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ORIGINAL STUDY

Rad-⊕-Supplemented Semimodules over Semirings

Ahmed H. Alwan*

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

In this paper, Rad-⨁-supplemented semimodules are defined as generalization of⨁-supplemented semimodules. Let
R be a semiring. An R-semimodule A is called a Rad-⨁-supplemented semimodule, if each subsemimodule of A has a
Rad-supplement which is a direct summand of A. Here, we investigate some properties of these semimodules and
generalize some results on Rad-⨁-supplemented modules to semimodules. We prove that any finite direct sum of Rad-
⨁-supplemented semimodules is Rad-⨁-supplemented. Also, we prove that if A is a subtractive semimodule with (D3)
then A is Rad-⨁-supplemented if and only if every direct summand to A is Rad-⨁-supplemented.

Keywords: Semiring, Supplemented semimodules, Rad-supplemented semimodules, Rad-⨁-Supplemented
semimodules

1. Introduction

F irstly, let us point that, R will indicate a
commutative semiring with identity besides A

will indicate an unitary left R-semimodule
throughout this article. A (left) R-semimodule A is a
commutative additive semigroup which has a zero
element 0A, together with a mapping from R� A into
A (sending (r, a) to ra) where ðr þ sÞa ¼ raþ sa,
rða þ bÞ ¼ raþ rb, rðsaÞ ¼ ðrsÞa and 0a ¼ r0A ¼ 0 for
all a; b2A besides r; s2R [6]. Assume N is a subset
of A, one says that N is an R-subsemimodule of A,
precisely when N is itself a semimodule with respect
to operations for A. Besides to these, for a sub-
semimodule X of A besides for a direct summand X
of A, the notations X � A besides X�⨁A will be used
respectively. L � A is said to be essential in A,
indicated by L�eA, if L∩Ns0 for all non-zero sub-
semimodule N � A.
A subsemimodule N � A is called small in A

(write N≪A), if for all subsemimodule X � A, with
N þ X ¼ A involves that X ¼ A [11]. The
radical of A, symbolized using RadðAÞ, is the sum

of all small subsemimodule of A [11]. A is named
hollow, if all proper subsemimodule of A is small
in A. A is named local, if it has a single maximal
subsemimodul, i.e., a proper subsemimodul which

contains all other subsemimoduls. A is said to be
simple, if it has no nontrivial subsemimodul, be-
sides A is said to be semisimple if it is a direct sum
of its simple subsemimoduls [1,3]. The socle of A,
symbolized by SocðAÞ, is the sum of all simple
subsemimoduls in A [3]. Let L, K � A. K is called a
supplement of L in A if it is minimal with respect
to A ¼ Lþ K: A subsemimodul K of A is a sup-
plement (weak supplement) of L in A iff A ¼ Lþ K
and L∩K≪K (L∩K≪A) (see [3,15]). A is supple-
mented (weakly supplementd) if each sub-
semimodule L of A has a supplement (weak
supplement) in A. Clearly, supplementd semi-
moduls are weakly supplementd. L � A has ample
supplements in A if each subsemimodule K of A
such that A ¼ Lþ K contains a supplement of L in
A: A semimodul A is called amply supplemented if
all subsemimodul of A has ample supplements in
A. Hollow semimoduls are amply supplementd [9].
A semimodul A is called lifting (or D1) if, for all
N � A, A ¼ X⨁Y with X � N and N∩Y≪A (see
[3,9], besides [10]). N � A is a subtractive sub-
semimodule of A if a; aþ b2N then b2N (see [2,6],
and [11]). If every N � A is subtractive, at that time
A is named subtractive semimodule. If C is a
subtractive subsemimodule, at that time A

