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REVIEW

Detection of Pollutants in Soil Using Laser-induced
Breakdown Spectroscopy (LIBS)

Ekhlas J. Mahmood ', Mithag MM. Al-Sultani

Department of Physics, College of Education for Girls, University of Kufa, Iraq

Abstract

The tremendous development in various industrial and agricultural fields has led to an increase in pollution of soil
and water bodies, which has been reflected in the quality of agricultural products and their quantity, as well as the
damage that this pollution causes to human health and the growth system of other living organisms. Many soils are
polluted with heavy metal elements like lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe),
aluminum (Al), and mercury (Hg), which makes the environmental situation more difficult. As part of this sensitive
stage, monitoring and analysis have become essential to assess the risk resulting from pollution and determine current
environmental trends accurately and promptly. Established on the laser's produced plasma, a novel element analysis
way called laser-induced breakdown spectroscopy (LIBS) has been developed. This method involves applying laser
pulses to the sample to ablate it. This process causes the material to evaporate and ionize in a hot plasma, which the
spectrometer then analyzes. The concentrations of various elements of environmental importance, like copper, cadmium,
calcium, barium, magnesium, chromium, manganese, titanium, phosphorus, iron, zinc, and others, are determined using
this technique because it has shown to be a reliable and efficient tool. Elements are detected by their spectroscopic
fingerprint. The last twenty years have witnessed the presentation of much research in this field, which has dealt with
various technical and environmental aspects. In this study, provided the basic principles of LIBS for soil analysis
included The formation of plasma mainly consists of heating, melting, evaporation, ionization, and excitation processes,
many of these studies will be reviewed to find out the latest developments, identify differences between researchers, and
discuss several aspects related to these studies. This understanding will help optimize conditions for improved signal
quality and stability. Another aim is to develop effective noise decreasing methods, such as signal averaging and
advanced data processing techniques, to enhance the analytical features of LIBS and ensure accurate readings. The study
will also explore the pollutants detection mechanisms inherent in LIBS, and will address the challenges associated with
sample preparation, striving for minimal processing to facilitate direct analysis of soil samples. By achieving these
objectives, the study aims to establish LIBS as a robust and reliable tool for assessing soil health and monitoring
environmental contamination. It will make it easier for readers to comprehend the state of the LIBS technique's research
in soil analysis today.

Keywords: Soil pollutants, Laser-induced breakdown spectroscopy (LIBS), Heavy metals, Elemental analysis, Environ-
mental analysis

1. Introduction is most impacted by heavy metal pollution among
environmental partitions [2,3], namely due to
managed and uncontrolled waste disposal, acci-
dental and process spills, mining and smelting of
metallic-ferous ores, and application of sewage mud
to agricultural areas. Thus, the scientific community
is working hard to develop analytical tools that can
track the amounts of heavy metals in the soil and

