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Abstract: In Poisson-Inverse Gaussian regression analysis, multicollinearity is a
frequent problem that frequently leads to unstable parameter estimations, which can
lead to erroneous conclusions and predictions. Despite being a widely used technique
for estimating model parameters, the maximum likelihood estimator (MLE) has several
well-known drawbacks. Consequently, the Poisson-Inverse Gaussian regression model's
multicollinearity is frequently resolved by using ridge-type regression estimators. This
paper proposes a two-parameter ridge-type estimator and establishes its statistical
features through theoretical calculations and Monte Carlo simulation experiments. The
recently suggested estimator was also contrasted with other estimators that have been
published in the literature. The results show that the suggested estimator performs better
than various other existing estimators using the mean square criterion, even when
applied to real data sets.
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Introduction

Regression models that do not have a normal response variable distribution cannot be fitted using
the linear regression model (LRM). "In these situations, the data collection is modeled using
generalized linear models (GLMs). When modeling data with response variables that have a
distribution different than the normal distribution, GLMs work well [1]. The Poisson-Inverse
Gaussian (P1G) distribution is a type of distribution that is utilized for positively skewed continuous
response variables. The Poisson-Inverse Gaussian regression model (PIGR) is favored above the
Poisson regression model in cases where the response variable is highly skewed [2,5]. Industrial
engineering, life testing, dependability, marketing, and the social sciences have all made extensive
use of the PIGR model [3,6,9].

The approach is also well-received to model count data from the social sciences, marketing,
finance, and many others. PIGR errors raise the flexibility in the model for variance modeling
compared to those from zero-inflated or other zero-related specifications. For data analysis in such
fields, mimeographed lecture notes without any further references are not reasonable for a scientific
community. Moreover, basic assumptions and reasoning leading to a PIG regression model should
be discussed rather than to be hidden within an asymptotic argument. Therefore, this paper
consolidates the basic concepts leading to the PIGR.

The PIGR is a well-received and widely studied approach to model count data. The conventional
logarithmic link function names PIG regression the Poisson log-linear model, leading the Neyman-
Pearson settings of a likelihood ratio goodness of fit test, Wald test, and score tests as well to only
the Poisson model. It covers, therefore, the quasi-Poisson regression based on Tweedie's formula
for the variance, and numerous extensions for two-part, zero-inflated/deflated models and
specifications for multiple correspondence analysis. Originally, this approach focused on claims
data from automobile insurances, where the variance of counts grew cubic in mean and a direct
application of the Poisson model is fail, leading also to historically referred log-linear regression.
This cubic variance assumption and the given condition for failure of Poisson model are typical
problems for the PIGR.

The regressors are assumed to be uncorrelated in the PIGR. However, multicollinearity is a concern
since this assumption is frequently incorrect. Since the PIG distribution belongs to the exponential
family, the model denoted as (PIGR) is a specific type of generalized linear model (GLM). One
popular technique for estimating the unknown coefficients in the PIGR model is the maximum
likelihood (ML) estimation method. However, the ML estimation may suffer if the independent
variables are excessively collinear.

Multicollinearity can lead to a number of issues while estimating the (PIGR) model. A frequently
used method to obtain the unknown parameters in an PIGR model is the maximum likelihood (ML)
estimate method. However, the estimation of ML may be biased if the independent variables
involve high collinearity .A multicollinearity problem can lead to several problems when (PIGR)
model is being estimated. The problem with it is that if the estimated coefficients are with the
wrong sign, there could be misinterpretations due to the imagined relationship between the
dependent variable and the independent variables. Another issue is that the ML estimator's
confidence interval might expand, which could therefore reduce the accuracy of the estimates. Also,
prediction’s accuracy would deteriorate when the value of square mean error (MSE) rise [1,10,11].
Ridge regression approach was one of the solutions developed to be applied against
multicollinearity problem, which was brought to light by [12] . This method has proven to be very
useful in many regression applications. [13] proposed the Ridge estimator (RE) for the (PIGR)
model, which has the advantage of producing a smaller MSE value compared to the maximum
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likelihood (ML) estimator. On the other hand, the RE factor also offers some drawbacks. For
example, there is no such improvement in the quality of fitting as in the case of plain linear
regression which means that results from the RJL model are also similar to those from the extended
GLM [14] extended the Ridge and Liu estimators to the Poisson-Inverse Gaussian regression model
(PIGRM), which is a special case of GLMs. [15] . Furthermore, [16] introduced a first-order two-
parameter estimator for (GLMs). These studies aimed to enhance the precision and reliability of
parameter estimates in regression models impacted by multicollinearity. In response to the Ridge
estimator proposal for the (PIGR), numerous studies have been carried out to enhance this
approach. [17] suggested biased parameter estimators for the Ridge estimator (RE) in the PIGR
model, while [18] presented the Liu estimator and a two-parameter estimator defined by [19] for the
PIGR model. Additionally, [20] introduced a new shrinkage parameter for the PIGR.