C is a
semimodule [6, p.165].
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In [1], the present author introduced the concept of
⨁-supplemented semimodules. Here, we introduce
Rad-⨁-supplemented semimodules a generaliza-
tion of ⨁-supplemented semimodules and investi-
gate their properties. Section 2 is devoted to some
properties of ⨁-supplemented semimodules that
will be used in the sequel. In Section 3, the concept of
Rad-⨁-supplementd semimoduls is introduced. It is
shown that all direct summand of subtractive Rad-
⨁-supplemented semimodule with (D3) is a Rad-
⨁-suplemented. Also, we prove that if A is a sub-
tractive semimodule with (D3) at that time A is Rad-
⨁-supplementd iff every direct summand to A is
Rad-⨁-supplementd. We give an example of semi-
module, which is Rad-⨁-supplemented, but not
⨁-supplementd. In Section 4, the concept of
completely Rad-4-supplemented semimodules are
introduced.
In what follows, using N, N0, Z, Q, Zn besides Z=

nZ we symbolize, respectivly, natural numbers,
non-negative integers, integers, rational numbers,
the semiring of integers modulo n besides the
Z-semimodul of integers modulo n.

2. On ⨁-supplemented semimodules

In this section, ⨁-supplemented semimodules
are studied. We now give the next definition.

Definition 2.1. [1] An R-semimodule A is named
⨁-supplemented if for every subsemimodule N of
A there is a direct summand K of A such that A ¼
N þ K and N∩K is small in K.

Remark 2.2. [1] Evidently ⨁-supplemented semi-
modules are supplemented. Also, Hollow (or local)
semimodules and lifting semimodules are
⨁-supplemented.

Definition 2.3. [1] A semimodul A is named princi-
pally ⨁-supplementd if for each a2A there is a
direct summand B of A with A ¼ Raþ B and Ra∩ B≪
B. A semimodule A is named a weak principaly
⨁-supplementd if for each a2A there is a direct
summand B with A ¼ Raþ B and Ra∩B≪A.

Remark 2.4. Every ⨁-supplemented semimodule is
principally ⨁-supplemented. Evidently, every
⨁-supplementd semimodule is supplementd, but a
supplementd semimodule need not be ⨁-supple-
mentd in general as in [8, Lem. A.4 (2)].

Example 2.5. (1) Suppose that N0 is the semiring of
non-negative integers. As N0 is a local

N0-semimodule with maximal ideal N0yf1g [6,
Example 6.60]. Then by Remark 2.2, N0 is ⨁-sup-
plemented N0-semimodule.

(2) Assume Zpn as an Z-semimodule where p is
prime number besides n2N. Then by [1, Example
2.13], Zpn is ⨁-supplemented semimodule.

A commutativ semiring R is named a valuation
semiring if it is a local semiring besides all finitely
generate ideal is principal [5]. A semimodule A is
named finitely presented if A ¼ F

N for certain finitely
generated free semimodul F besides finitely gener-
ated subsemimodule N in F.

Factor semimodul of a ⨁-supplementd semi-
modul is not in general⨁-supplementd as in [1] the
next example illustration this.

Example 2.6. [1, Example 2.14] Presume R is a
commutativ local semiring which is not a valuation
semiring. There is a finitely presented indecompo-
sabl semimodule A ¼ RðnÞ

K , which cannot be gener-
ated by fewer than n elements. So, RðnÞ is
⨁-supplementd, n2N, n � 2. Yet A is not
⨁-supplemented.

Theorem 2.8 deals with a special case of factor
semimodules of ⨁-supplemented semimodules.
First, one proves the next lemma.

Let A be a semimodul and let N be a sub-
semimodul of A. N is named fully invariant if f ðNÞ �
N for every endomorphism fofA (f2EndRðAÞ).

Lemma 2.7. [1]Let A be a semimodule besides let U
be a fully invariant subsemimodule of A.IA ¼
A1⨁A2, at that time U ¼ U∩A1⨁U∩A2.

Theorem 2.8. Presume A is a nonzero semimodule
besides presume U is a subtractive and fully
invariant subsemimodule of A. If A is ⨁-supple-
mented, at that time A=U is ⨁supplemented. If, too,
U is a direct summand of A, then U is
4-supplemented.

