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Abstract: In Poisson-Inverse Gaussian regression analysis, multicollinearity is a 

frequent problem that frequently leads to unstable parameter estimations, which can 

lead to erroneous conclusions and predictions. Despite being a widely used technique 

for estimating model parameters, the maximum likelihood estimator (MLE) has several 

well-known drawbacks. Consequently, the Poisson-Inverse Gaussian regression model's 

multicollinearity is frequently resolved by using ridge-type regression estimators.  This 

paper proposes a two-parameter ridge-type estimator and establishes its statistical 

features through theoretical calculations and Monte Carlo simulation experiments. The 

recently suggested estimator was also contrasted with other estimators that have been 

published in the literature. The results show that the suggested estimator performs better 

than various other existing estimators using the mean square criterion, even when 

applied to real data sets. 

Keywords: Multicollinearity; Poisson-Inverse Gaussian regression model; Monte Carlo 

simulation; Ridge -type estimator. 

 
 مقدر الحرف لانموذج انحدار بواسون الغاوسي المعكوس 

 
 1م.م. لؤي عادل عبد الجبار 

 

 ، بغداد، العراقالتعليم العالي والبحث العلمي / دائرة الدراسات والتخطيط والمتابعة وزارة  1

 
الخطي    المستخلص: التعدد  مشكلة  تعُد  المعكوس،  الغاوسي  بواسون  الانحدار  أنموذج  تحليل  في 

(Multicollinearity  من المشكلات الشائعة التي ) ،غالباً ما تؤدي إلى تقديرات غير مستقرة لمعاملات الانموذج

تقدير الإمكان الأعظم ) الرغم من أن طريقة  دقيقة. وعلى  استنتاجات وتنبؤات غير  ينتج عنه  قد  تعُد MLEمما   )

المعروفة.   العيوب  العديد من  لها  أن  إلا  الانموذج،  معلمات  لتقدير  واسع  نطاق  لذلك، تقنية مستخدمة على  ونتيجة 

استخدام   من خلال  المعكوس  الغاوسي  بواسون  انحدار  نموذج  في  الخطي  التعدد  مشكلة  على  التغلب  يتم  ما  غالباً 

-two-parameter ridgeمقدرّات انحدار الحرف. يقترح هذا البحث مقدرًا جديداً من مقدر الحرف على معاملين )

type estimator  كما يتم توضيح خصائصه الإحصائية من خلال التحليل النظري والتجارب العددية باستخدام ،)

البحوث  Monte Carloالمحاكاة ) المقترح مع مقدرّات أخرى سبق نشرها في  المقدر  تم كذلك مقارنة هذا  (. وقد 

لمعيار  الاحصائية. وتظُهر النتائج أن المقدر المقترح يقدم أداءً أفضل من العديد من المقدرّات الموجودة سابقاً، وفقاً  

 (، كذلك ايضا في حال تطبيقه على بيانات حقيقية.Mean Square Errorالخطأ )متوسط مربعات 
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Introduction 

Regression models that do not have a normal response variable distribution cannot be fitted using 

the linear regression model (LRM). "In these situations, the data collection is modeled using 

generalized linear models (GLMs). When modeling data with response variables that have a 

distribution different than the normal distribution, GLMs work well [1]. The Poisson-Inverse 

Gaussian (PIG) distribution is a type of distribution that is utilized for positively skewed continuous 

response variables. The Poisson-Inverse Gaussian regression model (PIGR) is favored above the 

Poisson regression model in cases where the response variable is highly skewed [2,5]. Industrial 

engineering, life testing, dependability, marketing, and the social sciences have all made extensive 

use of the PIGR model [3,6,9].  

The approach is also well-received to model count data from the social sciences, marketing, 

finance, and many others. PIGR errors raise the flexibility in the model for variance modeling 

compared to those from zero-inflated or other zero-related specifications. For data analysis in such 

fields, mimeographed lecture notes without any further references are not reasonable for a scientific 

community. Moreover, basic assumptions and reasoning leading to a PIG regression model should 

be discussed rather than to be hidden within an asymptotic argument. Therefore, this paper 

consolidates the basic concepts leading to the PIGR. 

