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ORIGINAL STUDY

Predictive Diabetes Mellitus from DNA Sequences
Using Deep Learning

Lena abed A. Hamza **, Hussein A. Lafta ®, Sura Z. Al _Rashid ®

@ College for Women, University of Babylon, Babylon, Iraq
b College of Information Technology, University of Babylon, Babylon, Iraq

Abstract

Diabetes is a chronic metabolic disorder characterized by elevated blood sugar levels. It manifests in different forms,
with type 1 and type 2 being the most prevalent. Type 1 diabetes results from the autoimmune destruction of insulin-
producing cells, whereas type 2 diabetes primarily stems from insulin resistance.

Despite advancements in treatment, accurate detection and prediction of diabetes remain challenging. Early diagnosis
is crucial for effective management and prevention of complications. Another obstacle lies in interpreting vast amounts
of health data, including DNA sequencing, which poses difficulties for healthcare professionals in identifying relevant
patterns and associations.

Artificial intelligence (AI) holds promise in healthcare by developing and training deep learning algorithms to analyze
health data and DNA sequences. The research paper focuses on applying both Convolutional Neural Networks (CNNs)
algorithm, in addition to Long Short-Term Memory (LSTM) algorithm for predicting types of diabetes based on DNA
sequencing. The study aims to leverage the power of CNN and LSTM, known for their proficiency in analyzing image
and sequence data, to accurately classify diabetes types.

The experimental results of the proposed CNN-LSTM model showcased remarkable performance, achieving a
recorded accuracy of 100% on a labeled dataset that included DNA sequencing and corresponding diabetes types. The
model's evaluation encompassed several metrics, including accuracy, recall, precision, and the F1 score.

Keywords: DNA sequencing, Genetic data analysis, Long short-term memory (LSTM), Kmer, Convolutional Neural
Networks (CNNs), Deep learning

1. Introduction (WHO) since 1965. The diagnostic criteria for diabetes
include fasting plasma glucose concentration and, in

D iabetes, also known as diabetes mellitus, is a ~ SOM€ cases, rando.rn plasma glucose Concentratif)n.
group of metabolic disorders characterized by ~ 1he minimum fasting plasma glucose concentration
high blood sugar levels (elevated amount of glucose 'for diagnosis is 126 mg/dL (7 mmol/L), and th.e min-
in the blood) due to disorder in insulin production, ~imum random plasma glucose concentration is
inactivity of insulin, or both of the previous reasons. 200 mg/dL (11.1 mmol/L) in the presence of typical
The insulin is a hormone produced by beta cells in ~ Symptoms. These criteria are used for routine diag-
the pancreas and regulates the level of sugar NOSS and epldemlologlcgl.stuc%les of chabetgs [1,2].
amount in the blood. The prevalence of diabetes is Dlabetes. can be classified into two main types:
increasing worldwide, leading to significant public ~ 1ype 1 diabetes (TlD_M) and Type 2 diabetes
health implications [1]. gTZDM) [1]. Type 1 diabetes mar.ufest when the
The diagnosis and management of diabetes have ~ mmune system in human body mistakenly attacks

been defined by the World Health Organization the beta cells in the pancreas that produce insulin,
resulting in little or no insulin production. It is
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usually diagnosed in childhood or early adolescence
and requires insulin replacement therapy [2]. On
the other hand, Type 2 diabetes occurs when the
body cells resisting the consumption of insulin,
resulting in glucose accumulation in the blood.
Some of the factors contributing to T2D are physical
inactivity, obesity, and wunhealthy practices
contribute to the development of T2D. Initially, it
can be controlled by altering the daily lifestyle, oral
medications, or insulin therapy if needed [3].

Diabetes is a chronic condition, and when poorly
controlled, it can lead to various complications
affecting the structure and function of body tissues.
It can cause symptoms such as excessive thirst
(polydipsia), increased urination (polyuria), unex-
plained weight loss, and increased hunger [4]. Se-
vere cases of diabetes, particularly those with high
blood sugar levels and accompanying ketone
acidosis (increased ketone levels), can lead to
serious complications and, in severe cases, may
result in death if left untreated [4].

In recent years, DNA sequencing has played a
crucial role in disease prediction and understanding
the underlying mechanisms of human diseases [5].
Genetic factors are known to contribute to the
development of diabetes, and mutations in specific
genes, such as the insulin gene, can disrupt insulin
production and lead to the onset of diabetes [6].
Analyzing gene expressions and DNA sequences
can provide valuable insights into disease suscepti-
bility and potential therapeutic targets.

