

Volume 4 | Issue 2 Article 3

Rad-⊕-Supplemented Semimodules over Semirings

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

Part of the Algebra Commons

Recommended Citation

Alwan, Ahmed H. (2024) "Rad-⊕-Supplemented Semimodules over Semirings," Al-Bahir. Vol. 4: Iss. 2, Article 3. Available at: https://doi.org/10.55810/2313-0083.1057

This Original Study is brought to you for free and open access by Al-Bahir. It has been accepted for inclusion in Al-Bahir by an authorized editor of Al-Bahir. For more information, please contact bjeps@alkafeel.edu.iq.

Rad-@-Supplemented Semimodules over Semirings

Source of Funding

No external Funding

Conflict of Interest

No conflict of interest

Data Availability

public available data

Author Contributions

The author solely contributed to all aspects of this work, including conceptualization, methodology, data curation, formal analysis, writing – original draft preparation, review and editing, and project administration.

ORIGINAL STUDY

Rad-⊕-Supplemented Semimodules over Semirings

Ahmed H. Alwan*

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

In this paper, Rad- \oplus -supplemented semimodules are defined as generalization of \oplus -supplemented semimodules. Let R be a semiring. An R-semimodule A is called a Rad- \oplus -supplemented semimodule, if each subsemimodule of A has a Rad-supplement which is a direct summand of A. Here, we investigate some properties of these semimodules and generalize some results on Rad- \oplus -supplemented modules to semimodules. We prove that any finite direct sum of Rad- \oplus -supplemented semimodules is Rad- \oplus -supplemented. Also, we prove that if A is a subtractive semimodule with (D_3) then A is Rad- \oplus -supplemented if and only if every direct summand to A is Rad- \oplus -supplemented.

Keywords: Semiring, Supplemented semimodules, Rad-supplemented semimodules, Rad-⊕-Supplemented semimodules

1. Introduction

irstly, let us point that, R will indicate a commutative semiring with identity besides A will indicate an unitary left R-semimodule throughout this article. A (left) R-semimodule A is a commutative additive semigroup which has a zero element 0_A , together with a mapping from $R \times A$ into A (sending (r, a) to ra) where (r + s)a = ra + sa, r(a + b) = ra + rb, r(sa) = (rs)a and $0a = r0_A = 0$ for all $a, b \in A$ besides $r, s \in R$ [6]. Assume N is a subset of A, one says that N is an R-subsemimodule of A, precisely when *N* is itself a semimodule with respect to operations for A. Besides to these, for a subsemimodule *X* of *A* besides for a direct summand *X* of *A*, the notations $X \leq A$ besides $X \leq_{\bigoplus} A$ will be used respectively. $L \le A$ is said to be essential in A, indicated by $L \leq_e A$, if $L \cap N \neq 0$ for all non-zero subsemimodule $N \leq A$.

A subsemimodule $N \le A$ is called small in A (write $N \ll A$), if for all subsemimodule $X \le A$, with N + X = A involves that X = A [11]. The

radical of A, symbolized using Rad(A), is the sum of all small subsemimodule of A [11]. A is named hollow, if all proper subsemimodule of A is small in A. A is named local, if it has a single maximal subsemimodul, i.e., a proper subsemimodul which

contains all other subsemimoduls. A is said to be simple, if it has no nontrivial subsemimodul, besides A is said to be semisimple if it is a direct sum of its simple subsemimoduls [1,3]. The socle of A, symbolized by Soc(A), is the sum of all simple subsemimoduls in A [3]. Let $L, K \leq A$. K is called a supplement of L in A if it is minimal with respect to A = L + K. A subsemimodul K of A is a supplement (weak supplement) of L in A iff A = L + Kand $L \cap K \ll K$ ($L \cap K \ll A$) (see [3,15]). A is supplemented (weakly supplementd) if each subsemimodule L of A has a supplement (weak supplement) in A. Clearly, supplementd semimoduls are weakly supplementd. $L \le A$ has ample supplements in A if each subsemimodule K of A such that A = L + K contains a supplement of L in A. A semimodul A is called amply supplemented if all subsemimodul of A has ample supplements in A. Hollow semimoduls are amply supplementd [9]. A semimodul A is called lifting (or D_1) if, for all $N \le A$, $A = X \bigoplus Y$ with $X \le N$ and $N \cap Y \ll A$ (see [3,9], besides [10]). $N \le A$ is a subtractive subsemimodule of *A* if $a, a + b \in N$ then $b \in N$ (see [2,6], and [11]). If every N < A is subtractive, at that time A is named subtractive semimodule. If C is a subtractive subsemimodule, at that time $\frac{A}{C}$ is a semimodule [6, p.165].