A s the primary channel for exposing humans,

animals, and plants to environmental toxins,
soils are extremely diverse arrangements in dynamic
equilibrium with other partitions. They also play a
crucial role in determining the destiny of pollutants
(either as a source or as a sink) in ecosystems [1]. Soil
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ways to restrict their intake and remediate the soil
[4]. An atomic analysis method called (LIBS) was
created recently, to be more precise, the laser ablates
the sample to create the plasma, which is subse-
quently created, and then the elements are deter-
mined both qualitatively and quantitatively by
analyzing the spectrum signals that the plasma emits
[5—9]. Among many benefits, including rapid
analytical speed, easy sample pre-treatment, multi-
element immediate detection, and in-situ detection
capability [10], element investigation has found
widespread application in a variety of fields,
including industrial analysis [11], bio-medicine [12],
and environmental monitoring [13,14]. Many studies
on using LIBS technology for analysis and detection
of pollutants in soil have been conducted throughout
the last ten years. In 2007, Hussain et al. used laser-
induced breakdown spectroscopy (LIBS) to deter-
mine the nutrients in the soil samples from green-
houses [15]. In 2009, the elements Cr, Al, Fe, Ca, Cu,
Mg, Mn, Pb, Si, Ti, V, and Zn were detected by
Senesi et al. (2009); they used the initial qualitative
LIBS analysis of one sewage sludge sample and five
soil samples [16]. In 2010, hazardous heavy metals,
such as Cd, Co, Pb, Zn, Cr, etc,, in soil samples were
detected and measured by Pandhija et al. using the
application of calibration-free LIBS (CF-LIBS) and
laser-induced breakdown spectroscopy (LIBS) tech-
niques [17]. In 2011, Ismael et al. conducted in situ
assessments of contaminated soils using laser-
induced breakdown spectroscopy (LIBS), which of-
fers effective, immediate, semi-quantitative data on
the degree of pollution [18]. In 2012 Popov et al. used
(LIBS technique) to detect of Zn element in Soils [19].
In 2013, the quantities of Cr, Mn, and Fe elements in
sediment samples were determined by Mekonnen
et al. using (LIBS), the outcomes have been
compared to those obtained using flame-atomic ab-
sorption spectroscopy (F-AAS) [20]. In 2014, the
contents of Zn element in various soil types were
measured by Kim et al. using laser-induced break-
down spectroscopy (LIBS); the outcomes showed
that the precision and accuracy of the LIBS analysis
were improved by combining the soil discarding and
kriging interpolation techniques [21]. In 2015, a
direct technique for measuring soil pH using (LIBS)
is described by Ferreira et al. [22]. In 2016, Nic-
olodelli et al. used LIBS in Single Pulse (SP) and
Double Pulse (DP) configurations to measure the
(Ca, Mg, K, P) macronutrients, (Cu, Fe, Na, Mn, Zn)
micronutrients, and contaminant (Cr) in fertilizer
[23]. In 2017, the elemental composition of ambient
aerosols and soils that represented less than 2.5 pm
in Ny-Alesund, Svalbard, was determined by Kim
et al. using two procedures of (LIBS) [24]. In 2018, Fu

et al. increased the sensitivity of conventional LIBS
and the LIBS signal in two ways and developed a
unique method for measuring cadmium in soils
using LIBS [25]. In 2019, Mahmood et al. employed
(LIBS) and laser ablation time of flight mass spec-
trometry (LA-TOF-MS) to investigate soil samples
obtained from Sialkot, Pakistan, which is home to
leather manufacturing firms, both qualitatively and
quantitatively [26]. In 2020, Sugito et al. [27] (LIBS)
detected the heavy metal containment of soil
contamination. In 2021, Yoon et al. [28] utilized a
multivariate chemometric analysis and (LIBS)
method to determine and quantify the presence of
heavy metals in sediments. In 2022, Awad [29] used
Inducted Coupled Plasma (ICP) and Laser Induced
Breakdown Spectroscopy (LIBS) to measure and
compute the concentrations of hazardous, heavy,
and radioactive elements are present in Kadugli
City. The objective of this review article is to present
the fundamental ideas and an overview of the
application of LIBS for soil physical and chemical
investigation.

2. LIBS technology

In principle, LIBS can be considered as a relatively
recent method of atomic emission based on AES
with source of laser excitation and has proven very
useful for multi-elemental investigations of a wide
range of materials. This technology is a new method
for determining the elements in various environ-
mental samples, including metallurgical, metallic,
and non-metallic solids, liquids, aerosols, gasses,
and biological samples [30]. The standard compo-
nents of a LIBS apparatus are a laser, a photosen-
sitive system, a spectrometer, and a computer [31],
Fig. 1. Samples can be subjected to both qualitative
and quantitative examinations using the distinctive
spectral line's wavelength and intensity [32]. The
laser pulse duration for LIBS systems varies be-
tween femtoseconds (107" s) and microseconds
(10~° s), which impacts the produced spectra. Unlike
microsecond lasers, which excite the species in the
plasma with a significant amount of pulse energy,
femtosecond lasers' pulses interact with the sample
surface so quickly that they end earlier than the
plasma develops. The most common kind of laser in
the applications under evaluation were nanosecond
lasers, which fall between femto and microsecond
lasers. The delay generator is a key element of the
LIBS setup required to synchronize the spectrom-
eter and laser with electrical pulses ranging from
nanoseconds to milliseconds. Optimizing the signal-
to-noise/background ratio via fine-tuning the delay
duration improves quantitative analysis.
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Fig. 1. A typical system setup of (LIBS), [72].