Al, particularly deep learning, in recent years,
contributed positively to various areas, including
clinical medicine and genomics research. Al sys-
tems have the ability to analyze large health data-
sets, interpret patterns, and produce a prognosis to
aid in disease detection and management. The
classification of DM into four types, as illustrated in
Fig. 1 [7], is endorsed by the World Health Orga-
nization (WHO).

In clinical medicine, Al techniques have been
applied to tasks such as electrocardiogram analysis,
radiological image interpretation, and natural lan-
guage processing for health record analysis [8]. In
genomics research, Al can assist in analyzing ge-
netic data and identifying disease-related patterns
and associations.

Several studies have explored the potential of Al
techniques, particularly deep learning methods, in
diabetes detection and prediction. Collaborative
computing-based approaches, machine learning al-
gorithms, and bioinformatics methods have been
utilized to classify gene expressions, predict and
diagnose diabetes, and analyze genetic data associ-
ated with the disease. In study [9], a collaborative
computing-based approach was used to classify
gene expressions for Type 2 Diabetes. The study
employed the K-Nearest Neighbour (KNN) classi-
fier to differentiate between control samples and
insulin-exposed samples, achieving a test classifi-
cation accuracy of 100%. Another study [10] aimed
to predict diabetes using machine learning

| | | |
Type-1 Type-2 Gestational Othertypes
J J
Pencreas unable MODY:itisa
to prroduce D?\‘lpelfml gtpe ott
1 Notproper enough insulin to M, hereditary in
venk:::l\fi ,Or 2 utilization of handle rise in nature caused by
roc}‘_,'mlon produced insulin blood glucose mutation.
P by body level produced at LADA: it can be
placenta during say as a subtype
pregnancy of Type-1.

Fig. 1. Illustrates the classification of diabetes mellitus according to the (WHO) [7].
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algorithms, including Linear Regression and Sup-
port Vector Machine (SVM). The Linear Regression
model demonstrated a moderate determination co-
efficient, while SVM achieved a testing accuracy of
0.8290960451977402. In the proposed work [11], de-
cision tree, random forest, and neural network al-
gorithms were utilized to predict and diagnose
diabetes mellitus. The results obtained from
Random Forest algorithm is the highest value. With
accuracy value of 0.8084 when considering all attri-
butes. Study [12] proposed a new algorithm for
identifying Type 2 Diabetes (T2D) risk variables
using a combination of techniques, including CNN
methods (ResNet and VGG19) and classifiers like
SVM and k-NN. The developed algorithm achieved
an accuracy rate of 99.09%.Research [13] focused on
bioinformatics systems and the analysis of genetic
data, exploring alignment-free methods to assess
similarity between DNA sequences. The study uti-
lized a dataset of 860 genomes and experimented
with different word sizes (k values) for k-mer anal-
ysis. In study [14], authors aimed to predict DNA
binding sites specific to transcription factors (TFs)
using the SVM algorithm. The identification of TF
binding sites contributes to understanding gene
regulation. However, specific details about the
dataset and findings were not mentioned in the
provided abstract.

These studies collectively highlight the potential of
Al techniques, particularly deep learning, in diabetes
detection and prediction using various approaches
and datasets. The Table 1 below summarizes the key
findings from these relevant studies.

In previous studies, researchers have primarily
focused on utilizing healthcare indicators for pre-
diction or classification tasks related to diabetes.
However, there has been a limited emphasis on
DNA analysis in this context. Therefore, our
research aims to address this gap by proposing a
deep learning model based on CNNs for detecting
diabetes using DNA sequencing data. To provide an
overview of the existing literature, Table 1 summa-
rizes the key findings from relevant studies related
to predicting diabetes mellitus.

Table 1. Summary of the previous researches on diabetes mellitus
prediction

Ref models Accuracy rate %
[9] (2022) KNN 100

[10] (2021) LR-SVC 70—83

[11] (2018) RF-ANN 80.84

[12] (2021) CNN-RNN 99.9 CNN- SVM
[13] (2019) alignment-based and -

alignment-free methods

[14] (2019) CNN-SVC -

In this work, a more sophisticated model will be
proposed with higher and better results obtained.
The proposed model and the related data pre-
processing procedure will be explained properly.

2. Materials and methods

Machine learning has revolutionized the auto-
matic detection of crucial patterns in data. Recent
years in research, showed that machine learning has
become widely used and effective approach in
various tasks that involve discovering patterns in
big amount of data [15].