Received 11 September 2023; revised 4 December 2023; accepted 19 December 2023. Available online 24 January 2024

^{*} Corresponding author. E-mail address: ahmedha_math@utq.edu.iq.

In [1], the present author introduced the concept of —-supplemented semimodules. Here, we introduce Rad-\(\rightarrow\)-supplemented semimodules a generalization of \(\rightarrow\)-supplemented semimodules and investigate their properties. Section 2 is devoted to some properties of \(\properties\)-supplemented semimodules that will be used in the sequel. In Section 3, the concept of Rad-\(\rightarrow\)-supplementd semimoduls is introduced. It is shown that all direct summand of subtractive Rad-—supplemented semimodule with (D₃) is a Rad- \bigcirc -suplemented. Also, we prove that if A is a subtractive semimodule with (D₃) at that time A is Rad- \bigoplus -supplementd iff every direct summand to A is Rad-\(\phi\)-supplementd. We give an example of semimodule, which is Rad-\(\phi\)-supplemented, but not -supplementd. In Section 4, the concept of completely Rad-⊕-supplemented semimodules are introduced.

In what follows, using \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n besides $\mathbb{Z}/n\mathbb{Z}$ we symbolize, respectively, natural numbers, non-negative integers, integers, rational numbers, the semiring of integers modulo n besides the \mathbb{Z} -semimodul of integers modulo n.

2. On \(\phi\)-supplemented semimodules

In this section, \bigoplus -supplemented semimodules are studied. We now give the next definition.

Definition 2.1. [1] An R-semimodule A is named \bigoplus -supplemented if for every subsemimodule N of A there is a direct summand K of A such that A = N + K and $N \cap K$ is small in K.

Remark 2.2. [1] Evidently ⊕-supplemented semimodules are supplemented. Also, Hollow (or local) semimodules and lifting semimodules are ⊕-supplemented.

Definition 2.3. [1] A semimodul A is named principally ⊕-supplementd if for each $a \in A$ there is a direct summand B of A with A = Ra + B and $Ra \cap B \ll B$. A semimodule A is named a weak principaly ⊕-supplementd if for each $a \in A$ there is a direct summand B with A = Ra + B and $Ra \cap B \ll A$.

Remark 2.4. Every ⊕-supplemented semimodule is principally ⊕-supplemented. Evidently, every ⊕-supplementd semimodule is supplementd, but a supplementd semimodule need not be ⊕-supplementd in general as in [8, Lem. A.4 (2)].

Example 2.5. (1) Suppose that \mathbb{N}_0 is the semiring of non-negative integers. As \mathbb{N}_0 is a local

 \mathbb{N}_0 -semimodule with maximal ideal $\mathbb{N}_0 \setminus \{1\}$ [6, Example 6.60]. Then by Remark 2.2, \mathbb{N}_0 is \bigoplus -supplemented \mathbb{N}_0 -semimodule.

(2) Assume \mathbb{Z}_{p^n} as an \mathbb{Z} -semimodule where p is prime number besides $n \in \mathbb{N}$. Then by [1, Example 2.13], \mathbb{Z}_{p^n} is \bigoplus -supplemented semimodule.

A commutativ semiring R is named a valuation semiring if it is a local semiring besides all finitely generate ideal is principal [5]. A semimodule A is named finitely presented if $A = \frac{F}{N}$ for certain finitely generated free semimodul F besides finitely generated subsemimodule N in F.

Factor semimodul of a \bigoplus -supplementd semimodul is not in general \bigoplus -supplementd as in [1] the next example illustration this.

Example 2.6. [1, Example 2.14] Presume R is a commutativ local semiring which is not a valuation semiring. There is a finitely presented indecomposabl semimodule $A = \frac{R^{(n)}}{K}$, which cannot be generated by fewer than n elements. So, $R^{(n)}$ is \bigoplus -supplementd, $n \in \mathbb{N}$, $n \geq 2$. Yet A is not \bigoplus -supplemented.

Theorem 2.8 deals with a special case of factor semimodules of ⊕-supplemented semimodules. First, one proves the next lemma.

