
02 X1,X1,x2,...xn,IG<a+§,6+§Z(xl'—,u) (15)

Therefore, the posterior derived with the
normal likelihood distributions and gamma prior
described above is given by (17) below by repar-
ameterization in terms of the precision S

P(S°|a,6)ocs(u+%> - exp (— S(ﬂ%z (; — u))

3.2.1. Normal—normal

Considering the posterior distribution of Normal
likelihood function and normal prior derived as
follows;

fulx) af () f(xw)=F (1) fl [0) f (2lw) .. f (xale)

I B (T R H 1w’
V2mway? P 202 12702 P 252
(17)
_ 1 ooy | T 2y
() T
(2m) ’ ao2a>"
" xq% — 2uxq 4 2
-y 2021 (18)
i=0

- 2

n
uooz +Z aozx-]
i=0

H= 02 +nag?

=exp |— (19)

ap2a?
a2+nay?

the posterior distribution follows a normal
distribution described as (21) below;

ulx ~ N (uq,01%) (20)
where
a? aq? 1

i 2 27 2 2 (21)
g +noy gy - +no

and

/J'l :(712 (ﬂg (7'(]72 + Z.’)ﬁ 0'2> (22)

i=0

3.2.2. Normal uniform

We assign a uniform prior distribution for p and
use a normal likelihood function for the observed n
measured (x;). the posterior distribution given by

— 1 ¢ 2
Jc(#)*(mwz)%/2 exp ( 252 ;(xl W) ) (23)
Taking logs:
L(p)__ m2 joq (2m) — nlog, [o] — 5 (x1 — )’
7" i
(24)
Since S is known
1 & )
Lisw)=k = 55 ) (a—p) (25)

i=0
where k is some constant. Differentiating twice
we get.

OL(w) 1 [
W*UT (le - ,U«n>

i=0

(26)

1Ly is the average of the data value X . A taylor
series expansion of this function about p0 gives

O L(w) (—mo)’_—n (n—po)’
o2 2 2 2

(27)
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)

Where k is a normalizing constant in comparison
with the probability density function for the normal
distribution, shows that this is normally density
function with mean X and standard deviation N

flw)=kexp (28)

. )

3.2.3. Normal Jeffrey

Considering a Normal likelihood and Jeffery
prior, a conjugate posterior is derived as;
Jeffery's prior is [u] = C,/Z% , which is still a constant
(32)

Noting that the likelihood follows a normal dis-
tribution as;

= 1 (X —w?
PIX /u]= L 31
Kiul | o @1

Equations (32) and (33) gives a posterior dis-
tribution in equation 34

PX /) =Y exp

(32)

Note that all of the stuff outside of the expo-
nential is just a constant, so examining only the
exponential, we can see that the expression is
normal.

So the posterior distribution is

— — 0'2
fru()

Based on the conditional posterior densities of
B, o2 and u in equation which are not analytically
amenable MCMC computation method was
employed to draw observations from the posterior.

(33)

3.2.4. Gibb's sampling algorithms

Starting from initial value of 8, ¢®® and u© ,
MCMC algorithm in 6 blocks was implemented
through the following steps

Step 1: Update coefficient of B from Normal pos-
terior distribution. Sample B from full conditional
posteriors. 8/a%,X; ~ N(B, ).

Step 2: Update ¢¥) from the Gamma distribution
G (a,b) by drawing samples from conditional pos-
terior distribution using f (¢ /X; ~ G(a,b))

Step 3: Update U* from the posterior density

<ﬁ Z:q (1 “)2)
fl) = i e

(2ma?
Since the precision is known, samples were drawn
from

Step 4: Update u® from full Normal Jeffrey pos-
terior. Sample were drawn from full conditional
posterior P(u/X ~ N X,%Z

Step 5: From the Gibb's samples discard an initial
number of 20000 generates as being unrepresenta-
tive as burn in and average the remaining to pro-
duce an estimate of posterior mean and standard
deviation. The Monte Carlo study considered the
small sample size to evaluate the effect of sample
size in sensitivity of both informative and non-
informative priors chosen.