2.1. Plasma evolution

The primary processes involved in the production
of plasma include heating, which follows melting,
then evaporation, and finally ionization and excita-
tion. A few micrograms of material on the sample
surface to be analyzed are removed by the high-
energy laser beam once it is focused on it [33].
Subsequently, the excited atoms, ions, and electrons
combine to create the plasma, which can heat up to
100,000 °C instantly. The high temperature of the
plasma causes it to spread outward at supersonic
speed before quickly cooling down. When the
plasma becomes in cool condition, background ra-
diation decreases and excited states of atoms and
ions transition to lower energy levels, releasing light
at wavelengths unique to individual elements. The
emission lines of the plasma are gathered and sent
to an optical spectrometer either directly or via op-
tical fibers. A spectrometer, typically consisting of
an intensified range polychromator and a charge-
coupled device (CCD) or strengthened charge-
coupled device (ICCD) detector, is used to resolve
plasma emission. Since most elemental emission
lines are observable between 200 nm and 1000 nm,
this is the wavelength range in which most poly-
chromators function. The spectrometer's resolution
determines the quality of a LIBS measurement by
enabling the separation of successive emission lines
without the need for extensive processing, particu-
larly for spectra derived from complicated matrices
like soil samples.

2.2. Noise decreasing methods

The signal intensity and stability of traditional
LIBS are inadequate for identifying trace compo-
nents in soil samples. Numerous environmental
conditions influence the plasma's lifespan and
properties, which alters the technique's perfor-
mance for atomic-level chemical investigation and
its spectrum emission, Fig. 2 summarize the pa-
rameters influencing the quality of signal.

Several signal enhancement techniques were put
forth to lower the limit of detection (LOD) and raise
the signal-to-noise ratio (S/N) of the LIBS spectrum.
Significant signal augmentation is possible with
various experimental designs and settings. Magnetic
Field Enhancement LIBS (MFELIBS) [34], Double-
Pulse LIBS (DP-LIBS) [35], Spatial Confinement LIBS
(SC-LIBS) [36], Microwave-Assisted LIBS (MA-LIBS)
[37], inductively coupled plasma/optical emission
spectroscopy (ICP/OES) [38], and laser ablation-
spark induced breakdown spectroscopy (LA-SIBS)
[39] are the primary signal augmentation techniques.
From another point of view, adding a second pulse to
the LIBS signal is one method to enhance its quality.
In this method may use two lasers firing separate
pulses or a single laser firing two successive pulses.
The first pulse produces a plasma and ablates a
portion of the sample surface; the second pulse re-
excites the plasma to improve the signal-to-noise
ratio [40]. There is a complicated relationship be-
tween the type of laser used and the LIBS's ability to
identify  pollutants. These aspects include
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Fig. 2. Demonstrating the main parameters that affected signal quality in LIBS.

wavelength, energy, pulse duration, and sample
properties. Selecting the right kind of laser can
maximize the ability to identify particular contami-
nants, boost sensitivity, and improve analytical per-
formance all around [41]. Organic pollution detection
can be more difficult. Because femtosecond lasers
can shield organic substances from heat degradation,
it is possible to identify organic contaminants more
accurately. Inorganics and Metals, Most laser types
are generally well-detected, but UV and nanosecond
lasers are frequently chosen because of how well
they can excite metallic species. Commonly
employed in LIBS, Nd lasers (1064 nm) are effective
on metals but less so on light elements like magne-
sium, sodium, or lithium, which need higher energy
photons. A few techniques for improving signals are

Table 1. Some techniques for improving signals in LIBS.

listed in Table 1, together with the pollutant detec-
tion limit for each sample.