Let A be a semimodul and let N be a subsemimodul of A. N is named fully invariant if $f(N) \le N$ for every endomorphism f of A ($f \in End_R(A)$).

Lemma 2.7. [1]Let A be a semimodule besides let U be a fully invariant subsemimodule of $A.IA = A_1 \bigoplus A_2$, at that time $U = U \cap A_1 \bigoplus U \cap A_2$.

Theorem 2.8. Presume A is a nonzero semimodule besides presume U is a subtractive and fully invariant subsemimodule of A. If A is \bigoplus -supplemented, at that time A/U is \bigoplus -supplemented. If, too, U is a direct summand of A, then U is \bigoplus -supplemented.

Proof. Since U is a subtractiv subsemimodul of A, so we have A/U is an R-semimodule. Assume A is \bigoplus -supplemented. Let $L \le A$ and $U \le L$. There exist N, $N' \le A$ with $A = N \bigoplus N'$, A = L + N, and $L \cap N \ll N$. Using [14, Lem. 1.2(d)], (N+U)/U is a suplement of L/U in A/U. At present apply Lem. 2.7, $U = U \cap N \oplus U \cap N$. Therefore,

$$(N+U)\cap (N'+U) \le (N+U+N')\cap U + (N+U+U)\cap N'$$

Thus,

 $(N+U)\cap (N'+U)\leq U+(N+U\cap N+U\cap N')\cap N'$

In that case $(N+U)\cap(N'+U)\leq U$ besides $((N+U)/U)\bigoplus((N'+U)/U)=A/U$. Now $(N+U)/U\leq_{\bigoplus}A/U$. Thus, A/U is \bigoplus -supplemented.

Now take $U \leq_{\bigoplus} A$. Let $\leq U$. As A is \bigoplus -supplementd, there is K, $K' \leq A$ where $A = K \oplus K'$, A = V + K, besides $V \cap K \ll K$. Henceforth $U = V + U \cap K$. Yet $U = U \cap K \oplus U \cap K'$ by Lem. 2.7, henceforth $U \cap K \leq_{\bigoplus} U$. Too, $V \cap (U \cap K) = V \cap K \ll K$. Just then, $V \cap (U \cap K) \ll U \cap K$ using [14, Lem. 1.1(b)]. As a result $U \cap K$ is suplement of V in U besides $U \cap K \leq_{\bigoplus} U$. Hence $U \cap K \cap K \cap K$ supplement $U \cap K \cap K \cap K$.

Definition 2.9. A semimodule A is named distributive, if for K, L, $N \le A$, we have $N \cap (K+L) = N \cap K + N \cap L$ or $N + (K \cap L) = (N + K) \cap (N + L)$.

Proposition 2.10. Presume A is a nonzero distributive subtractive semimodul besides presume U is a subsemimodul of A. If A is \bigoplus -supplemented, at that time A/U is \bigoplus -supplementd. If, too, U is a direct summand of A, then U is \bigoplus -supplementd.

proof. The proof alike to that of Theorm 2.8.

3. Rad-⊕-supplemented semimodules

In this section, the idea of Rad- \oplus -supplemented semimodules (or generalized \oplus -supplemented) is defined besides give the properties of these semimodules. In [12] Wang and Ding defined the notion of generalized supplemented modules. In [3] Khareeba and Alwan defined the notion of generalized supplement (or Rad-supplement) semimodules as follows:

Definition 3.1. Let A be an R-semimodule. A subsemimodule K of A is named Rad-supplement of N in A if A = N + K and $N \cap K \le Rad(K)$. We say that A is Rad-supplemented if every subsemimodule has a Rad-supplement in A.

Definition 3.2. A semimodule *A* is named Rad-⊕-supplemented if every subsemimodule has a Rad-supplement that is a direct summand of *A*. i.e., for every subsemimodule $N \le A$, A = N + K and $A = K \bigoplus K'$ with $N \cap K \le Rad(K)$ for some $K, K' \le A$.

Lifting semimodules are \oplus -supplemented. Obviously, \oplus -supplemented are supplemented and Rad- \oplus -supplemented. In addition, finitely generated Rad- \oplus -supplemented semimodules are \oplus -supplemented, similar to [13, 19.3], but it is not generally true that each Rad- \oplus -supplemented

semimodule is \bigoplus -supplementd. Whereas supplemented besides Rad- \bigoplus -supplemented semimodules are Rad-supplemented.