The PIGR is a well-received and widely studied approach to model count data. The conventional 

logarithmic link function names PIG regression the Poisson log-linear model, leading the Neyman-

Pearson settings of a likelihood ratio goodness of fit test, Wald test, and score tests as well to only 

the Poisson model. It covers, therefore, the quasi-Poisson regression based on Tweedie's formula 

for the variance, and numerous extensions for two-part, zero-inflated/deflated models and 

specifications for multiple correspondence analysis. Originally, this approach focused on claims 

data from automobile insurances, where the variance of counts grew cubic in mean and a direct 

application of the Poisson model is fail, leading also to historically referred log-linear regression. 

This cubic variance assumption and the given condition for failure of Poisson model are typical 

problems for the PIGR. 

The regressors are assumed to be uncorrelated in the PIGR. However, multicollinearity is a concern 

since this assumption is frequently incorrect. Since the PIG distribution belongs to the exponential 

family, the model denoted as (PIGR) is a specific type of generalized linear model (GLM). One 

popular technique for estimating the unknown coefficients in the PIGR model is the maximum 

likelihood (ML) estimation method. However, the ML estimation may suffer if the independent 

variables are excessively collinear. 

Multicollinearity can lead to a number of issues while estimating the (PIGR) model. A frequently 

used method to obtain the unknown parameters in an PIGR model is the maximum likelihood (ML) 

estimate method. However, the estimation of ML may be biased if the independent variables 

involve high collinearity  .A multicollinearity problem can lead to several problems when (PIGR) 

model is being estimated. The problem with it is that if the estimated coefficients are with the 

wrong sign, there could be misinterpretations due to the imagined relationship between the 

dependent variable and the independent variables. Another issue is that the ML estimator's 

confidence interval might expand, which could therefore reduce the accuracy of the estimates. Also, 

prediction’s accuracy would deteriorate when the value of square mean error (𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ) rise [1,10,11]. 

Ridge regression approach was one of the solutions developed to be applied against 

multicollinearity problem, which was brought to light by [12] . This method has proven to be very 

useful in many regression applications. [13] proposed the Ridge estimator (RE) for the (PIGR) 

model, which has the advantage of producing a smaller  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  value compared to the maximum 
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 likelihood (ML) estimator. On the other hand, the RE factor also offers some drawbacks. For 

example, there is no such improvement in the quality of fitting as in the case of plain linear 

regression which means that results from the RJL model are also similar to those from the extended 

GLM [14] extended the Ridge and Liu estimators to the Poisson-Inverse Gaussian regression model 

(PIGRM), which is a special case of GLMs. [15] . Furthermore, [16] introduced a first-order two-

parameter estimator for (GLMs). These studies aimed to enhance the precision and reliability of 

parameter estimates in regression models impacted by multicollinearity. In response to the Ridge 

estimator proposal for the (PIGR), numerous studies have been carried out to enhance this 

approach. [17] suggested biased parameter estimators for the Ridge estimator (RE) in the PIGR 

model, while [18] presented the Liu estimator and a two-parameter estimator defined by [19] for the 

PIGR model. Additionally, [20] introduced a new shrinkage parameter for the PIGR. 

Due to the limitations of REas highlighted in [21] and [22], a more advanced version known as the 

two-parameter Ridge estimator (TPRE) has been proposed. The TPRE surpasses both the RE and 

ML estimators, offering various advantages such as orthogonality between residuals and predicted 

values on the dependent variable. The additional parameter in the TPRE enhances the regression 

model's overall fit quality. In a Linear Regression Model (LRM) context, [23] conducted a 

comparison between the TPRE, OLS estimator, and RE using the matrix mean square error 

(MMSE) criteria. Within the (GLMs) framework, [24] applied the TPRE in a binary logistic 

regression model. 

Overall, researchers have proposed various methods to address the issue of multicollinearity in 

regression models, including the Ridge regression method and various extensions and modifications 

of this method. These methods can improve the accuracy and precision of the parameter estimates, 

making them more reliable for use in real-world applications 

The Ridge regression method, first introduced by [12], has been shown to be a reliable and viable 

alternative to the maximum likelihood (ML) estimation method  in many regression applications”. 

In classical LRM, in general, it is possible to use the following equation: 

𝑦 = 𝑍𝛽 + 𝜀 (1) 

Here,  y is an 1n  vector of notes of the realistic response variable, 𝑍 = (𝑍1, . . . , 𝑍𝑝) is an  n p  

design of variables, unidentified regression coefficients  1( ,..., )p  = have a vector 1p  , and ε is 

random error with an 1n  .  