2.3. LIBS analytical features

(LIBS) is able to measure a large number of ele-
ments, usually ranging from wuranium (U) to
hydrogen (H). Its limited detection is caused by
lower ionization energies and possible matrix ef-
fects, especially for elements like boron (B), lithium
(Li), and beryllium (Be), iron (Fe), copper (Cu), lead
(Pb), and zinc (Zn) for transition metals, all of which
are well-quantified. LIBS is an effective tool for
detecting heavy metals, including arsenic (As),
cadmium (Cd), and mercury (Hg), [41,42]. By con-
trasting with the Elemental Range of Instrumental

Techniques Laser type Wavelength (nm) Pollutants References
ICP OES Q-switched Nd:YAG 1064 Pb [38]
CF LIBS Q-switched Nd:YAG 1064 Cd, Co, Pb [17]
Q-switched Nd:YAG 532 Zn, Cr

SC LIBS Nd:YAG 1064 As, Pb, Hg, Mn, V, Ba [50]
DP LIBS Q-switched Nd:YAG 1064 Ca, Mg, K, P [23]
SP LIBS Q-switched Nd:YAG 532 Cu, Fe, Na, Mn, Zn

MEE LIBS Nd:YAG 532 Cr [34]
ICP LIBS Q-switched Nd:YAG 1064 Al, Ba, V, Tj, Sr, Fe, S, Ca, Mg, Cr, K, Na [74]
LA SIPS Nd:YAG 1064 Hg [75]
LA ICP MS Excimer Laser 193 Mg, Al, Si, Ca, Mn,Ti, V, Cr, Fe, Co, Nj, [76]

Cu, Rb, Sr, U, Mo, Sn, Ba, Pb, Th
MA LIBS Nd:YAG 1064 Cu [37]
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Neutron Activation Analysis (INAA), which can
quantify more than 60 elements, ranging from so-
dium (Na) to uranium (U). It is quite good at finding
traces of components. With a focus on heavy metals,
the element range found by comparing with X-ray
fluorescence (XRF) is suitable for detecting elements
ranging from fluorine (F) to uranium (U). In the
context of X-ray photoelectron spectroscopy (XPS),
primarily focused on the surface (up to a few
nanometers) and sensitive to elements in the range
of lithium (Li) to uranium (U), [43—45].

Depending on the sample matrix, ambient con-
ditions, and calibration, LIBS can achieve moderate
to high accuracy. It frequently has to be carefully
calibrated against established standards [46]. When
comparing duplicate measurements of the same
sample, LIBS often displays relative standard de-
viations (RSD) in the range of 5—10 %, indicating
acceptable precision [47—49]. Variations in laser
energy and sample heterogeneity are two examples
of issues that can affect precision. The sensitivity of
LIBS is comparatively high; it can identify elements
at parts per million (ppm) concentrations. However,
depending on the element and its spectral proper-
ties, sensitivity might vary greatly [50]. For many
elements, detection limits typically range from
100 ppm to several ppm; however, with the right
setups, trace elements may be found at lower
quantities [51]. For many elements, the limit of
detection (LOD) for LIBS can vary from 10 to
100 ppm. However, certain elements can be detec-
ted at lower levels using more sophisticated
methods like double-pulse LIBS or by employing
particular wavelengths. Atmospheric conditions and
other environmental elements might also affect the

Instrumental Neutron Activation Analysis (INAA)
and Inductively Coupled Plasma (ICP) have ad-
vantages and disadvantages when it comes to these
analytical aspects. ICP and INAA perform better
than LIBS when compared to one another,
providing excellent accuracy and precision. Matrix
effects and calibration can affect LIBS accuracy. For
trace element analysis, ICP and INAA are often the
better options due to their higher sensitivity and
lower LODs than LIBS. Fast analytical times and
little sample preparation are two major benefits of
LIBS, which are important in some applications.

