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ORIGINAL STUDY

⨁-Supplemented Semimodules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

In this paper, ⨁-supplemented semimodules are defined as generalizations of ⨁-supplemented modules. Let S be a
semiring. An S-semimodule A is named a⨁-supplemented semimodule, if every subsemimodule of A has a supplement
which is a direct summand of A. In this paper, we investigate some properties of ⨁-supplemented semimodules besides
generalize certain results on ⨁-supplemented modules to semimodules.

Keywords: Supplemented semimodules, (Completely) ⨁-supplemented semimodules, Semiperfect semimodules

1. Introduction

F irstly, let us point that, S will indicate an asso-
ciative semiring with identity besides A will

indicate an unitary left S-semimodule throughout
this article. A (left) S-semimodule A is a commuta-
tive additive semigroup which has a zero element
0A, together with a mapping from S� A into A
(sending (s, a) to sa) such that ðr þ sÞa ¼ raþ sa,
rða þ bÞ ¼ raþ rb, rðsaÞ ¼ ðrsÞa besides 0a ¼ r0A ¼ 0
for all a; b2A besides r; s2S. Let N be a subset of A.
One say that N is an S-subsemimodule of A, pre-
cisely when N is itself an S-semimodule with respect
to the operations for A. A subsemimodule N of A is a
direct summand of A iff there is a subsemimodule
N0 of A satisfying A ¼ N⨁N0, in particular, any
element a of A can be written in a unique manner as
aþ a0, where a2N and a02N0 [7, p. 184]. Too to
these, for a subsemimodule X of A besides for a
direct summand X of A, the notations X � A besides
X�⨁A will be used respectively. L � A is named
essential in A, indicated by L�eA, if L∩Ns0 for all
non-zero subsemimodule N � A.
A subsemimodule N � A is named small in A (one

writes N ≪ A), if for every subsemimodule X � A,
with N þ X ¼ A implies that X ¼ A [14]. The radical
of A, symbolized by RadðAÞ, is the sum of all small
subsemimodules of A [14]. A is named hollow, if
each proper subsemimodule of A is small in A. A is
named local, if it has a single maximal sub-
semimodule, i.e., a proper subsemimodule which

contains all other subsemimodules. A is said to be
simple, if it has no nontrivial subsemimodule, be-
sides A is said to be semisimple if it is a direct sum
of its simple subsemimodules [3]. The socle of A,
symbolized by SocðAÞ, is the sum of all simple sub-
semimodules of A [3]. Let L, K � A. K is named a
supplement of L in A if it is minimal with respect to
A ¼ Lþ K: A subsemimodule K of A is a supplement
(weak supplement) of L in A iff A ¼ Lþ K besides L∩
K ≪ K (L∩K ≪ A) [3]. A is supplemented (weakly
supplemented) if each subsemimodule L of A has a
supplement (weak supplement) in A. Openly, sup-
plemente semimodules are weakly supplemente.
L � A has ample supplements in A if each sub-
semimodule K of A such that A ¼ Lþ K contains a
supplement of L in A: A semimodule A is named
amply supplemented if every subsemimodule of A
has ample supplements in A. Hollow semimodules
are ample supplemented. A semimodule A is named
lifting (or D1) if, for all N � A, there is a decompo-
sition A ¼ X⨁Y such that X � N and N∩Y is small
in A [12]. A subsemimodule N of � A is named a
subtractive subsemimodule of A if a; aþ b2N
then b2N for all a; b2A ([4,7]). If every sub-
semimodule of A is subtractive subsemimodule, at
that time A is named subtractive. If C is a subtractive
subsemimodule, at that time A

C is an R-semimodule
[7, p. 165].
In this paper, we introduce ⨁-supplemented

semimodules and investigate their possessions.
New characterizations of semiperfect semimodules
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are obtained using ⨁-supplemente semimodules.
In Section 2, we define ⨁-supplemented semi-
modules. Furthermore, for any semiring S, we show
that any finite direct sum of ⨁-supplemented
S-semimodules is ⨁-supplemented. In Section 3,
we define completely ⨁-supplemented semi-
modules. We also show that any ⨁-supplemented
semimodule has D3 property is completely
⨁-supplemented.
In what follows, by N, N0, Z, Q, Zn and Z= nZ we

indicate, respectively, natural numbers, non-nega-
tive integers, integers, rational numbers, the sem-
iring of integers modulo n besides the
Z-semimodule of integers modulo n.

2. ⨁-Supplemented Semimodules

In this part, we introduce ⨁-supplemente semi-
modules. Mohamed and Müller [10] call a module A
⨁-supplementd if each submodule N of A has a
supplement that is a direct summand of A. Openly,
each ⨁-supplementd module is supplementd,
nonetheless a supplementd modul need not be
⨁-supplemente in general (see [10, Lem. A.4 (2)]).
Alike to [10] we have the next definition of ⨁-sup-
plemented semimodules.