The RE model approach adds a penalty term that reduces the estimates of the regression coefficients 

towards zero, and its goal is to minimize the sum of squared errors between the actual and predicted 

values. A tuning parameter controls this penalty term, k , which determines the strength of the 

shrinkage [10,25]. 

All things considered, the Ridge regression approach has shown to be a useful tool for regression 

analysis, especially when multicollinearity is present in the data or when the ML is not suitable. 

Generally,  the RE is 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = (Z′Z + 𝑘𝐼)−1𝑋𝑍′𝑦, 

           = (Λ + 𝑘𝐼)−1Z′𝑦,  (2) 

Here, 𝛬 = 𝑍′𝑍 is the design matrix and 0k  [12].  

[26] proposed an modified two-parameter estimator similar to those proposed by [27], [28] and 

[29]. It is defined as 
1 'ˆ ( )

TP
kdI Z y

−
=  +  (3) 

 

 

 

 

 

 

1st: Statistical Proposed Models  
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 1- Ridge estimator in PIGR  

In response to challenges posed by multicollinearity, Segerstedt proposed the use of ridge estimator 

(RE) and as in [33],[30], [10], and [12]. Building upon this work, Batool et al. [13] introduced the 

RE to tackle multicollinearity in the PIGRM. This method, known as the Poisson-Inverse Gaussian 

Ridge Regression Estimator (PIGRRE), is defined as follows: 

𝛽̂𝑃𝐼𝐺𝑅𝑅𝐸 = (𝑍′𝑉̂𝑍 + 𝑘𝑇𝐼)
−1

   𝑍′  𝑉̂𝑍𝛽̂𝑀𝐿𝐸        ,    (4) 

where 𝑘𝑟 > 0 . Then, 

Bias(𝛽̂PIGRRE) =  𝐸(𝛽̂PIGRRE) − β = −K𝑟ᴧ𝐾
−1β              (5) 

 

Cov(𝛽̂PIGRRE) = E([𝛽̂PIGRRE − E(𝛽̂PIGRRE)] [𝛽̂PIGRRE − 𝐸(𝛽̂PIGRRE)]′)

= ∅̂( Qᴧ𝑘
−1ᴧ𝑘ᴧ𝑘

−1 Q′)                                  (6) 

and 

 

   MMSE(𝛽̂PIGRRE) = Cov(𝛽̂PIGRRE) +  Bias(𝛽̂PIGRRE)Bias(𝛽̂PIGRRE)
′
   

                                   = ∅̂(𝑄ᴧ𝑘
−1ᴧ𝑘ᴧ𝑘

−1 𝑄′) + 𝑏𝑃𝐼𝐺𝑅𝑅𝐸𝑏𝑃𝐼𝐺𝑅𝑅𝐸
′                                           (7) 

 

where bPIGRRE = Bias(βˆ
PIGRRE) = −𝑘𝑟𝑄ᴧ−1𝛼 

 

SMSE(βˆPIGRRE) = trMMSE(βˆPIGRRE)  

 

 

∅̂ = ∑
𝜆𝑗

(𝜆𝑗 + 𝑘𝑟 )
2

𝑝

𝑗=1

 + ∑
𝑘𝑟

2𝛼𝑗
2

(𝜆𝑗 + 𝑘𝑟 )
2

𝑝

𝑗=1

         (8)              

 

where α = Q′βMLE. 

2- Poisson-Inverse Gaussian Liu estimator 

Liu [32] proposed the Liu estimator (LE) as a substitute for the RE. [5], [6], [14] defined the LE for 

the PIGRM as follows: 

𝛽̂𝑑  =  (𝑍′𝑍 +  𝐼)−1(𝑍′𝑍 +  𝑑𝐼𝐼)𝛽̂                        (9) 

With these properties, the LE presents itself as a promising substitute for the RE. In the context of 

the PIGRM, the LE is defined as: 

𝛽̂PIGLE  =  (𝑍′𝑉 𝑍ˆ& +  𝐼)−1(𝑍′𝑉 𝑍̂ + 𝑑𝐼𝐼)𝛽̂𝑀𝐿𝐸         (10) 

where 0<dl <1. Then,  

Bias(𝛽̂PIGLE) =  𝐸(𝛽̂PIGLE) − β = (𝑑𝐼 − 1)ᴧ𝐼
−1β       (11) 