2.4. Pollutants detection mechanisms

The principles behind Laser-Induced Breakdown
Spectroscopy (LIBS) involve the creation of a plasma
followed by the analysis of the emitted light to
determine the elemental composition of a sample,
Fig. 3. LIBS provides a rapid and non-destructive
method for elemental analysis, enabling quick
identification of elements even in complex samples.
Its applications range from analyzing geological
samples to identifying contaminants in industrial
materials, and it's often used in situations where
rapid, on-site analysis is crucial. The mechanism of
pollutants detection can be summarized as:

o Laser Pulse: A high-energy laser pulse is focused
onto the sample's surface. This intense of light
pulse rapidly heats and vaporizes a small
portion of the material, creating a high-temper-
ature plasma.

e Plasma Formation: The intense energy of the
laser pulse causes the material to undergo

LOD [52]. Both the well-known methods ablation, where a small portion of the sample is
Atoms, lons
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Fig. 3. The mechanism of detecting pollutants using (LIBS) technology [73].
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transformed into a plasma a hot, ionized gas
consisting of free electrons and ions.

¢ Emission of Light: When the plasma is formed, it
emits light due to the recombination and relax-
ation of the ions and electrons. This light con-
tains spectral information about the elements
present in the sample.

e Spectral Analysis: The emitted light is collected
and directed to a spectrometer. The spectrom-
eter disperses the light into its constituent
wavelengths (like a rainbow), separating it ac-
cording to the different energies associated with
various elements.

e Elemental Identification: By analyzing the
wavelengths and intensities of the emitted light
(spectral lines), the presence and concentration
of elements within the sample can be deter-
mined. Each element emits characteristic wave-
lengths of light when transitioning between
energy levels, allowing for identification.

Quantitative Analysis: The intensity of the emitted
light at specific wavelengths correlates with the
concentration of elements in the sample. Calibration
curves or known standards are often used to
quantify the elements present.

3. Sample preparation

Soil detection necessitates a basic sample pro-
cessing procedure. Eliminating contaminants, dry-
ing, grinding, sieving, pressing into tablets, and
completing LIBS measurements are typical steps in
the laboratory detection process [53]. Pelletizing,
grinding, and sieving are further helpful in mini-
mizing the matrix impact and enhancing spectral
quality [54]. Also, the water content significantly
influences the LIBS spectral signal is strength. Even
under identical circumstances, there may be differ-
ences in the spectra of two successive LIBS obser-
vations of the same soil sample [55]. The analyst can
normalize each spectrum or average many shots
(like 100) to compensate for this problem. Powdered
soil samples that have been homogenized mechan-
ically or manually using a mortar and pestle can also
be used for the LIBS analysis [56]. As a result,
although the preparation takes longer per sample,
the final spectra differ less than those produced for
intact materials. To reduce surface roughness,
pelletized soil samples that have been ground and
homogenized can also be used [57]. Since it is
challenging to locate certified reference materials
(CRM) with a comparable matrix in soil samples,
these samples are made by combining a finely
powdered soil sample with the metal (in the form of

powder or aqueous standard solution). The cali-
bration curve is very highly sensitive to the homo-
geneity of the CRM produced in the aforementioned
approach due to the small size of the focused laser
spot and the little mass (microgram) of the sample
vaporized by the laser spark [17]. Researchers sug-
gested using metal mesh sample holders, adsorp-
tion plates, and other supports to put samples, or
using phase conversion to enrich components in soil
samples in order to prevent dirt splashing and
remove the complicated tableting procedure.
Because smaller particles have a higher surface area
to volume ratio, they can absorb laser energy more
effectively and facilitate the production of more
efficient plasma. Larger particles can impact the
temporal resolution of the measurements because
they require more energy to reach the necessary
temperatures for efficient ablation; smaller particles
can improve the detection limits for trace elements
because they allow for more material to be vapor-
ized and analyzed in a single shot, which may
improve the detection of low-concentration ele-
ments; inconsistent particle sizes can cause mea-
surement variability, which reduces precision; and a
homogeneous sample with controlled particle size is
likely to produce more replicable results. More
strong spectrum signals may result from this. Bigger
particles could result in less interaction with the
laser or partial ablation, which could affect the
quality of the signal or produce inconsistent find-
ings. Smaller particles, on the other hand, typically
provide more consistent signal quality and homog-
enous laser contact. Reduced matrix effects could
result from a more uniform distribution of elements
caused by smaller particles. While larger or irregu-
larly shaped particles can introduce noise and result
in less accurate data, smaller particles may give
clearer signals [58—60]. Table 2 lists some sample
preparation ways.