Proof. Since U is a subtractiv subsemimodul of A, so we
have A=U is an R-semimodule. Assume A is ⨁-sup-
plemented. Let L � A and U � L. There exist N, N0 � A
with A ¼ N⨁N0, A ¼ Lþ N, and L∩N≪N. Using [14,
Lem. 1.2(d )], ðNþUÞ=U is a suplement of L=U in A=U.
At present apply Lem. 2.7, U ¼ U∩N4U∩N. Therefore,

ðNþUÞ∩ ðN0 þUÞ�ðNþUþN0Þ∩UþðNþUþUÞ∩N0

Thus,
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ðNþUÞ∩ ðN0 þUÞ�UþðNþU∩NþU∩N0Þ∩N0

In that case ðNþUÞ∩ðN0 þUÞ � U besides
ððNþUÞ =UÞ⨁ððN0 þUÞ =UÞ ¼ A=U. Now ðN þ UÞ=
U�⨁A=U. Thus, A=U is ⨁-supplemented.

Now take U�⨁A. Let � U. As A is ⨁-supplementd,
there is K, K0 � A where A ¼ K4K0, A ¼ V þ K, be-
sides V∩K≪K. Henceforth U ¼ V þ U∩K. Yet U ¼ U∩
K4U∩K0 by Lem. 2.7, henceforth U∩K�⨁U. Too, V∩
ðU ∩KÞ ¼ V∩K≪K. Just then,V∩ðU ∩KÞ≪U∩Kusing
[14, Lem. 1.1(b)]. As a resultU∩K is suplement of V in U
besidesU∩K �⨁U. Hence U a⨁-supplementd. ,

Definition 2.9. A semimodule A is named distributive, if
for K, L, N � A, we haveN∩ðKþLÞ ¼ N∩K þ N∩Lor
Nþ ðK ∩LÞ ¼ ðN þ KÞ∩ðN þ LÞ.

Proposition 2.10. Presume A is a nonzero distributive
subtractive semimodul besides presume U is a sub-
semimodul of A. If A is ⨁-supplemented, at that time A=
U is⨁-supplementd. If, too, U is a direct summand of A,
then U is 4-supplementd.

proof. The proof alike to that of Theorm 2.8.

3. Rad-⊕-supplemented semimodules

In this section, the idea of Rad-⨁-supplemented
semimodules (or generalized ⨁-supplemented) is
defined besides give the properties of these semi-
modules. In [12]Wang andDing defined the notion of
generalized supplemented modules. In [3] Khareeba
and Alwan defined the notion of generalized supple-
ment (or Rad-supplement) semimodules as follows:

Definition 3.1. Let A be an R-semimodule. A sub-
semimodule K of A is named Rad-supplement of N
in A if A ¼ N þ K and N∩K � RadðKÞ. We say that A
is Rad-supplemented if every subsemimodule has a
Rad-supplement in A.

Definition 3.2. A semimodule A is named Rad-
⨁-supplemented if every subsemimodule has a
Rad-supplement that is a direct summand of A. i.e.,
for every subsemimodule N � A, A ¼ N þ K and
A ¼ K⨁K0 with N∩K � RadðKÞ for some K;K0 � A.

Lifting semimodules are ⨁-supplemented.
Obviously, ⨁-supplemented are supplementd and
Rad-⨁-supplemented. In addition, finitely gener-
ated Rad-⨁-supplementd semimodules are
⨁-supplemented, similar to [13, 19.3], but it is not
generally true that each Rad-⨁-supplementd

semimodule is ⨁-supplementd. Whereas supple-
mented besides Rad-⨁-supplemented semi-
modules are Rad-supplemented.

To show a finite direct sum for Rad ⨁-supple-
mentd semimodules is Rad-4-supplementd, we use
the next usual lemm. (in [13, 41.2]).

Lemma 3.3. Presume N besides K is subsemimodules in
A where N þ K has Rad-supplement X in A besides
N∩ðKþXÞ has Rad-suplement Y in N. At that time X þ
Y isRad-supplement to K in A.