Deep learning, a subfield of the wider field of
Machine Learning. Deep Learning relies on the
Neural Network to learn from data and produce
future prognosis. It takes inspiration from the
structure and functioning of the human brain, aim-
ing to replicate the process of learning and extracting
meaningful patterns from vast amounts of data. In
deep learning, artificial neural networks consist of
multiple interconnected layers of nodes called neu-
rons. Each neuron receives input from the previous
layer, performs computations, and passes the output
to the next layer. Deep learning models typically
have numerous hidden layers, enabling the extrac-
tion of hierarchical representations of the input data.

One significant advantage of deep learning is its
capacity to autonomously learn hierarchical repre-
sentations directly from raw data, eliminating the
need for manual feature engineering. By training on
extensive datasets, deep learning models excel at
capturing intricate patterns and relationships.
Consequently, they have proven highly effective in
some jobs. These including signal and image pro-
cessing and recognition, speech recognition, the
process of human natural languages, and recom-
mendation systems.

Several well-known deep learning (DL) architec-
tures have emerged, each designed for specific data
types and tasks. CNNs are widely used for image
and video analysis, while LSTM models excel in
processing sequential data. Transformer models
have gained prominence in natural language pro-
cessing tasks. The application of deep learning has
brought about remarkable advancements in various
domains, including computer vision, speech recog-
nition, and healthcare [16—18].

2.1. Convolutional Neural Networks (CNNs)

CNN, or Convolutional Neural Network, is a
powerful and widely used model for large-scale
neural networks. It draws inspiration from the vi-
sual mechanism observed in living organisms,
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making it particularly effective in tasks involving
image and pattern recognition [19].

The strength of CNN lies in its ability to extract
higher-level abstract features by analyzing artificial
neurons across the input matrix. It focuses on
identifying translation-invariant patterns at each
position through the computation of locally
weighted sums. By doing so, CNN can generate the
expected output values [20].

CNN's architecture typically consists of several key
components. It starts with an input layer, followed
by a convolutional layer. The contents of convolu-
tional layer are number of filters. These filters will be
applied to the input signal, extracting important
features. The Rectified Linear Unit (ReLU) is an
activation function. Which apply the non-lineraty by
into the model. Subsequently, a pooling layer oper-
ates on each feature map from the convolutional
layer, reducing the dimensionality and capturing the
most salient features. Finally, the output layer is a
fully connected neural network that produces the
final output based on an activation function [22].

Through its multiple layers, a CNN can capture
the intrinsic features of raw datasets, representing
different levels of abstraction [21]. This hierarchical
representation allows CNNs to excel at tasks such as
image classification, object detection, and image
segmentation. Fig. 2 provides an illustration of the
standard CNN structure. Fig. 2 provides an illus-
tration of the standard CNN architecture.

CNN s have found extensive application in various
image processing tasks, leveraging their multi-
layered structure to effectively identify image fea-
tures that enhance the classification process.
Furthermore, CNNs have emerged as an appealing
approach for text classification, particularly for
character-based analysis. Consequently, CNNs have
been utilized in the analysis of DNA sequences to

feature maps pooled

feature maps |

Input Convolutional

layer 1

Pooling 1

detect and characterize crucial elements such as
promoters and binding sites [23].

2.2. Long Short-Term Memory (LSTMs)

LSTM, which stands for Long Short-Term Mem-
ory, is a specific type of recurrent neural network
(RNN) that addresses the challenge of learning
long-term dependencies in sequential data. It
overcomes the limitations of traditional RNNs by
incorporating three gates. Which are input, forget,
and output gates. In addition to memory cell.

The memory cell in LSTM allows it to retain and
propagate information over longer sequences,
enabling the model to capture and remember rele-
vant context from the past. The input gate controls
the flow of new information into the memory cell,
while the forget gate determines which information
should be discarded. The output gate regulates the
output based on the current input and the infor-
mation stored in the memory cell.

LSTM has proven to be effective in various tasks
such as speech recognition and time series predic-
tion, where long-term dependencies play a crucial
role. The ability of LSTM to capture and retain
important information over extended sequences
makes it well-suited for handling sequential data.

Researchers have explored different variations
and extensions of LSTM to further enhance its
performance in specific domains. These modifica-
tions aim to improve memory retention, increase
model capacity, and address other challenges
encountered in practical applications.

Overall, LSTM is robust approach for processing
sequential data, and it has demonstrated impressive
results in various fields. Its default structure consists
of a memory cell and three gating mechanisms, as
depicted in Fig. 3 [24].

pooled Fully-connected 1

feature maps  feature maps

|'|-_

plylx)

.

=5
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0090000 0Q

Outputs

Convolutional

Pooling 2
layer 2

Fig. 2. CNN example.
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Fig. 3. The default architecture of the LSTM.