Due to the limitations of REas highlighted in [21] and [22], a more advanced version known as the
two-parameter Ridge estimator (TPRE) has been proposed. The TPRE surpasses both the RE and
ML estimators, offering various advantages such as orthogonality between residuals and predicted
values on the dependent variable. The additional parameter in the TPRE enhances the regression
model's overall fit quality. In a Linear Regression Model (LRM) context, [23] conducted a
comparison between the TPRE, OLS estimator, and RE using the matrix mean square error
(MMSE) criteria. Within the (GLMs) framework, [24] applied the TPRE in a binary logistic
regression model.

Overall, researchers have proposed various methods to address the issue of multicollinearity in
regression models, including the Ridge regression method and various extensions and modifications
of this method. These methods can improve the accuracy and precision of the parameter estimates,
making them more reliable for use in real-world applications

The Ridge regression method, first introduced by [12], has been shown to be a reliable and viable
alternative to the maximum likelihood (ML) estimation method in many regression applications”.
In classical LRM, in general, it is possible to use the following equation:

y=Z7ZB+¢ 1)

Here, Yisan nx1 vector of notes of the realistic response variable, Z = (Z;,...,Z,) isan Nxp

design of variables, unidentified regression coefficients g =(4,,..., ,) have a vector px1,and gis

random error with an n x1.
The RE model approach adds a penalty term that reduces the estimates of the regression coefficients
towards zero, and its goal is to minimize the sum of squared errors between the actual and predicted
values. A tuning parameter controls this penalty term, k, which determines the strength of the
shrinkage [10,25].
All things considered, the Ridge regression approach has shown to be a useful tool for regression
analysis, especially when multicollinearity is present in the data or when the ML is not suitable.
Generally, the RE is
ﬁRidge = (Z,Z + kI)_IXZ’y'

= (A+ kD)7, 2
Here, A = Z'Z is the design matrix and k >0[12].
[26] proposed an modified two-parameter estimator similar to those proposed by [27], [28] and
[29]. It is defined as

B.=(A+kdl)*Z'y ©)

1st: Statistical Proposed Models
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1- Ridge estimator in PIGR
In response to challenges posed by multicollinearity, Segerstedt proposed the use of ridge estimator
(RE) and as in [33],[30], [10], and [12]. Building upon this work, Batool et al. [13] introduced the
RE to tackle multicollinearity in the PIGRM. This method, known as the Poisson-Inverse Gaussian
Ridge Regression Estimator (PIGRRE), is defined as follows:

A 29 -1 I Y77 p)

BriGrrRE = (Z VZ + kTI) Z' VZBure ., (4)

where k,. > 0. Then,

Bias(Bpigrre) = E(Bpicrre) — B = —K, AP (5)

COV(.@PIGRRE) = E([BPIGRRE - E(BPIGRRE)] [.[?PIGRRE - E(BPIGRRE)]')
= 6( Qg "akart Q) (6)

and

MMSE(BpicrrE) = EOV(IéPIGRRE) + Bias(Bpicrre )Bias(Bpicrre)
= Q)(QAElAkAlzl Q") + bpigrrePPIGRRE (7)

where bpicrre = Bias(f picrre) = —k,Qata

SMSE(8 PIGRRE) = trMMSE(8 PIGRRE)

k2 2
z(z +k) +Z(/1 +k) ®)

j=1 j=1

where a = QAmLE.
2- Poisson-Inverse Gaussian Liu estimator

Liu [32] proposed the Liu estimator (LE) as a substitute for the RE. [5], [6], [14] defined the LE for
the PIGRM as follows:
By = (Z'Z + D"YZ'Z + d,Df 9)
With these properties, the LE presents itself as a promising substitute for the RE. In the context of
the PIGRM, the LE is defined as:
Beigie = @'VZ&+ DHZVZ+ di)Bue  (10)
where 0<d,; <1. Then,
Bias(Bpicre) = E(BeicLe) — B = (d; — Daj'p  (11)
Cov(BricLe) = ([BricLe — E(BpicLe)] [Bricie — E(Brice)] = 8(Qartaga™ agajt Q)
(12)
MMSE(BpicLe) = Cov(BpicLe) + Bias(Bpicre)Bias(Bpicre) = B(Qaj aga™taga; Q') +
bPIGRREbIIJIGRRE . (13)
wherebPIGLE = Bias(BpigLg and Ay = diag(A1 + d;,A2 + dl,...,Ap + d;). Then, the SMSE
of PIGLE is
SMSE(8"PIGLE) = trMMSE(/"PIGLE)
B (+ar)* p  (@-1D?a?
=0 2= 12, (a+1)° J=1(241)? (14)