4. Heavy metal elements

Any species of metal that appears in an undesir-
able location or in a concentration or form that has a
negative impression on the environment or people
might be classified as a “contaminant”. The main
inorganic contaminants found in soil are heavy
metals. Metals and metalloids comprise lead (Pb),
cadmium (Cd), mercury (Hg), arsenic (As), chro-
mium (Cr), copper (Cu), nickel (Ni), silver (Ag), and
zinc (Zn). Other less common metallic contaminants
include aluminum (Al), cesium (Cs), cobalt (Co),
manganese (Mn), molybdenum (Mo), strontium
(Sr), and uranium (U) [61]. Most of them can enter
the human body through the food chain and cause
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Table 2. Different ways of soil sample preparation.

Soil source Soil sample preparation way Reference
Standard soils The Cu sub-target supported micro mesh [771
Field soils Slurry state using cation exchange resin [25]
Occupational Exposure Pellets of 2 mm thick and 12 mm in diameter [19]
Limits (OEL) soils
Field soils Pellets of 20 mm in diameter [78]
Watershed sediment soils Freeze-dried for soils > 53 um [79]
Microwave dissolution in Aqua Regia for soils <53 pm
Urban soils Standard Reference Material (SRM-2586) according to [80]
National Institute of Standards and Technology
Brazilian forests soils Pellets using a press of 5 tons for 30 s. [81]
Agricultural soils in Nile Delta, Egypt Pellets of 3 mm thick and 10 mm in diameter using a [76]
press of 15 tons.
Agricultural soils Tablets of 5 mm thick and 12 mm in diameter [82]
Italian undisturbed silty loam, Pellets of 3 mm thick [1]
sandy clay loam, and clay loam soil
Oil spill contaminated soil Pellets of 10 mm thick and 20 mm in diameter [74]

using a press of 3 tons for 30 min.

major health risks when concentrations are excee-
ded. Therefore, one of the main strategies to
improve food security is to accurately identify and
effectively regulate the amount of heavy metals in
soil [62]. One challenging aspect of LIBS is choosing
element characteristic spectral lines. Saturation
prevents the very strong emission line from
reflecting changes in concentration. The chosen
spectral lines of the targeted element should not
overlap with lines from other elements since sensi-
tivity drops as the emission line becomes weaker
[63]. The magnetic field-assisted LIBS is useful when
identifying heavy elements and their residues in soil
and environmental samples. In addition to
improving the number density, plasma temperate,
and emission intensity, the application of LIBS in
conjunction with a magnetic field allowed for the
detection of many new emission lines that would
not have been possible without it. In both the
presence and absence of a magnetic field, the
quantitative analysis utilizing CF-LIBS revealed
excellent agreement for the principal elements by
LA-TOF-MS within a 10 % error range [64]. For the
quantitative measurement of Cr, Cu, Pb, V, and Zn
in soil, there was excellent agreement between the
findings obtained using the calibration curve tech-
nique and the ICP-OES. Conversely, compared to
the group that employed SP-LIBS (355 nm) in
conjunction with the calibration curve approach
(18 mg/kg), the LOD of zinc (55 mg/kg) was greater
[19]. Rehan et al. [38] employed the integrated in-
tensity ratio approach and the standard calibration
curve method to determine the lead concentration
in drilling-fuelled soil. The test findings agreed with
the ICP-OES measurements, Pb has a LOD of
130 mg/L. The PLS approach has benefits over
conventional linear calibration methods in that it

can fully utilize the spectral line information for soil
samples that exhibit significant spectral line inter-
ference and complicated matrices. Traditional PLS
frequently builds the model using the entire spec-
trum as an input variable, which requires more
computation and yields worse prediction results.
Those with the highest correlation can be effectively
chosen using variable selection [65].