3.2.5. Sensitivity analysis with autocorrelated error
Considering the regression model with auto
correlated error below

Y, =XI8:+ & (34)
where
P
&= Z pjgt—j +us (35)
j-1

For t =1, ..., n, Xj is the q dimensional pre-
dictors, u; follows independently identical normal
with mean 0 and variance 2. pij =1, ...,p is the
autocorrelation coefficient of order p which de-
termines the dependency of the error term &. Given
B;, Xir and u; for t = 1,...,n, a data set for Y; from the
model in equation (36) was obtained, where §;,i =1,
...,4 assumed 0.1,1.01,-0.06 and 1.1 respectively, the
research considered 0.6 as the autocorrelation co-
efficient satisfying the conditions of autoregressive
of order 1. The values of (p,aft) are (0.6,0.64) were
used to ensure error variance of unity. The simula-
tion study considered the small (n = 25), and large
sample (n = 300) size to evaluate the effect of
autocorrelated error in prior sensitivity of the
regression models. The conditional posteriors ob-
tained using both informative (Normal) and non-
informative priors (uniform)were non-standard
form, Gibbs sampling algorithm was thus incorpo-
rated to draw the MCMC iterates for each
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parameter. of the estimates, the Bayesian analysis of
regression models with serially corelated errors was
also extended to lower, medium and upper quan-
tiles. The models fit was validated via root mean
square error of the parameter estimates.

3.2.6. Empirical study

The intercept and the coefficient of the predictors
were assigned priors and the likelihood functions
defined in the methodology above were employed,
the sensitivity of the priors was done to see the
impact of the various priors on the posterior means
by varying the hyperparameters of the priors. The
Gibbs sampler ran for 120,000 replications and
discard the first 20,000 as burn in period. As it is
standard in quantile regression, the method was
applied separately for each 7. MCMC sampling was
carried out in R (R development Core Team 2022),
the sensitivity of prior used were validated using
RMSE and BIAS, the data set from Nigeria CBN

Table 1. Regression models estimates.

bulletin which comprised of the Real Gross 1Do-
mestic Product (RGDP) per capital (Y), money sup-
ply (x1), foreign direct investment (x),
unemployment (x3), and non-oil export (xs) was
used using the model in equation

Ye = 01X + BaX; + B3x; + Byx: + 1y (36)

Model comparison was done between the fre-
quentist and Bayesian methods. MCMC diagnostics
indicates convergence of the Gibb's sampler.
Further, the effect of these macroeconomic variable
on Nigeria GDP was considered.

4. Results and discussions

This section presented the empirical results and
discussions of the sensitivity analysis of the regres-
sion models described above.

Table 1 above is the empirical estimates of Ordi-
nary Least Square regression models, posterior

Coefficient OLS Prior Bayesian Bayesian Quantiles Estimates
Estimates o5 0.25 0.5 0.65 0.8 0.95
Intercept 663.358 NORMAL 662.96 558.12 612.4 661.37 652.92 634.26 633.87
UNIFORM 661.85 561.34 613.34 664.64 656.35 633.23 637.34
JEFF 618.91 632.17 629.56 616.29 633.29 639.25 642.23
GAMMA 665.38 649.73 605.11 618.25 597.4 672.54 633.36
Money Supply 4.8726 NORMAL 4.641 4.345 4.896 5.19 4.944 4.174 3.819
UNIFORM 4.398 3.2905 3.734 3.236 2.505 2.631 4.22
JEFF 4.542 2.2567 2.866 3.824 2.194 3.538 3.387
GAMMA 4.965 5.523 5.683 4.261 4.185 3.172 4.185
Foreign Direct 1.136 NORMAL 1.158 1.1947 1.736 2.391 1.364 2.013 2.101
UNIFORM 1.072 0.919 0.835 1.19 1.534 1.395 0.872
JEFF 1.0153 0.2497 0.829 1.632 1.183 1.876 1.937
GAMMA 1.208 0.371 0.924 1.926 1.69 1.773 1.871
Unemployment —3.494 NORMAL —3.303 —2.528 —4.502 —2.165 —4.922 —-3.274 —2.691
UNIFORM —2.929 -1.791 —3.572 —-0.814 —0.7397 —0.573 —1.031
JEFF —2.836 —2.063 —4.101 —1.469 —1.932 —0.093 —-0.104
GAMMA —3.183 —1.041 —3.362 —3.075 —1.403 —0.583 —0.093
Non-Oil Export —2.853 NORMAL 0.012 0.002 0.005 0.002 0.018 0.007 0.001
UNIFORM 0.000 0.0002 0.0004 0.0004 0.917 0.01 0.003
JEFF 1.000 1.003 0.087 0.066 1.104 0.853 0.749
GAMMA 1.045 0.900 1.000 0.701 1.042 0.772 0.853
Table 2. Performances of the estimator.
PRIOR DISTRIBUTIONS
REGRESSION MODELS QUANTILES NORMAL UNIFORM JEFF GAMMA
RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS
BAYESIAN MODELS 0.0089 0.0024 0.1472 0.0667 0.3127 0.0536 0.2201 0.0349
BAYESIAN QUANTILES 0.05 0.0018 0.00048 0.0298 0.00052 0.0812 0.00095 0.0013 0.00058
MOBELS 0.25 0.0061 0.00071 0.0352 0.0001 0.0694 0.00037 0.0083 0.00073
0.5 0.0053 0.00025 0.0585 0.00024 0.0338 0.00068 0.003 0.00099
0.65 0.0029 0.00059 0.0062 0.00037 0.0417 0.00016 0.0004 0.0009
0.8 0.0057 0.00046 0.0559 0.00085 0.0092 0.00025 0.0095 0.00085
0.95 0.0062 0.0006 0.0016 0.007 0.0011 0.00013 0.0053 0.00028
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Table 3. Performances of OLS estimator.
MODEL RMSE
OLS 0.0464