Definition 2.1. An S-semimodule A is named
⨁-supplemented if for every subsemimodule N of
A there is a direct summand K of A such that A ¼
N þ K and N∩K is small in K.

Remark 2.2. Obviously ⨁-supplemented semi-
modules are supplemented. In addition, Hollow
semimodules and lifting semimodules are
⨁-supplemented.

Definition 2.3. [2] A semimodule A is named prin-
cipally ⨁-supplemented if for each a2A there ex-
ists a direct summand B of A such that A ¼ Saþ B
and Sa∩B is small in B.

Definition 2.4. [2] A semimodule A is named a weak
principally ⨁-supplemented if for each a2 A there
exists a direct summand B such that A ¼ Saþ B and
Sa∩B≪A.
Each ⨁-supplemented semimodule is supple-
mented. All ⨁-supplemented semimodules are
principally ⨁-supplemented.

Definition 2.5. [14] A homomorphism f : A/B of
left S-semimodules is named k-quasiregular if
whenever K � A, a2AyK, a02K, and f ðaÞ ¼ f ða0Þ
there exists s2Kerðf Þ such that a ¼ a0 þ s.

Definition 2.6. [14] Let A be a left S-semimodule. A
left S-semimodule P together with an S-homomor-
phism f : P/A is named a projective cover of A if:

(1) P is projective,
(2) f is small, epimorphism besides k-quasiregular.

By [13], a semiring is named perfect (or semiperfect)
if every S-semimodule (or every simple S-semi-
module) has a projective cover. Too, a semiring is
named semiperfect if each finitely generated
S-semimodule has a projective cover. Now alike to
[13] the next definition are given.

Definition 2.7. A semimodule A is named semi-
perfect if each factor semimodule of A has a pro-
jective cover.
Mohamed and Müller [10, Coro. 4.43] call a projec-
tive module A is semiperfect, iff A is discrete (if A
has the conditions (D1) and (D2)), iff every sub-
module of A has a supplement.
Let A be a semimodule. Similar to [10], we consider
the next conditions in semimodule theory.

(D1) For each subsemimodule N of A, A has a
decomposition with A ¼ A1⨁A2, A1 � N and
A2∩N≪A2.
(D2) If N is a subsemimodule of A is such that A

N is
isomorphic to a summand of A, then N is a
summand of A.
(D3) If A1 besides A2 are direct summands of A
with A ¼ A1 þ A2, then A1∩A2 is besides a direct
summand of A.

Similar to [10], we call a projective subtractive
semimodule A is semiperfect, if and only if A is
discrete (if A has the conditions (D1) and (D2)), if and
only if each subsemimodule of A has a supplement.
Now, alike to [8, Lemma 1.2], we give the next
lemma.

Lemma 2.8. Assume A is a projective subtractive
semimodule. Now the next statements are
equivalent.

(1) A is semiperfect.
(2) A is supplemented.
(3) A is ⨁-supplemented.

Proof: (1) ⇔ (2) Using [10, Coro. 4.43]. (1) ⇔ (3) as in
the proof of [5], Propo. 1.4]. ,
Let A be a semimodule. Similar to [10, Proposition
4.8], A has (D1) iff A is amply supplementd besides
each supplement subsemimodule of A is a direct
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summand. As a result, every (D1)-semimodule is
⨁-supplemented.

Lemma 2.9. Suppose that N and L are sub-
semimodules of A with N þ L has a supplement H in
A besides N∩ðHþLÞ has a supplement G in N. At
that time H þG is a supplement of L in A.

Proof: Lease H be a supplement of N þ L in A be-
sides, G be a supplement of N∩ðHþLÞ in N. Now
A ¼ ðNþLÞ þ H such that ðNþLÞ∩H≪H and N ¼
½N ∩ðHþLÞ� þG such that ðH þ LÞ∩G≪G. As ðH þ
GÞ∩L � ½ðG þ LÞ∩H� þ ½ðH þ LÞ∩G�, H þ G is a
supplement of L in A. ,

Theorem 2.10. For any semiring S, any finite direct
sum of ⨁-supplementd S-semimodules is
⨁-supplementd.