The dl can be as:

ISSN:2222-2995 E-ISSN:3079-3521 Vol. 15 No. 2 408



I R H D I University of Kirkuk Journal For Administrative

Acadomis Seloniific Journals and Economic Science (2025) 15 (2): 405-413

a;—B
p J
Z’“(A,.H)Z
dI = P+Aia; (15)
21'7_ ] ]2
]_1ﬂ.j(lj+1)

3- The proposed estimator

In linear regression, it is well known that the consequences of multicollinearity are that it reduces
the efficiency of the least squares estimator and causes its covariance matrix to be poorly
conditioned. The problem of multicollinearity arises when we have two or more explanatory
variables that are linear combinations of each other because such explanatory variables do not carry
separate information for estimating. When the problem is suspected, it is necessary to estimate the
parameters of a linear regression model with a penalty function after an adequate transformation of
the observable variable. This penalty function will allow us to reduce the undesirable consequences
of multicollinearity, hence it can be fitted to the parameter's vector with the desired properties If the
assumption of equality of the mean and variance is violated, then it is likely that there will be a bias,
in which case the model error is not white, while the inference on the exposure effect can still be
consistent due to its robustness against a misspecified model error distribution. Nonetheless, the
standard estimator of the exposure parameter may suffer from biased inference, which makes its
application problematic.

Ridge-type methods allow us to look at these problems from a different angle. In a classic sense, the
Efron-Peterson's method makes it possible by adding a ridge to the data in the regression equation.
There is also a class of kernel-type ridge estimators that can be defined by smoothing the ridge
function. However, the proper choice of that ridge function is not at all straightforward and Efron-
Petrosian’s individual versus global aspects problem remains unsolved here. It is difficult to make a
formal general treatment of these methods from a stochastic process point of view. Besides, some
straightforward manipulations on these types of ridge estimators might not be as simple or as
successful as those using a data ridge. Since both methods are based on the second-order properties
of the data, they may not work as well as the kernel-based estimators do at most points if we have
enough data to look into in the neighborhood of that point. Nevertheless, it is meaningful to
investigate the possibility of merging these two types of estimators, taking advantage of their
different strengths, if possible.

The PIGR model provides an accurate alternative to the Poisson regression model for response data
that are overdispersed with respect to the relationship to an exposure variable of scientific interest.
The proposed estimator in this research is based on the works of [4], [11], and [12]. While the k and
d in Equation (3) have a multiplicative effect, the proposed method in this research examines their
additive effect. The proposed estimator is defined as follows:

Bupres(k,d) = (Z'WX + (k + d)I)_lZ'yalimO
X—
=+ (k + )™ ABnpu
= TiBnemL . ) (16) .
where T, =(A+k+d)1)"A, k<0, 0<d <1. For fyprpg(0,0), Bnpree(k,d) = Bypmrand for

ﬁANBTPE(Oll)1 ﬁANBTPE(kJ d) = BNBRE

4- Properties of the New Two-Parameter Estimator

E(Buree(k,d)) = T B 17)
Except in the case where k and d equal zero, the proposed two-parameter estimator is a biased
estimator.

BaiS(BNBTPE(k' d)) = E(BNBTPE(k' d)) —B =T —DB (18)
Then,
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Var(BNBTPE (k,d)) =E [(BNBTPE (k,d) — E(IB)) (BNBTPE (k,d) — E(ﬁ))l]

= O'ZTkA_lT]é (19)
The MSEM of the proposed estimator is
MSEM (Byprpe(k, d)) = 0*TiA Ty + (T = DB’ (T = 1) (20)

2nd: Simulation research

This part investigates the efficiency of our suggested estimator under different multicollinearity
levels by means of Monte Carlo simulation using the sample data.