To show a finite direct sum for Rad \bigoplus -supplementd semimodules is Rad- \oplus -supplementd, we use the next usual lemm. (in [13, 41.2]).

Lemma 3.3. Presume N besides K is subsemimodules in A where N + K has Rad-supplement X in A besides $N \cap (K + X)$ has Rad-supplement Y in N. At that time X + Y is Rad-supplement to K in A.

Proof. Presume X is a Rad-suplement to N+K in A. Now A=(N+K)+X besides $(N+K)\cap X \leq Rad(X)$. As $N\cap (K+X)$ has a Rad-supplement Y in N, one has $N=N\cap (K+X)+Y$ besides $(K+X)\cap Y\leq Rad(Y)$. Now

$$A = N + K + X = [N \cap (K + X) + Y] + K + X$$

= $K + (X + Y)$

as well as

$$K \cap (X+Y) \le X \cap (K+Y) + Y \cap (K+X)$$
$$\le X \cap (K+N) + Y \cap (K+X)$$
$$\le Rad(X) + Rad(Y)$$
$$< Rad(X+Y)$$

As a result X + Y is a Rad-suplement to K in A.

Theorem 3.4. For any semiring R, any finite direct sum of Rad- \bigoplus -supplemented R-semimodules is Rad- \bigoplus -supplemented.

Proof. Assume n is any positiv integer besides A_i $(1 \le i \le n)$ be anyy finit collection off Rad—supplementd R-semimodules. $PresumeA = A_1 \bigoplus A_2 \bigoplus \cdots \bigoplus A_n$.

Assume that n=2, that is, $A=A_1\bigoplus A_2$. Presume $K \leq A$. Now $A=A_1+A_2+K$ besides A_1+A_2+K has a Rad-suplement 0 in A. As A_1 is Rad- \bigoplus -supplementd, $A_1\cap(A_2+K)$ has a Rad-supplement X in A_1 with $X{\leq}_{\bigoplus}A_1$. Using Lem. 3.3, X is a Rad-suplement of A_2+K in A. As A_2 is Rad- \bigoplus -supplementd, $A_2\cap(K+X)$ has a Rad-suplement Y in A_2 with $Y{\leq}_{\bigoplus}A_2$. Once more applying Lemma 3.3, one has X+Y is a Rad-suplement of X in X in X in X in X is a Rad-suplement of X in X in

We prove the next theorem, that is a adapted form of Theorem 2.16 in [1]. We need next lemm.

Lemma 3.5. Suppose A is a semimodule and $N \le A$. If F is a Rad-supplement to N in A, then $\frac{F+L}{L}$ is a Rad-supplement to $\frac{N}{L}$ in $\frac{A}{L}$ for all subtractive subsemimodule L of N.

Proof. Via the hypothesis, A = N + F besides $F \cap N \le Rad(F)$. Hence $\frac{A}{L} = \frac{N}{L} + \frac{F + L}{L}$ for all $L \le N$. Consider the natural epimo. $\varphi : N \to \frac{N}{L}$. Now via [13, p. 191], $\varphi(Rad(F)) \le Rad(\frac{F + L}{L})$. As $F \cap N \le Rad(F)$ it follows that $\frac{N}{L} \bigcap_{L} \frac{F + L}{L} = \frac{L + (N \bigcap_{L} F)}{L} = \varphi(N \bigcap_{L} F) \subseteq \varphi(Rad(F)) \le Rad(\frac{F + L}{L})$. As a result, $\frac{F + L}{L}$ is Rad-supplement off $\frac{N}{L}$ in $\frac{A}{L}$. \square

Theorem 3.6. Let A be a subtractive Rad- \bigoplus -supplemented R-semimodule besides let U be a fully invariant subsemimodule of A. At that time

(1) $\frac{A}{II}$ is Rad- \bigoplus -supplemented.

(2) If U is a direct summand to A ($U \leq_{\bigoplus} A$), then U is Rad- \bigoplus -supplementd.