Proof. Presume X is a Rad-suplement to N þ K in A.
Now A ¼ ðNþKÞ þ X besides ðN þ KÞ∩X � RadðXÞ.
As N∩ðKþXÞ has a Rad-supplement Y in N, one has
N ¼ N∩ðKþXÞ þ Y besides ðK þ XÞ∩Y � RadðYÞ. Now
A¼NþKþX ¼ ½N∩ ðKþXÞþY� þKþX

¼ Kþ ðXþYÞ
as well as

K∩ ðXþYÞ � X∩ðKþYÞ þY∩ðKþXÞ

� X∩ðKþNÞ þY∩ðKþXÞ

� RadðXÞ þRadðYÞ

� RadðXþYÞ
As a result Xþ Y is a Rad-suplement to K inA.

Theorem 3.4. For any semiring R, any finite direct
sum of Rad-⨁-supplemented R-semimodules is
Rad-⨁-supplemented.

Proof. Assume n is any positiv integer besides Ai

(1 � i � n) be anyy finit collection off
Rad-⨁-supplementd R-semimodules. PresumeA ¼
A1⨁A2⨁/⨁An.
Assume that n ¼ 2, that is, A ¼ A1⨁A2. Presume
K � A. Now A ¼ A1 þ A2 þ K besides A1 þ A2 þ K has
a Rad-suplement 0 in A. As A1 is Rad-⨁-supplementd,
A1∩ðA2 þKÞ has a Rad-supplement X in A1 with
X�⨁A1. Using Lem. 3.3, X is a Rad-suplement of A2 þ
K in A. As A2 is Rad-⨁-supplementd, A2∩ðKþXÞ has a
Rad-suplement Y in A2 with Y�⨁A2. Once more
applying Lemma 3.3, one hasX þ Y is a Rad-suplement
of K in A. As X�⨁A1 besides Y�⨁A2, in that
case X⨁Y�⨁A. The proof is ended by induction on n.
,

We prove tthe next theorem, that is a adapted form of
Theorem 2.16 in [1]. We need next lemm.
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Lemma 3.5. Suppose A is a semimodule and N � A. If F
is a Rad-supplement to N in A, then FþL

L is a Rad-sup-
plement to N

L in A
L for all subtractive subsemimodule L of

N.

Proof. Via the hypothesis, A ¼ N þ F besides F∩ N �
RadðFÞ. Hence A

L ¼ N
L þ FþL

L for all L � N. Consider the
natural epimo. 4 : N/N

L . Now via [13, p. 191],
4ðRadðFÞÞ � Rad

�
FþL
L

�
. As F∩N � RadðFÞ it follows thatt

N
L

TFþL
L ¼ LþðN

T
FÞ

L ¼ 4ðNT
FÞ⊆4ðRadðFÞÞ � Rad

�
FþL
L

�
.

As a result, FþL
L is Rad-supplement off N

L in A
L. ,

Theorem 3.6. Let A be a subtractive Rad-⨁-sup-
plemented R-semimodule besides let U be a fully
invariant subsemimodule of A. At that time
(1) A

U is Rad-⨁-supplemented.
(2) If U is a direct summand to A (U�⨁A), then U is
Rad-⨁-supplementd.

Proof. (1) As A is a subtractive R-semimodule, we get A
U

is an R-semimodule [6, p. 165]. Let L
U � A

U. As A is Rad-
⨁-supplemented, there exist N, N0 � A wherever A ¼
Lþ N, L

T
N � RadðNÞ besides A ¼ N⨁N0. Via Lem.

3.5, NþU
U is Rad-supplementt of L

U in A
U. As f ðUÞ � U to all

f2EndRðAÞ, it follows as of Lem. 2.7, U ¼
ðUT

NÞ⨁ðUT
N0Þ. Henceforth ðNþUÞTðN0 þUÞ � U

besides as a result NþU
U

TN0þU
U ¼ 0, i.e. NþU

U �⨁
A
U. Hence A

U
is Rad-⨁-supplementd.