1- Simulation design

This section examines the performance of the new estimator under different levels of
multicollinearity through a Monte Carlo simulation experiment. The response variable of
observations is generated from a PIGR model as:

p
PIJ(us, i + 0uf)  with  p; = exp(Z{B). Here, p=(8),f,..0,) with > p7=1 and
-1

B, = p, =...= B, [32]. The explanatory variables Z; = (Z;,Z;, ..., Zi,) have been generated as
Zij = (1= p)™w; +pwy, i=12,...,n, j=12,...,p, (21)
where o represents the correlation and w; ’s are independent standard normal pseudo-random

numbers. n=50, 100, and 150 are taken into consideration. Furthermore, because adding more
explanatory factors can raise the MSE, p=4 and p=8 are taken into consideration as the number of
explanatory variables. Furthermore, o ={0.90,0.95,0.99}. Three different values of the dispersion

parameter are considered @ = 1.4, 3, 5. The optimum value of k can be obtained by using Hoerl,
Kannard [33] formula as

P=2lo (22)

ala
The produced data is 1000 times repeated for various permutations of n,c’,p and p the average
absolute bias and MSE are determined as

MSE(R) === (3P (). F =% @)

2- Simulation results

Tables 1 and 2 present the MSE for all combinations of n,a%, p and p . Bold text highlights the

average bias and MSE best values. Table 1 illustrates that the suggested IGTPE approach has less
bias than ML and PIGRE. In terms of MSE, Table 2 shows that PIGTPE performs better than ML
and PIGRR. However, out of PIGRR and PIGTPE, the IGML estimator performs the worst and is
highly impacted by multicollinearity.

Regarding the effect of the correlation degree p on MSE, there is an increase in its values when
the degree of correlation increases, regardless of the values of n, and p . Furthermore, the MSE

decreases when the number of explanatory variables is increased from four to eight. Regarding
sample size n, the MSE values decrease as N increases”, regardless of the values of n,and p .
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Table 1: MSEvalues for the three estimators at p=4 and @ = 1.4

n P ML PIGRE PIGTPE
50 0.90 3.928 3.687 3.234
0.95 3.972 3.737 3.284
0.99 4.238 4.003 3.55
100 0.90 3.68 3.445 2.992
0.95 3.73 3.495 3.042
0.99 3.996 3.761 3.308
150 0.90 3.629 3.394 2.941
0.95 3.679 3.444 2.992
0.99 3.945 3.71 3.257

Table 2: MSEvalues for the three estimators at p=8 and @ = 1.4

n P ML PIGRE PIGTPE
50 0.90 4.65 4.415 3.962
0.95 4.699 4.464 4.011
0.99 4.966 4,731 4.278
100 0.90 4.408 4.173 3.72
0.95 4.458 4.222 3.769
0.99 4.724 4.489 4.036
150 0.90 4.357 4.122 3.669
0.95 4.406 4171 3.718
0.99 4.673 4.438 3.985
Table 3: MSEvalues for the three estimators at p=4 and @ = 3
n 4 ML PIGRE PIGTPE
50 0.90 5.526 5.285 4.832
0.95 5.57 5.335 4.882
0.99 5.836 5.601 5.148
100 0.90 5.278 5.043 4.59
0.95 5.328 5.093 4.64
0.99 5.594 5.359 4.906
150 0.90 5.227 4.992 4.539
0.95 5.277 5.042 4.59
0.99 5.543 5.308 4.855
Table 4: MSEvalues for the three estimators at p=8 and @ = 3
n P ML PIGRE PIGTPE
50 0.90 5.536 5.301 4.848
0.95 5.585 5.35 4.897
0.99 5.852 5.617 5.164
100 0.90 5.294 5.059 4.606
0.95 5.344 5.108 4.655
0.99 5.61 5.375 4.922
150 0.90 5.243 5.008 4.555
0.95 5.292 5.057 4.604
0.99 5.559 5.324 4.871
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Table 5: MSEvalues for the three estimators at p=4 and @ = 5

n % ML PIGRE PIGTPE
50 0.90 4.814 4,573 4,12
0.95 4.858 4.623 4.17
0.99 5.124 4.889 4.436
100 0.90 4.566 4331 3.878
0.95 4.616 4,381 3.928
0.99 4.882 4.647 4.194
150 0.90 4,515 4.28 3.827
0.95 4.565 4.33 3.878
0.99 4.831 4.596 4.143
Table 6: MSEvalues for the three estimators at p=8 and @ = 5
n P ML PIGRE PIGTPE
50 0.90 6.248 6.013 5.56
0.95 6.297 6.062 5.609
0.99 6.564 6.329 5.876
100 0.90 6.006 5.771 5.318
0.95 6.056 5.82 5.367
0.99 6.322 6.087 5.634
150 0.90 5.955 5.72 5.267
0.95 6.004 5.769 5.316
0.99 6.271 6.036 5.583

3rd: Conclusions

The research suggests a new estimator that uses a Poisson-Inverse Gaussian regression model to
generalize the two parameters estimator. Studies using Monte Carlo simulations show that this
estimator significantly reduces mean squared error (MSE) when compared to alternative estimators.
Moreover, compared to the IGML and PIGRE estimators, the suggested estimator reduces MSE
more effectively in a practical application. Further studies can be conducted in the future to propose
other estimators.
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