Cov(𝛽̂PIGLE)  = ([𝛽̂PIGLE −  𝐸(𝛽̂PIGLE)] [𝛽̂PIGLE −  𝐸(𝛽̂PIGLE)]
′
 =   ∅̂(Qᴧ𝐼

−1ᴧ𝑑ᴧ−1  ᴧ𝑑ᴧ𝐼
−1 Q′)                                 

(12) 

  MMSE(𝛽̂PIGLE) = Cov(𝛽̂PIGLE) + Bias(𝛽̂PIGLE)Bias(𝛽̂PIGLE)
′

=  ∅̂(Qᴧ𝐼
−1ᴧ𝑑ᴧ−1ᴧ𝑑ᴧ𝐼

−1 Q′) +

𝑏PIGRRE𝑏PIGRRE
′                   (13) 

where𝑏PIGLE =  Bias(𝛽̂PIGLE and Λ𝑑  =  diag(𝜆1 +  𝑑𝐼 , 𝜆2 +  𝑑𝑙, . . . , 𝜆𝑝 +  𝑑𝐼). Then, the SMSE 

of PIGLE is 

SMSE(βˆPIGLE) = trMMSE(βˆPIGLE) 

                               = ∅̂ ∑
(𝜆𝑗+𝑑𝐼)

2

𝜆𝑗 (𝜆𝑗+ 1)
2

𝑝
𝑗=1  + ∑

(𝑑𝐼−1)2)𝛼𝑗
2

(𝜆𝑗+1 )
2

𝑝
𝑗=1                 (14) 

The dl can be as: 
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𝑑𝐼 =

∑
𝛼𝑗−∅̂

(𝜆𝑗+1 )
2

𝑝
𝑗=1

∑
∅̂+𝜆𝑗𝛼𝑗

𝜆𝑗(𝜆𝑗+1 )
2

𝑝
𝑗=1

                     (15) 

 

3- The proposed estimator 

In linear regression, it is well known that the consequences of multicollinearity are that it reduces 

the efficiency of the least squares estimator and causes its covariance matrix to be poorly 

conditioned. The problem of multicollinearity arises when we have two or more explanatory 

variables that are linear combinations of each other because such explanatory variables do not carry 

separate information for estimating. When the problem is suspected, it is necessary to estimate the 

parameters of a linear regression model with a penalty function after an adequate transformation of 

the observable variable. This penalty function will allow us to reduce the undesirable consequences 

of multicollinearity, hence it can be fitted to the parameter's vector with the desired properties If the 

assumption of equality of the mean and variance is violated, then it is likely that there will be a bias, 

in which case the model error is not white, while the inference on the exposure effect can still be 

consistent due to its robustness against a misspecified model error distribution. Nonetheless, the 

standard estimator of the exposure parameter may suffer from biased inference, which makes its 

application problematic.  

Ridge-type methods allow us to look at these problems from a different angle. In a classic sense, the 

Efron-Peterson's method makes it possible by adding a ridge to the data in the regression equation. 

There is also a class of kernel-type ridge estimators that can be defined by smoothing the ridge 

function. However, the proper choice of that ridge function is not at all straightforward and Efron-

Petrosian's individual versus global aspects problem remains unsolved here. It is difficult to make a 

formal general treatment of these methods from a stochastic process point of view. Besides, some 

straightforward manipulations on these types of ridge estimators might not be as simple or as 

successful as those using a data ridge. Since both methods are based on the second-order properties 

of the data, they may not work as well as the kernel-based estimators do at most points if we have 

enough data to look into in the neighborhood of that point. Nevertheless, it is meaningful to 

investigate the possibility of merging these two types of estimators, taking advantage of their 

different strengths, if possible. 

The PIGR model provides an accurate alternative to the Poisson regression model for response data 

that are overdispersed with respect to the relationship to an exposure variable of scientific interest. 