Proof. (1) As A is a subtractive R-semimodule, we get $\frac{A}{U}$ is an R-semimodule [6, p. 165]. Let $\frac{L}{U} \le \frac{A}{U}$. As A is Rad- \bigoplus -supplemented, there exist N, N' \le A wherever A = L + N, L \(\cap N \) \(\le Rad(N) \) besides $A = N \bigoplus N'$. Via Lem. 3.5, $\frac{N+U}{U}$ is Rad-supplementt of $\frac{L}{U}$ in $\frac{A}{U}$. As $f(U) \le U$ to all $f \in End_R(A)$, it follows as of Lem. 2.7, $U = (U \cap N) \bigoplus (U \cap N')$. Henceforth $(N+U) \cap (N'+U) \le U$ besides as a result $\frac{N+U}{U} \cap \frac{N'+U}{U} = 0$, i.e. $\frac{N+U}{U} \le \frac{A}{U}$. Hence $\frac{A}{U}$ is Rad- \bigoplus -supplementd.

(2) Assume $U \leq_{\bigoplus} A$ and $X \leq U$. As A is Rad- \bigoplus -supplementd, there exist $Y, Y' \leq A$ with A = X + Y, $X \cap Y \leq Rad(Y)$ and $A = Y \bigoplus Y'$. Henceforth $U = X + (U \cap Y)$. Yet again applying Lem. 2.7, one has $U = (U \cap Y) \bigoplus (U \cap Y')$. At this time one shows $X \cap (U \cap Y) = X \cap Y \leq Rad(U \cap Y)$. Presume $x \in X \cap Y$. At that time $x \in Rad(Y)$ and so $Rx \ll Y$. As $U \leq_{\bigoplus} A$, using [13, 19.3], $Rx \ll U$. Again using [13, 19.3], $Rx \ll U$. Again using [13, 19.3], $Rx \ll U \cap Y$ because $U \cap Y$ is direct summand of U. As a result $x \in Rad(U \cap Y)$. Hence, U is $Rad - \bigoplus$ -supplementd. \square

Corollary 3.7. Presume A is a nonzero Rad—supplement A semimodule. If $Rad(A) \leq_{\bigoplus} A$, then Rad(A) is Rad—supplemented.

Assume R is a semiring and A be an R-semimodule. In [1] the next condition: (D_3) If A_1 besides A_2 are direct summands of A with $A = A_1 + A_2$, at that time $A_1 \cap A_1$ is also a direct summand of A.

Proposition 3.8. Presume A is a subtractive Rad- \bigoplus -supplementd semimodule with (D_3) . At that time each direct summand to A is Rad- \bigoplus -supplemented. **Proof.** Assume $N \leq_{\bigoplus} A$ besides $U \leq N$. Now there is a $V \leq_{\bigoplus} A$ with A = U + V besides $U \cap V \leq Rad(V)$. In that case $N = U + (N \cap V)$. As A has $(D_3) \ N \cap V$ is a direct sumand of A. As a result it is as well a direct sumand of N. Note $U \cap (N \cap V) = U \cap V \leq Rad(V)$. As $N \cap V \leq_{\bigoplus} A$, it tracks $U \cap V \leq Rad(N \cap V)$. As a result N is Rad_{\bigoplus} -supplemented. \square

Similar to [7, Propo. 2.10], one has the next propo.

Proposition 3.9. Let A be a \bigoplus -supplemented semi-module. Then $A = A_1 \bigoplus A_2$, where A_1 is a semimodule with $Rad(A_1)$ small in A_1 and A_2 is a semimodule with $Rad(A_2) = A_2$.

We give an alike description of this detail for Rad—supplementd semimodules.

Proposition 3.10. Presume A is a Rad- \bigoplus -supplemented semimodule. At that time $A = A_1 \bigoplus A_2$, where A_1 is a semimodule with $Rad(A_1) = A_1 \cap Rad(A)$ besides A_2 is a semimodul with $Rad(A_2) = A_2$.

Proof. As A is Rad—supplemented, there exist subsemimodules A_1 and A_2 of A with $A = Rad(A) + A_1$, $Rad(A) \cap A_1 \leq Rad(A_1)$ and $A = A_1 \bigoplus A_2$. Then $Rad(A_1) = A_1 \cap Rad(A)$ and $A = A_1 \bigoplus Rad(A_2)$. In that case $Rad(A_2) = A_2$. \square

We now give an example of semimodule, which is $Rad-\bigoplus$ -supplementd, but not \bigoplus -supplementd.