Proof: Lease m be a positive integer besides Ai be a
⨁-supplemente S-semimodule for all 1 � i � m. Let
A ¼ A1⨁/⨁Am. To show that A is⨁-supplemente
it is sufficient by induction on m to show this is the
case when m ¼ 2. So, take m ¼ 2.
Let L � A. Then A ¼ A1 þ A2 þ L thus that A1þ A2þ L
has a supplement 0 in A. Let H be a supplement of
A2∩ðA1 þLÞ in A2 with H is a direct summand of A2.
Using Lem 2.9, H is a supplement of A1 þ L in A.
Lease K be a supplement of A1∩ðLþHÞ in A1 with K
is a direct summand of A1. For a second time
applying Lem 2.9, we get that H þ K is a suplement
to L in A. Since H�⨁A2 and K�⨁A1 so, Hþ K ¼
H⨁K�⨁A. As a result A ¼ A1⨁A2 is ⨁-supple-
mented. ,

Corollary 2.11. A finite direct sum of semimodules
with (D1) is ⨁-supplementd.

Corollary 2.12. Any finite direct sum of hollow (or
local) semimodules is ⨁-supplementd.

Example 2.13.
(1) Consider N0 is the semiring of non-negative

integers. As N0 is a local N0-semimodule. Now
by Corollary 2.12, N0 is ⨁-supplemented
N0-semimodule.

(2) Consider Zpn as an Z-semimodule where p is
prime number and n2N. Now by Corollary 2.12,
Zpn is ⨁-supplemented.

A commutativ semiring S is named a valuation
semiring if it is a local semiring besides each finitely
generated ideal is principal [6]. A semimodule A is
named finitely presented if A ¼ F

N for certain finitely

generated free semimodule F besides finitely
generated subsemimodule N of F.
Similar to [9, Example 2.2] we have the next example
show this a factor semimodule of a ⨁-supple-
mented semimodule is not in general
⨁-supplemented.

Example 2.14. Assume S is a commutativ local
semiring which is not a valuation semiring. As in [9,
Example 2.2], there is an indecomposable finitely
presented semimodule A ¼ SðnÞ

K , which cannot be
generated by fewer than n elements. Using [9] SðnÞ is
⨁-supplemente, n2N. However A is not
⨁-supplemente.
Theorem 2.16 deals with a special case of factor
semimodules of ⨁-supplemented semimodules.
First, we show the next lemma.

Lemma 2.15. Assume A is a semimodule besides let
U � A such that f ðUÞ � U for every f2EndSðAÞ. If
A ¼ A1⨁A2, then U ¼ U∩A1⨁U∩A2.

Proof: Assume pi : A/Ai ði¼ 1; 2Þ indicate the ca-
nonical projections. Take x2U. Now x ¼ p1ðxÞþ
p2ðxÞ. Using supposition, piðUÞ � U for i ¼ 1, 2.
Hence piðxÞ2U∩Ai for i ¼ 1, 2. Thus
U � U∩A1⨁U∩A2. Hence U ¼ U∩A1⨁U∩A2. ,

Theorem 2.16. Let A be a subtractive semimodule
besides let U � A with f ðUÞ � U for all f2EndSðAÞ.
If A is ⨁-supplemented, at that time A=U is
⨁-supplemented. If, also, U is a direct summand of
A, at that time U is also ⨁-supplemented.

Proof: As A is a subtractive S-semimodule, we get
A=U is an S-semimodule [7, p. 165]. Assume A is a
⨁-supplemented semimodule. Let L be a sub-
semimodule of A which contains U. There is N, N0 �
A with A ¼ N⨁N0, A ¼ Lþ N, and L∩N≪N. By [16],
Lem. 1.2(d)], ðNþUÞ=U is a supplement of L=U in
A=U. Currently apply Lem. 2.15 to have this U ¼
U∩N⨁U∩N0. As a result,

ðNþUÞ∩ ðN0 þUÞ�ðNþUþN0Þ∩UþðNþUþUÞ∩N0

So,

ðNþUÞ∩ ðN0 þUÞ�UþðNþU∩NþU∩N0Þ∩N0

From now ðNþUÞ∩ðN0 þUÞ � U and
ððNþUÞ =UÞ⨁ððN0 þUÞ =UÞ ¼ A=U. Now ðNþUÞ=U
is a direct summand of A=U. Therefore, A=U is
⨁-supplemented.
At the present asume U is a direct summand to A.
Let V be a subsemimodule in U. As A is ⨁-sup-
plemented, there exist K, K0 � A with A ¼ K⨁K0,
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A ¼ V þ K, and V∩K≪K. Hence U ¼ V þ U∩ K.
However U ¼ U∩K⨁U∩K0 by Lem. 2.15, hereafter
U∩K is a direct summand of U. As well, V∩
ðU ∩KÞ ¼ V∩K≪K. Now, V∩ðU ∩KÞ≪U∩K by [16,
Lem. 1.1(b)]. So U∩K is a supplement of V in U
besides it is a direct summand of U. Henceforth U is
⨁-supplementd. ,

Corollary 2.17. Assume A is a subtractive S-semi-
module besides PðAÞ the sum of all its radical sub-
semimodules. If A is ⨁-supplemente, at that time
A=PðAÞ is ⨁-supplemente. If, furthermore, PðAÞ be
a direct sumand to A, at that time PðAÞ is also
⨁-supplemented.