2.3. Dataset description

We utilize the dataset representing the INS (Insulin)
gene, which can be found at the following: [https://
www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=Deta-
ilsSearch&Term=3630] (https://www.ncbi.nlm.nih.
gov/gene?Db = gene&Cmd = DetailsSearch&Term =
3630). The INS gene, symbolized by INS, is a well-
studied gene in humans. It has the official full name of
Insulin and a gene ID of 3630. The gene is located on
chromosome 11p15.5. INS is a protein-coding gene,
meaning it encodes a protein. Its primary function is to
produce insulin, a hormone that plays a crucial role in
regulating blood sugar (glucose) levels in the body.
Insulin facilitates the uptake of glucose into cells and
regulates its utilization, storage, and production in
various tissues, including the liver, muscles, and adi-
pose (fat) tissue. This hormone is essential for main-
taining glucose homeostasis.

Genetic variations or mutations in the INS gene
can lead to various forms of diabetes. Type 1 dia-
betes mellitus (T1DM) is one of these conditions,
characterized by insufficient production of insulin
by the pancreas. Mutations in INS can also cause
other rare forms of diabetes, such as permanent
neonatal diabetes mellitus (PNDM) and maturity-
onset diabetes of the young (MODY). These disor-
ders are associated with disruptions in insulin
function and glucose regulation. Fig. 4 shown The
default structure of the INS gene [25].

This dataset is selected due to its public available,
and easy to interpret. Fig. 5 shows a sample of the
used datasets.

2.4. Proposed methodology
Predicting diabetes using DNA sequence data

involves several stages, including preprocessing,
K-mer representation, oversampling, encoding,

i
AKT1 IRS1 NTRK1
P~ ~
v IGW

IGF1

Fig. 4. The default structure of the INS gene [25].

normalization, model training, and testing. This is
illustrated in the block diagram representing the
proposed model in Fig. 6.

1. The first stage, preprocessing, focuses on pre-
paring the DNA dataset for analysis. This step
typically involves cleaning the data, handling
missing values, and ensuring data consistency. It
may also include removing irrelevant features or
filtering out noise to enhance the quality of the
dataset.

2. Next, the K-mer representation stage is applied,
where DNA sequences are divided into over-
lapping subsequences of length K. This tech-
nique captures the local composition and order
of DNA bases and can be a powerful tool for
DNA sequence analysis. By representing the
DNA sequences in this way, the model can
identify important patterns and motifs that
contribute to the prediction of diabetes.
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TTAATTTGTCCTTATTTGATTAAGAAGAATAAATCTTATATATAGATTTACAATCTATCGCCTAAACTTCAGCCACTTAATCAATAATCGCGACAATGATTATTTTCTACAAATCATAAAGA|
ATAGCTCAAATTGCTTTATTAGTATTAGAATCAGCTGTAGCTATAATTCAATCTTATGTGTTTGCTGTATTAAGAACTTTATATTCTAGAGAAGTAAATTAATGTCTACACACTCAAATCACH
AAGCTTCCCTTTAATGTGCTCCTTGTGAATACAGCATTACAATGCCCTCTAGCTCGATAGTTCAATTTGTATGCGATAGGCTGATACAGCCGATACTAATAATCTGCTCTAGGACTGAT,
TATGTAGAATCTGTACAAGTATCTGTGTTTGGACAATGGCATGTGTGAGAGGAGATCCGAACTGCTCCATCTAAACTAACGAAGCATTGCAACAGCTAGTGTTAATGTCGCTCAGTCC
ACATATTACTGCATACAGGTCTCAAATTATAAAATGACACTCGTGGCCTTTACCAACACTGGTTTCCTTTTTTCCACATACGTCGTCAACGTGATTCGACCTTTTCCGGTTTATTAGTTG

TCGATATAAGCAAAATATCGAGAATTGTCGCGGCAGAACATCGATGCACGCCTGCTTATCGACAGTTGCCATCGTCGTTATTCCAGCACTAATTTAAAAAAAATTCGATCAACGCAGA
TGATATGGTAGGAAAACGATATAAAAAGTTTATACCTATCGAACTATTTTTGGTAATAAGCCGTCTGAACATTCTATGTAAATACATATAACACTGTCTATATATATCAATTCTTAATAATT
TCTTCTATGAAGCTACCTTGGCGTAAAAGAGAAATCGCCAGTGTAAATATCTATTTGAATATTTTTTTCTAAATGTATTTACTTTTGGGTGCGCTTAAACATTATTTGAAATCCATCAATAA
TTCCCTAACCTAAAACAATTATTTTTGTTGTAAAAATGAGGGTTGCTCATAGACTACAGATACAGGTGCAACGGTAGAGAATAGCCTTACAGTACATTTCGAGCAGTTCGTTCGATACA
TCAAAGGGGTATTCAATCCAGCACAAAAGCTTTATCTTAGGTAGCCGCTCATATATGTATGAGATCCCCATAAGTATAGGTGTGACTGGCCAGTTTGTTTAATTTAGTGTGAACTTTCG