Example 3.11. Consider $A = \mathbb{Q} \oplus \frac{\mathbb{Z}}{p\mathbb{Z}}$ as a semimodule over a semiring \mathbb{N}_0 , for any prime p. Note A has single maximal subsemimodule, i.e. $Rad(A) \neq A$. Using Theorem 3.4, A is $Rad-\bigoplus$ -supplementd. If A is \bigoplus -supplementd, then \mathbb{Q} is suplemented which is a conflict.

Similar to [4, Theorm 3.12] we give the next theorem in semimodule theory.

Theorem 3.12. Presume A is a subtractive semi-module with (D_3) . At that time the next statements are equivalent.

- (1) A is Rad- \bigoplus -supplemented.
- (2) Each direct summand to A is Rad-⊕-supplementd.
- (3) $A = A_1 \bigoplus A_2$ were A_1 is semisimple besides A_2 is a Rad- \bigoplus -supplemented semimodule with $Rad(A_2)$ essential in A_2 .
- (4) $A = A_1 \bigoplus A_2$ where A_1 is a Rad- \bigoplus -supplemented semimodule besides A_2 is a semimodule with $Rad(A_2) = A_2$.

Proof. (1) \Rightarrow (2) It follows from Prop. 3.8.

(2) \Rightarrow (3) Using [12, Propo. 2.3], $A = A_1 \bigoplus A_2$, wherever A_1 is semisimple besides A_2 is a semimodule

with $Rad(A_2)$ essential in A_2 . Using (2), A_2 is a Rad- \bigoplus -supplementd.

- (3) \Rightarrow (1) Using Theorm 3.4, A is Rad- \bigoplus -supplementd.
- (1) \Rightarrow (4) Using Propo. 3.10, exist subsemimodules A_1 besides A_2 of A with $A = A_1 \bigoplus A_2$ besides $Rad(A_2) = A_2$. As A has (D_3) , by Prop. 3.8, A_1 is Rad- \bigoplus -supplementd.
- (4) ⇒ (1) As Rad(A₂) = A₂, A₂ is Rad- \bigoplus -supplemented. Using (4) besides Thm 3.4, A is Rad- \bigoplus -supplemented. \square

4. Completely Rad-⊕-Supplemented Semimodules

In this section, the idea of completely Rad—supplementd semimoduls is studied.

Definition 4.1. [1] A semimodul A is called completely \bigoplus -supplemented if each direct summand of A is \bigoplus -supplemented.

Obviously, lifting (or D_1) semimodule is completely \bigoplus -supplemented [1].

Definition 4.2. A semimodule A is called completely Rad- \oplus -supplemented semimodule if each direct summand of A is Rad- \oplus -supplemented semimodule.

Definition 4.3. [1] Given a positive integer m, the semimoduls A_i $(1 \le i \le m)$ are named relatively projective if A_i is A_i -projective for all $1 \le i \ne j \le m$.

Lemma 4.4. [3, Lemma 1] Presume A is a semimodul besides K supplement subsemimodule of A. At that time $K \cap Rad(A) = Rad(K)$.

Proposition 4.5. [6, Proposition 14.22] Presume A is an R-semimodule and let $N, K \le A$. Let L be a subtractive subsemimodul of A with $N \le L$. At that time $L \cap (N + K) = N + (L \cap K)$.

Theorem 4.6. Presume A_i $(1 \le i \le m)$ is a finite collection of relatively projectiv subtractive semimodules. Now the semimodule $A = A_1 \bigoplus \cdots \bigoplus A_n$ is Rad- \bigoplus -supplementd if and only if A_i is Rad- \bigoplus -supplementd for each $1 \le i \le n$.

Proof. In Theorm 3.4 the sufficiency is showed. In opposition, A_1 to be Rad- \bigcirc -supplementd just is shown.

Assume $F \leq A_1$. Now there is $K \leq A$ with A = F + K, $K \leq_{\bigoplus} A$ besides $F \cap K \leq Rad(K)$. As $A = F + K = A_1 + K$, using [8, Lemma 4.47], there is $K_1 \leq K$ with $A = A_1 \bigoplus K_1$. Now $K = K_1 \bigoplus (A_1 \cap K)$ by using Proposition 4.5, as $K_1 \leq K$ besides K is a subtractive subsemimodule of A. Note $A_1 = F + (A_1 \cap K)$ besides $A_1 \cap K \leq_{\bigoplus} A_1$. Henceforth, $F \cap K = F \cap (A_1 \cap K)$ besides $F \cap K \leq Rad(A)$, $F \cap K \leq A_1 \cap K$, at that time $F \cap K \leq (A_1 \cap K) \cap Rad(A) = Rad(A_1 \cap K)$ using Lemma 4.4. As a result A_1 is $Rad - \bigoplus$ -supplemented semimodule. \bigcap

Proposition 4.7. Presume A is a Rad- \bigoplus -supplementd semimodul with (D_3) . At that time A is completely Rad- \bigoplus -supplementd semimodule.