(2) Assume U�⨁A and X � U. As A is Rad-
⨁-supplementd, there exist Y, Y0 � A with A ¼ Xþ Y,
X
T
Y � RadðYÞ and A ¼ Y⨁Y0. Henceforth U ¼ Xþ

ðUT
YÞ. Yet again applying Lem. 2.7, one has U ¼

ðUT
YÞ⨁ðUT

Y0Þ. At this time one shows X
TðUT

YÞ ¼
X
T
Y � RadðUT

YÞ. Presume x2X
T
Y. At that time x2

RadðYÞ and so Rx≪Y. As U�⨁A, using [13, 19.3], Rx≪
U. Again using [13, 19.3], Rx≪U

T
Y because U

T
Y is

direct summand of U. As a result x2RadðUT
YÞ. Hence,

U is Rad-⨁-supplementd. ,

Corollary 3.7. Presume A is a nonzero Rad-⨁-supple-
mentd semimodule. If RadðAÞ�⨁A, then RadðAÞ is Rad-
⨁-supplemented.

Assume R is a semiring and A be an R-semimodule. In
[1] the next condition: ðD3Þ If A1 besides A2 are direct
summands of A with A ¼ A1 þ A2, at that time A1∩ A1 is
also a direct summand of A.

Proposition 3.8. Presume A is a subtractive Rad-
⨁-supplementd semimodule with (D3). At that time each
direct summand to A is Rad-⨁-supplemented.

Proof. Assume N�⨁A besides U � N. Now there is a
V�⨁A with A ¼ U þ V besides U∩V � RadðVÞ. In that
case N ¼ Uþ ðN ∩VÞ. As A has (D3) N∩V is a direct
sumand of A. As a result it is as well a direct sumand of
N. Note U∩ðN ∩VÞ ¼ U∩V � RadðVÞ. As N∩V�⨁A, it
tracks U∩V � RadðN ∩VÞ. As a result N is Rad-
⨁-supplemented. ,

Similar to [7, Propo. 2.10], one has the next propo.

Proposition 3.9. Let A be a ⨁-supplemented semi-
module. Then A ¼ A1⨁A2, where A1 is a semimodule
with RadðA1Þ small in A1 and A2 is a semimodule with
RadðA2Þ ¼ A2.

We give an alike description of this detail for Rad-
⨁-supplementd semimodules.

Proposition 3.10. Presume A is a Rad-⨁-supplemented
semimodule. At that time A ¼ A1⨁A2, where A1 is a
semimodule with RadðA1Þ ¼ A1∩RadðAÞ besides A2 is a
semimodul with RadðA2Þ ¼ A2.

Proof. As A is Rad-⨁-supplemented, there exist sub-
semimodules A1 and A2 of A with A ¼ RadðAÞþ A1,
RadðAÞ∩A1 � RadðA1Þ and A ¼ A1⨁A2. Then
Rad ðA1Þ ¼ A1∩RadðAÞ and A ¼ A1⨁ Rad ðA2Þ. In that
case RadðA2Þ ¼ A2. ,

We now give an example of semimodule, which is
Rad-⨁-supplementd, but not ⨁-supplementd.

Example 3.11. Consider A ¼ Q4 Z
pZ as a semimodule

over a semiring N0, for any prime p. Note A has single
maximal subsemimodule, i.e. RadðAÞsA. Using Theo-
rem 3.4, A is Rad-⨁-supplementd. If A is ⨁-supple-
mentd, then Q is suplemented which is a conflict.

Similar to [4, Theorm 3.12] we give the nextt theorem
in semimodule theory.

Theorem 3.12. Presume A is a subtractive semi-
module with (D3). At that time the next statements
are equivalent.
(1) A is Rad-⨁-supplemented.
(2) Each direct summand to A is Rad-⨁-supplementd.
(3) A ¼ A1⨁A2 were A1 is semisimple besides A2 is a
Rad-⨁-supplemented semimodule with RadðA2Þ
essential in A2.
(4) A ¼ A1⨁A2 where A1 is a Rad-⨁-supplemented
semimodule besides A2 is a semimodule with RadðA2Þ ¼
A2.

Proof. (1) 0 (2) It followss from Prop. 3.8.
(2) 0 (3) Using [12, Propo. 2.3], A ¼ A1⨁A2,

wherever A1 is semisimple besides A2 is a semimodule
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with RadðA2Þ essential in A2. Using (2), A2 is a Rad-
⨁-supplementd.

(3) 0 (1) Using Theorm 3.4, A is Rad-
⨁-supplementd.