BIAS
0.00017

estimates of Bayesian regression models and
Bayesian quantile Regression models across the
entire distribution. The Bayesian quantiles regres-
sion models reports the estimates of lower quan-
tiles, medium and upper quantiles respectively.
Different priors were used in checking the sensi-
tivity of the models. From the Table 1, the Bayesian
models report shows that money supply, foreign
direct investment and non —oil export has a positive
effect on Gross Domestic Product while unemploy-
ment reports a negative effect on Gross Domestic
Product using Normal, Uniform, Jeffery and gamma
prior across the entire distribution. Posterior

estimates reported in bold letters are statistically
significant with 95 % credible intervals formed by
2.5th and 97.5th samples quantiles of the MCMC
iterates, the significant effects were more revealed in
upper tails with informative priors than the non-
informative priors while the significant effect is
more revealing in the lower tails using Jeffery prior.
The Bayesian estimate is similar to those based on
quantile regression indicating the approach is
practical and established parameter uncertainty.
From the Table 2, Bayesian regression models
gives minimum RMSE and BIAS with Normal prior
while virtually both informative and non-informa-
tive priors under study gives smallest RMSE in
Bayesian quantile regression justifying the work of
Yu and Moyeed 2001 that the usage of improper
prior with asymmetric Laplace likelihood can lead
to a proper posterior estimate. Comparing the

Table 4. Performance of regression models sensitivity with autocorrelated error.

PRIOR DISTRIBUTION/Sample Size

REGRESSION QUANTILES  NORMAL N — 25 UNIFORM N — 25 NORMAL N — 300  UNIFORM N — 300
MODELS N@©5 N@5 U@Ol) U@©) N@OI) N@5 U@ U010
RMSE  RMSE  RMSE  RMSE RMSE  RMSE  RMSE  RMSE
BAYESIAN 0.1049 0.2217 0.0963 0.0557 0.1431 0.1066 0.1369 0.0949
MODELS
BAYESIAN 0.05 0.0224 0.0036 0.0978 0.0326 0.0076 0.0006 0.0316 0.0076
QUANTILES 025 0.0318 0.0039 0.1139 0.0446 0.0197 0.0082 0.0735 0.0197
05 0.1404 0.1046 0.0992 0.1924 0.0952 0.2096 0.1164 0.2102
0.65 0.0432 0.0052 0.2507 0.0815 0.0446 0.0012 0.0942 0.0446
0.8 0.0442 0.0059 0.2825 0.0836 0.0068 0.0055 0.0463 0.0068
0.95 0.0625 0.0073 0.0295 0.0927 0.0836 0.0065 0.0964 0.0836
Table 5. Prior sensitivity.
PRIOR INTERCEPT  MONEY FOREIGN  UN-EMPLOYMENT  NON-OIL BIAS RMSE
HYPERPARAMETERS SUPPLY DIRECT EXPORT
NORMAL (0,1) 66426 (1.17)  4.828 (0.15)  1.153 (043)  —2.694 (0.736) 0.000 (0.02)  —0.0273  0.0266
NORMAL (0,5) 66752 (042) 4806 (1.69)  1.064 (0.15)  —2.275 (0.14) ~0.000 (1.10)  —0.1237  0.0230
NORMAL (0,10) 66759 (0.15)  4.943 (1.56) 1174 (032)  —3.196 (1.27) —0.005 (0.00) 0395  0.0245
NORMAL (5,10) 666407 (0.02)  2.119 (0.23) 1534 (0.01)  1.376 (0.52) 0173 (0.00)  —02973  0.0297
NORMAL (1,5) 660302 (0.06)  2.404 (0.32) 3.893 (0.01)  1.047 (0.16) 0.085 (0.53)  —0.482  0.0092
UNIF (0,1) 661.064 (0.01) 4153 (0.31) 1172 (0.17)  —3.185 (0.25) 0.000 (0.01)  —0.0004  0.4204
UNIF (0,0.5) 660.753 (1.71) 4138 (0.04)  1.263 (0.06)  —3.266 (0.29) 0.000 (0.6) 00029 03231
UNIF (0,1) 663.725 (030)  2.903 (0.02)  0.432 (0.16)  0.342 (0.03) 0.028 (0.11)  —0.005  0.7277
UNIF (0,10) 670218 (0.06) 4722 (1.07) 3274 (0.18)  2.691 (0.21) 0543 (0.00)  —0.1468  0.8851
UNIF (0,0.1) 668.792 (0.01)  2.640 (0.13) 3743 (05)  3.271 (0.07) 0593 (0.29)  0.0087  0.4354
JEFF (0,1) 661231 (0.25) 4812 (0.00)  1.028 (0.08)  —3.012 (0.1) 0.000 (0.02)  0.0073 03833
JEFF (0,1.5) 660.714 (0.04)  3.842 (1.02) 2428 (0.11)  —1.629 (0.09) 0.000 (0.09) 00315 265529
JEFF (0,2) 649.143 (0.01)  2.936 (0.27)  2.032 (0.14)  0.015 (0.06) 0.005 (0.56)  0.0098  0.1164
JEFF (0,2.5) 666392 (0.04) 3375 (0.20)  1.914 (0.000  0.039 (0.38) 0.000 (0.41)  —0.0182  0.5281
JEFF (0,5) 661.054 (0.93) 4252 (0.10)  1.193 (026)  —2.993 (0.01) 0.000 (0.04)  —0.0229  0.1349
GAMMA (1,0.5) 661354 (0.09) 4752 (0.26)  1.143 (0.08)  —2.993 (0.15) 0.000 (0.21)  —0.0229  0.2887
GAMMA (1,1.5) 558.135 (0.17)  4.604 (0.24) 1215 (0.03)  —3.572 (0.00) 0.000 (0.01)  —0.0001  0.5295
GAMM (1,3) 665.715 (0.09) 1782 (0.18)  2.683 (0.03)  —1.395 (1.16) 0.009 (0.68)  0.0004  0.7762
GAMMA (1,5) 661272 (024) 4530 (0.17)  1.262 (0.05)  —3.793 (0.93) 0.000 (0.01)  0.0021  0.8302
GAMMA (1,10) 667.07 (1.06)  1.105 (0.83) 2528 (1.03)  1.227 (0.65) 0.003 (0.40)  —05593  0.1962
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frequentist approach with the Bayesian approach
using Tables 2 and 3, it was revealed that the
Bayesian approach produced minimal RMSE and
BIAS which implies that the Bayesian approach
method of estimation outperformed the frequentist
approach in terms of prediction performance and
model accuracy.