The proposed estimator in this research is based on the works of [4], [11], and [12]. While the k and 

d in Equation (3) have a multiplicative effect, the proposed method in this research examines their 

additive effect. The proposed estimator is defined as follows: 

𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑) = (𝑍′𝑊̂𝑋 + (𝑘 + 𝑑)𝐼)−1𝑍′𝑦 𝑙𝑖𝑚
𝛿𝑥→0

  

                      = (𝛬 + (𝑘 + 𝑑)𝐼)−1𝛬𝛽̂𝑁𝐵𝑀𝐿 

                       = 𝑇𝑘𝛽̂𝑁𝐵𝑀𝐿                                                                          (16) 

where ( ) 1( )kT k d I −=  + +  , 0k  , 0 1d  . For 𝛽̂𝑁𝐵𝑇𝑃𝐸(0,0), 𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑) = 𝛽̂𝑁𝐵𝑀𝐿and for  

𝛽̂𝑁𝐵𝑇𝑃𝐸(0,1), 𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑) = 𝛽̂𝑁𝐵𝑅𝐸  

 

4- Properties of the New Two-Parameter Estimator 

𝐸(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑)) = 𝑇𝑘𝛽                                                         (17) 

Except in the case where k and d equal zero, the proposed two-parameter estimator is a biased 

estimator. 

𝐵𝑎𝑖𝑠(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑)) = 𝐸(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑)) − 𝛽 = (𝑇𝑘 − 𝐼)𝛽                      (18)  

Then,  
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 𝑉𝑎𝑟(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑)) = 𝐸 [(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑) − 𝐸(𝛽)) (𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑) − 𝐸(𝛽))

′

] 

                            = 𝜎2𝑇𝑘Λ−1𝑇𝑘
′                                                 (19)                                                              

The MSEM of the proposed estimator is  

𝑀𝑆𝐸𝑀(𝛽̂𝑁𝐵𝑇𝑃𝐸(𝑘, 𝑑)) = 𝜎2𝑇𝑘Λ−1𝑇𝑘
′ + (𝑇𝑘 − 𝐼)𝛽𝛽′(𝑇𝑘 − 𝐼)′                        (20)                   

 

2nd: Simulation research  

This part investigates the efficiency of our suggested estimator under different multicollinearity 

levels by means of Monte Carlo simulation using the sample data. 

1- Simulation design 

This section examines the performance of the new estimator under different levels of 

multicollinearity through a Monte Carlo simulation experiment. The response variable of 

observations is generated from a PIGR model as:  

𝑃𝐼𝐽(𝜇𝑖, 𝜇𝑖 + 𝜃𝜇𝑖
2) with 𝜇𝑖 = 𝑒𝑥𝑝( 𝑍𝑖

𝑇𝛽). Here, 0 1( , ,..., )p   =  with  and 

[32]. The explanatory variables 𝑍𝑖
′ = (𝑍𝑖1, 𝑍𝑖2, . . . , 𝑍𝑖𝑛) have been generated as  

𝑍𝑖𝑗 = (1 − 𝜌2)1𝑙2𝑤𝑖𝑗 + 𝜌𝑤𝑖𝑝,   𝑖 = 1,2, . . . , 𝑛,  𝑗 = 1,2, . . . , 𝑝,                            (21) 

where   represents the correlation and ijw ’s are independent standard normal pseudo-random 

numbers. n=50, 100, and 150 are taken into consideration. Furthermore, because adding more 

explanatory factors can raise the  𝑀𝑆𝐸̅̅ ̅̅ ̅̅ , p=4 and p=8 are taken into consideration as the number of 

explanatory variables. Furthermore, {0.90,0.95,0.99} = . Three different values of the dispersion 

parameter are considered ∅̂ = 1.4, 3, 5. The optimum value of k  can be obtained by using  Hoerl, 

Kannard [33] formula as 

  

𝑘̂ =
𝑃∅̂ 

𝛼̂𝑇𝛼̂
                                                                                                                     (22) 

The produced data is 1000 times repeated for various permutations of  
2, ,n p  and  the average 

absolute bias and  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  are determined as 
1000

'

1

1ˆ ˆ ˆ( ) ( - ) ( - ).
1000 i

MSE     
=

=        𝑘̂ =
𝑃∅̂ 

𝛼𝑇𝛼
                                                     (23) 

2- Simulation results 

Tables 1 and 2 present the  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  for all combinations of 
2, ,n p  and  . Bold text highlights the 

average bias and  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  best values. Table 1 illustrates that the suggested IGTPE approach has less 

bias than ML and PIGRE. In terms of  𝑀𝑆𝐸̅̅ ̅̅ ̅̅ , Table 2 shows that PIGTPE performs better than ML 

and PIGRR. However, out of PIGRR and PIGTPE, the IGML estimator performs the worst and is 

highly impacted by multicollinearity. 