Proof. Suppose $N \leq_{\bigoplus} A$ and $K \leq N$. One shows K hass Rad-suplement in N that is direct summand of N. As A is Rad- \bigoplus -supplementd semimodule, there is $B \leq_{\bigoplus} A$ with A = K + B and $K \cap B \leq Rad(B)$. From here $N = K + (N \cap B)$. Also, $N \cap B \leq_{\bigoplus} A$ as A has (D_3) . Now $K \cap (N \cap B) = K \cap B$ and $K \cap B \leq Rad(A)$, $K \cap B \leq N \cap B$, then $K \cap B \leq (N \cap B) \cap Rad(A) = Rad(N \cap B)$ by Lemma 4.4. \square

5. Conclusion

In this paper, we have defined besides studied the concept of Rad- \bigoplus -supplemented semimodules over semirings. We observed that if U is a fully invariant subsemimodule of a subtractive Rad- \bigoplus -supplemented semimodule A, at that time $\frac{A}{U}$ is Rad- \bigoplus -supplemented. Too, if A is a subtractive Rad- \bigoplus -supplemented semimodule with (D₃), at that time each direct summand to A is Rad- \bigoplus -supplemented.

References

- [1] Alwan AH. \oplus -supplemented semimodules. Al-Bahir Journal for Engineering and Pure Sciences 2023;4(1):1–5. https://doi.org/10.55810/2313-0083.1044.
- [2] Alwan AH, Alhossaini AM. Dedekind multiplication semi-modules. Iraqi J Sci 2020;61(6):1488–97. https://doi.org/10.24996/ijs.2020.61.6.29.
- [3] Khareeba H Sh, Alwan AH. Generalized supplemented semimodules. Journal of Electronics, Computer Networking and Applied Mathematics 2023;3(5):28–35. https://doi.org/10.55529/jecnam.35.28.35.
- [5] Ghalandarzadeh S, Nasehpour PS, Razavi R. Invertible ideals and Gaussian semirings. Arch Math Brno 2017;53(3):179–92. https://www.emis.de/journals/AM/17-3/am2736.pdf.

- [6] Golan JS. Semirings and Their applications. Dordrecht: Kluwer Academic Publishers; 1999. https://link.springer. com/book/10.1007/978-94-015-9333-5.
- [7] Harmanci A, Keskin D, Smith PF. On ⊕-supplemented modules. Acta Math Hungar 1999;83(1–2):161–9. https:// doi.org/10.1023/A:1006627906283.
- [8] Mohamed S, Mller BJ. Continuous and discrete modules. Cambridge University Press; 1990. https://doi.org/10.1017/ CBO9780511600692.
- [9] Sharif ZR, Alwan AH. δ-lifting and δ-supplemented semimodules. J Optoelectron Laser 2022;41(8):164-71. http:// gdzjg.org/index.php/JOL/article/view/894.
- [10] Sharif ZR, Alwan AH. δ-semiperfect semirings and δ-lifting semimodules. J Optoelectron - Laser 2022;41:172–7.

- [11] Tuyen NX, Thang HX. On superfluous subsemimodules. Georgian Math J 2003;10(4):763-70. https://doi.org/10.1515/GMJ.2003.763.
- [12] Wang Y, Ding N. Generalized supplemented modules. Taiwan J Math 2006;10(6):1589-601. https://www.jstor.org/ stable/43833760.
- [13] Wisbauer R. Foundations of Module and ring theory. Reading: Gordon & Breach; 1991.
- [14] Zöschinger H. Komplementierte Moduln über Dedekindringen. J Algebra 1974;29:42-56. https://doi.org/10.1016/0021-8693(74)90109-4.
- [15] Alwan AH, Sharif ZR. Ss-supplemented semimodules. J Interdiscipl Math 2023;26(5):881-8. https://doi.org/10.47974/JIM-1524.