Table 4 below gives the root mean square errors of
the parameter estimates obtained from the simula-
tion study of prior sensitivity of regression models
with autocorrelated errors using both informative
and non-informative priors.

The sensitivity analysis of Bayesian techniques of
regression quantiles with serially correlated error
for various forms of priors produces minimal error
than Bayesian regression. It is observed that when
dealing with both informative and non-informative
priors in any chosen scenarios, the performance of
Bayesian quantile regression is not visibly affected
by the autocorrelation error in the model across
the entire quantiles but produces higher RMSE at
the median quantiles. The result justifies the work
of [1] that states that inferences are not only
characterized by central locations alone but must
be extended to other part of the response
distribution.

Table 5 shows the empirical analysis of estima-
tion of the Bayesian regression models with
different priors. This was done to see the impact of
the various priors on the posterior means by
varying the hyperparameters of the priors. The
summary statistics reported the posterior mean
with their respective standard deviations in
bracket. Estimates that are statistically significant
are reported in bold numbers, the result shows that
Normal, Gamma, Uniform and Jeffrey's priors are
all sensitive to change in hyper parameters. The
lower RMSE values using Normal priors buttress a
better fit to the empirical data set and the model is
successfully able to explain the variations in the
estimates.

5. Summary and conclusion

Sensitivity analysis is a technique used to
examine how different priors can influence a pos-
terior analysis under different scenarios. The study
dug into prior sensitivity analysis using Bayesian
paradigm in Bayesian models and Bayesian quan-
tile models. The main objectives of the study were
to analyze how and to what extent, prior informa-
tion can influence precision of regression models
using simulated and empirical data set. The work
examined the predictive accuracy of model devel-
oped with informative and non-informative prior

distributions and comparative analysis was done
on their posterior means. The result revealed that
accuracy of the estimated models with informative
prior distributions is higher in Bayesian models
justifying the work of [13] while Bayesian quantile
regression models still performed better with non-
informative priors aligned with [15] that states
improper priors can still be proper in inferences
with the use of Asymmetric Laplace likelihood. The
work showed that sensitivities of important ranges
of quantiles can be obtained in a simple and
effective way using Bayesian theory. The result still
valid for smaller sample size without losing power
of precisions. The research filled the vacuum
in the literature by delving into examination of
sensitivity of prior's analysis of Bayesian quantiles
regressions.
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