Regarding the effect of the correlation degree   on  𝑀𝑆𝐸̅̅ ̅̅ ̅̅ , there is an increase in its values when 

the degree of correlation increases, regardless of the values of ,n
 
and p . Furthermore, the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

decreases when the number of explanatory variables is increased from four to eight. Regarding 

sample size n , the  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  values decrease as n  increases”, regardless of the values of ,n and p .  
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 Table 1: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=4 and ∅̂ = 1.4 

n      ML PIGRE PIGTPE 

50 0.90 3.928 3.687 3.234 

 0.95 3.972 3.737 3.284 

 0.99 4.238 4.003 3.55 

100 0.90 3.68 3.445 2.992 

 0.95 3.73 3.495 3.042 

 0.99 3.996 3.761 3.308 

150 0.90 3.629 3.394 2.941 

 0.95 3.679 3.444 2.992 

 0.99 3.945 3.71 3.257 

 

Table 2: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=8 and ∅̂ = 1.4 

n      ML PIGRE PIGTPE 

50 0.90 4.65 4.415 3.962 

 0.95 4.699 4.464 4.011 

 0.99 4.966 4.731 4.278 

100 0.90 4.408 4.173 3.72 

 0.95 4.458 4.222 3.769 

 0.99 4.724 4.489 4.036 

150 0.90 4.357 4.122 3.669 

 0.95 4.406 4.171 3.718 

 0.99 4.673 4.438 3.985 

Table 3: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=4 and ∅̂ = 3 

n      ML PIGRE PIGTPE 

50 0.90 5.526 5.285 4.832 

 0.95 5.57 5.335 4.882 

 0.99 5.836 5.601 5.148 

100 0.90 5.278 5.043 4.59 

 0.95 5.328 5.093 4.64 

 0.99 5.594 5.359 4.906 

150 0.90 5.227 4.992 4.539 

 0.95 5.277 5.042 4.59 

 0.99 5.543 5.308 4.855 

Table 4: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=8 and ∅̂ = 3 

n      ML PIGRE PIGTPE 

50 0.90 5.536 5.301 4.848 

 0.95 5.585 5.35 4.897 

 0.99 5.852 5.617 5.164 

100 0.90 5.294 5.059 4.606 

 0.95 5.344 5.108 4.655 

 0.99 5.61 5.375 4.922 

150 0.90 5.243 5.008 4.555 

 0.95 5.292 5.057 4.604 

 0.99 5.559 5.324 4.871 
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 Table 5: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=4 and ∅̂ = 5 

n      ML PIGRE PIGTPE 

50 0.90 4.814 4.573 4.12 

 0.95 4.858 4.623 4.17 

 0.99 5.124 4.889 4.436 

100 0.90 4.566 4.331 3.878 

 0.95 4.616 4.381 3.928 

 0.99 4.882 4.647 4.194 

150 0.90 4.515 4.28 3.827 

 0.95 4.565 4.33 3.878 

 0.99 4.831 4.596 4.143 

Table 6: 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ values for the three estimators at p=8 and ∅̂ = 5 

n      ML PIGRE PIGTPE 

50 0.90 6.248 6.013 5.56 

 0.95 6.297 6.062 5.609 

 0.99 6.564 6.329 5.876 

100 0.90 6.006 5.771 5.318 

 0.95 6.056 5.82 5.367 

 0.99 6.322 6.087 5.634 

150 0.90 5.955 5.72 5.267 

 0.95 6.004 5.769 5.316 

 0.99 6.271 6.036 5.583 

 

3rd: Conclusions 

The research suggests a new estimator that uses a Poisson-Inverse Gaussian regression model to 

generalize the two parameters estimator. Studies using Monte Carlo simulations show that this 

estimator significantly reduces mean squared error (𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ) when compared to alternative estimators. 

Moreover, compared to the IGML and PIGRE estimators, the suggested estimator reduces  𝑀𝑆𝐸̅̅ ̅̅ ̅̅  

more effectively in a practical application. Further studies can be conducted in the future to propose 

other estimators.  
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