5. Nutrient elements

Macro and micronutrients in soil are the funda-
mental resources needed to maintain the surface
ecology. Meanwhile, the amount of nutritional
components in the soil might indicate its fertility
and is regarded as a crucial indicator for assessing
crop productivity [66]. The direct correlation be-
tween the element concentration and the spectral
line's intensity may deteriorate due to the self-ab-
sorption effect. As a result, determining the element
content quantitatively from the spectral line's
strength becomes challenging. The N, P, K, S, Ca
macronutrients, as well as Mg are the hardest to
measure using LIBS, followed by S. Because
ambient N2 contributes to plasma generation, soil
nitrogen (N) cannot be identified in atmospheric air
using LIBS, making it impossible to quantify the
fraction of soil N [67]. In order to prevent ambient
(N) influence and involvement in plasma genera-
tion, Martin et al. [68], suggested concentrating the
small energy pulse (energy of 23 mJ at 266 nm) well
below the sample's surface. Because Phosphorus (P),
boron (B), chlorine (Cl), and Sulphur (S) are non-
metals, are prevalent in mineral soils, and have
weak emission lines, LIBS may not be sensitive
enough to identify them unless the LIBS signal is
amplified. While S is present in mineral soils in the
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Table 3. Some LOD and emission lines of soil nutrients.

Nutrients LOD Emission References
(g/Kg) lines (nm)
Aluminum (Al) 6.45 220.8 [83]
Boron (B) 1.0 255.14 [84]
Calcium (Ca) 89 317.9 [85]
Chlorine (Cl) 75 133.6 [84]
Copper (Cu) 0.6 324.75 [86]
Iron (Fe) 10 274.6 [85]
Magnesium (Mg) 4 280.27 [85]
Manganese (Mn) 7 380.67 [87]
Molybdenum (Mo) 0.3 313.26 [86]
Nitrogen (N) 8.0 742.36 [88]
Phosphorus (P) 0.251 178.3 [85]
Potassium (K) 46 404.7 [85]
Sulphur (S) 1.1 180.7 [69]
Zinc (Zn) 18 213.86 [19]

range of 0.02—0.6 g/kg [69], the range of phosphorus
concentrations is 0.2—5 g/kg [70]. Macronutrients
with strong and observable lines of emission, even
at low concentrations, like K, Ca, and Mg, are also
easier to create calibration models for than other
macronutrients. The micronutrients copper (Cu),
iron (Fe), manganese (Mn), zinc (Zn), and molyb-
denum (Mo) are also shown to have intense lines.
Nutrient analysis with LIBS and calibration curves
can only measure an element's total concentration; it
is cannot determine the element's bioavailable
concentration for uptake by microorganisms or
plants. Creating multivariate models to assess
available nutrients while taking into account the
relationship between their emission lines and those
of other components is one way to solve the prob-
lem. There were few studies that could be located,
and the bulk of them only examined a small number
of samples with somewhat different matrices. It's
still quite difficult to lower the LOD for several
minerals, particularly P and S. More controlled at-
mospheric investigations are required since the N
quantification is still unresolved [71]. The primary
findings and factors to be considered when
measuring macro and micronutrients are reviewed,
along with the LOD and emission lines that are
typically employed and discovered in the literature,
Table 3.

6. Conclusions and future recommendations

The use of LIBS technology in environmental
monitoring might become quite common. In envi-
ronmental monitoring, LIBS technology will become
more and more common as scholarly research ad-
vances and real monitoring systems are created. As
a method of analysis, LIBS can identify materials in
a variety of mediums, including soil, water, and air
aerosols. Moreover, it has the benefits of quick, easy

sample preparation and multiple element detection
at once. While many elements using LIBS mea-
surements currently have LODs that are below
environmental protection norms or have even met
them, much research is still focused on finding ways
to lower the detection limits further. Furthermore,
the majority of these test findings were acquired in a
laboratory setting, whereas environmental moni-
toring necessitates quick measurement ideally in
real time. Before the LIBS methodology can rival
existing analytical methods for metal analysis, such
ICP and AAS, a number of theoretical and experi-
mental issues must be resolved. These include the
proper regulation of plasma temperature, matrix
effects, laser-sample and laser-plasma interactions,
and plasma plume behavior brought on by laser
ablation.
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