(1) 0 (4) Using Propo. 3.10, exist subsemimodules A1

besides A2 of A with A ¼ A1⨁A2 besides RadðA2Þ ¼
A2. As A has (D3), by Prop. 3.8, A1 is Rad-
⨁-supplementd.

(4) 0 (1) As RadðA2Þ ¼ A2, A2 is Rad-⨁-supple-
mented. Using (4) besides Thm 3.4, A is Rad-⨁-sup-
plemented. ,

4. Completely Rad-⨁-Supplemented
Semimodules

In this section, the idea of completely Rad-
⨁-supplementd semimoduls is studied.

Definition 4.1. [1] A semimodul A is called
completely ⨁-supplemented if each direct sum-
mand of A is ⨁-supplemented.
Obviously, lifting (or D1) semimodule is completely
⨁-supplemented [1].

Definition 4.2. A semimodule A is called completely
Rad-4-supplemented semimodule if each direct
summand of A is Rad-4-supplementd semimodule.

Definition 4.3. [1] Given a positive integer m, the
semimoduls Ai (1 � i � m) are named relatively
projective if Ai is Aj-projective for all 1 � isj � m.

Lemma 4.4. [3, Lemma 1] Presume A is a semimodul
besides K supplement subsemimodule of A. At that time
K∩RadðAÞ ¼ RadðKÞ.

Proposition 4.5. [6, Proposition 14.22] Presume A is an
R-semimodule and let N; K � A. Let L be a subtractive
subsemimodul of A with N � L. At that time L∩ ðN þ KÞ
¼ Nþ ðL∩KÞ.

Theorem 4.6. Presume Ai (1 � i � m) is a finite
collection of relatively projectiv subtractive semimodules.
Now the semimodule A ¼ A1⨁/⨁An is Rad-⨁-sup-
plementd if and only if Ai is Rad-⨁-supplementd for
each 1 � i � n.

Proof. In Theorm 3.4 the sufficiency is showed. In op-
position, A1 to be Rad-⨁-supplementd just is shown.

Assume F � A1. Now there is K � A with A ¼ Fþ K,
K�⨁A besides F∩K � RadðKÞ. As A ¼ Fþ K ¼ A1 þ K,
using [8, Lemma 4.47], there is K1 � K with A ¼
A1⨁K1. Now K ¼ K1⨁ðA1 ∩KÞ by using Proposition
4.5, as K1 � K besides K is a subtractive subsemimodule
of A. Note A1 ¼ F þ ðA1 ∩KÞ besides A1∩K�⨁A1.
Henceforth, F∩K ¼ F∩ðA1 ∩KÞ besides F∩K � RadðAÞ,
F∩K � A1∩K, at that time
F∩K � ðA1 ∩KÞ∩RadðAÞ ¼ RadðA1 ∩KÞ using Lemma
4.4. As a result A1 is Rad-⨁-supplemented semimodule.
,

Proposition 4.7. Presume A is a Rad-⨁-supplementd
semimodul with (D3). At that time A is completely Rad-
⨁-supplementd semimodule.

Proof. Suppose N�⨁A and K � N. One shows K hass
Rad-suplement in N that is direct summandd of N. As A
is Rad-⨁-supplementd semimodule, there is B�⨁A with
A ¼ K þ B and K∩B � RadðBÞ. From here N ¼ Kþ
ðN ∩BÞ. Also, N∩B�⨁A as A has (D3). Now
K∩ðN ∩BÞ ¼ K∩B and K∩B � RadðAÞ, K∩B � N∩B,
then K∩B � ðN ∩BÞ∩RadðAÞ ¼ RadðN ∩BÞ by Lemma
4.4. ,

5. Conclusion

In this paper, we have defined besides studied
the concept of Rad-⨁-supplemented semimodules
over semirings. We observed that if U is a fully
invariant subsemimodule of a subtractive Rad-
⨁-supplemented semimodule A, at that time A

U is
Rad-⨁-supplemented. Too, if A is a subtractive
Rad-⨁-supplementd semimodule with (D3), at that
time each direct summand to A is Rad-
⨁-supplemented.
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