3. Completely ⨁-supplemented semimodules

Even though the properties lifting (or D1), amply
supplementd besides supplementd are inherited by
summands, it is unknown (and improbable) that the
same is correct for the property ⨁-supplemented
since it is not true in modules as in [8].
Similar to [8] we give the next definition of

completely ⨁-supplemente semimodules.

Definition 3.1. A semimodule A is named
completely ⨁-supplemented if every direct sum-
mand of A is ⨁-supplemented.
Remarked that an S-semimodule A is supplemented
if and only if A is ⨁-supplemented whenever S is
Dedekind semidomain. Thus an S-semimodule A is
⨁-supplementd if and only if A is completely
⨁-supplementd. For more information about sem-
idomains, see [4,6].
Clearly, every lifting (or D1) semimodule is
completely ⨁-supplemented.

Example 3.2. Assume x is any integer besides indi-
cate A the Z-semimodule ðZ =xiZÞ⨁ðZ =xjZÞ ði, j2
NÞ. At that time A is completely ⨁-supplemented
(see [8, Example 2.16]).

Definition 3.3. Given a positive integer m, the
semimodules Ai (1 � i � m) are named relatively
projective if Ai is Aj- projective for all 1 � isj � m.

Proposition 3.4. [7, Proposition 14.22] (Semi-
modularity Law) Let A be a semimodule over sem-
iring S besides let N and K be subsemimodules of A.
Let L be a subtractive subsemimodule of A with N⊆
L. At that point L∩ðN þ KÞ ¼ Nþ ðL∩KÞ.

Theorem 3.5. Let Ai (1 � i � m) be a finite collection
of relatively projective subtractive semimodules.Now

the semimoduleA ¼ A1⨁/⨁Am is⨁-supplementd
iff Ai is⨁-supplementd for each 1 � i � m.

Proof: The sufficiency is showed in Thm 2.10. In
opposition, we just show A1 to be ⨁-supplemented.
Let F � A1. Now there is K � A with A ¼ Fþ K, K is
a direct sumand to A besides F∩K≪K. Since A ¼ Fþ
K ¼ A1 þ K, by [10, Lemma 4.47], there exists K1 � K
such that A ¼ A1⨁K1. Now K ¼ K1⨁ðA1 ∩KÞ by
using Proposition 3.4, since K1 � K and K is a sub-
tractive subsemimodule of A. Note that
A1 ¼ F þ ðA1 ∩KÞ and A1∩K is a direct sumand to A1.
Henceforth, F∩K ¼ F∩ðA1 ∩KÞ≪A1∩K as in modules
see [10, Lemma 4.2]. Thus A1 is ⨁-supplement. ,

Theorem 3.6. Let A be a ⨁-supplemented semi-
module with (D3). At that time A is completely
⨁-supplemented.

Proof: Assume N is a direct sumand to A besides
F � N. We show F has a supplement in N that is
direct sumand of N. As A is ⨁-supplemente, there
exists a direct summand K of A with A ¼ F þ K be-
sides F∩K≪K. As a result N ¼ Fþ ðN ∩KÞ. More-
over, N∩K is a direct sumand of A has ðD3). Now
F∩ðN ∩KÞ ¼ F∩K≪N∩K. ,

Definition 3.7. [1] Let A be a semimodule. A sub-
semimodule N of A is closed in A if N has no proper
essential extensions in A.

Definition 3.8. [1] A semimodule A is named
extending semimodule if every closed sub-
semimodule ofA is a direct summand ofA.A is said to
be extending (CS-semimodul) if every subsemimodul
of A is essential in a direct summand of A.
In [11] P. F. Smith calls a module A is named
UC-module if each submodule of A has a unique
closure inA. Similar to [11],wehave thenextdefinition.

Definition 3.9. A semimodule A is named
UC-semimodule if each subsemimodul of A has a
unique closure in A.

Lemma 3.10. Let A be a UC extending semimodule.
Then A has (D3).

Proof: Assume A1, A1 are direct summands of A
with A ¼ A1 þ A2. Using [15], Proposition 1.1], A1∩A2

is a closed subsemimodule of A. As A is extending,
A1∩A2 is a direct summand of A. As a result A has
(D3). ,
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Proposition 3.11. Assume A is a UC extending
semimodule. Now A is ⨁-supplemented iff A is
completely ⨁-supplemented.

Proof: The sufficiency is evidence. Conversly,
supposing A is ⨁-supplemente. Using Lemma 3.10,
A has (D3). Thus A is completely ⨁-supplemente
from Theorem 3.6. ,
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