AATGGGAACTATTGAAGTTGTCGAAACCAGCCGAACCACCTTTGTGTAGCTTAACCGCAGAGTAACAACCGGATGAGTCTGTTATTGTGCCAGTGAAATCAGTTCTCTGGCTTTCGTT]
GTACTCTTGTTCTAGGGTTCCATAATTGGAGCATAGTGTGAGCGAAGTGTAATTTAAGCTACATCAAATTATTTAATCGGTAACAGTGTGTTATCGAATTAAACGAAAATATAATGAAGTA
CACATACTAACTGTGCACCTAGGTATGGCTATGTACATACTTTTACTGAAAACAACAAGCTTTAAGCTCTTGTGCAGTTCGGTCATAGCCTTAGATTCTTTCACTTGCCTGGCAGTATCH

CTTTTTTAATTAAAAACAATTTTAAAGGGCCCACGTATTTTATTTCCACCGTTCCATAATTGTTACTAAGCATGTGACGCTATCTTTACGCACATAGCCACACATAAAATTTTGATTGGAA]
ACATCACATTCATGGACTACGGGACAAGATATGAGCATGTATATCGTTGTTACCGATTATTGATCGAATGAATATCCACCATTTTGTAGTTGTGTGTTTCATTTAGTGAAAAGTCGAGAC!
CACCACAGAGCAGTTGCTCGAAGGAGTTCTTTTCAATCGAATGTGCCCTGTGCAAGTGCCGCATTACGGTTCTACGGTACAATATTGGCATAAAACTTCCAAGTGGAAATAATCGAT(
CATTACGGTTCTACGGTACAATATTGGCATAAAACTTCCAAGTGGAAATAATCGATCAAACATTATCGATAGTGTTTCTATGTGTGGCCCAGCCAGATACACATATAAAAGGCAAATGT]
TATACATACATACAAGCATATACAAACATGCATGTGTGCGCTGCTAAGTGACTGAGATAATTCCAGATAGCGTATGCACATGAGCGTTCTTTATTTTCTCATTCATTGCCTGACCTGTT(
CTTTAAAACAAAGCTTAAGCGTTGTCACAATACCTTACAAAAAAGCTCTGATCTGCATCAACAAGCATGTAAAAGATATTTTAAACATACATACATTAAATCAGTCTTTAAACGTTGGTA
TTTCTAGCTTTTAAAATTTTAAAGATCACGAAATTAAAATGGACGTACATTGCTAGATCAACTTGGCTTGCGATTCTGCTCGAATATTCGAAGTATATTCTTTATGGGTCAGCAGTTCTTCH
TGGATTCATGCACATATGTATGTCTCTCAAAGAGAATAACAGTTGACGAGAACAAAAATCCAAGAAGTCATCTGTGATTTGCCCATTTTAAATTTAGTCTATAAGCACAAGTTTTGCATA
GTACCTATGTATATGCATACATATACTAGTATTTTCAATGACATGCGCACAGAGTCGAGCTTTTCATGCAAACGAGCTCTTATAAAAAAATGTATTCGACGTGTTTTCATTGGCATAAGT/
ATGTGTGAAAATGTTATAAGGACTATTGAACTCTTTGGTTTGTGCTGCGATTTTGTGTCTTTTAAGCGAGAAGGTATAATTTGCCAGTCCATGTGCGGTCACACTGATGACAAATCGTTTT|
AATTTGGTTGAAGTGTTATTGTAGAATATGGTATAAGTTCCACAGTTGGTTGCTGCTATATGCGTTGTTAAAATGTTAATAAGGCTCATCTCTAGCGATTGAGTTGGCAAAAACATGTAG(
TGTATAGCGCAACGTGAGAATGTAATTTATCTCAGTGCACAACGTGTATTACACCATTTACATAAACAGTTTGGTAACCTAAGGTCATACTATTAACAGCACTGTTGATTTTGGTTTATTT

Fig. 5. sample of the used dataset.
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| — P ] g |
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: l ~ . Modele prediction
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Fig. 6. Proposed System diagram.
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3. To address class imbalance issues in the dataset,
oversampling techniques can be employed.
Oversampling involves generating synthetic
samples of the minority class to balance the
distribution and improve the model's ability to
learn from both classes effectively. This step
helps prevent bias towards the majority class,
leading to more accurate predictions.

4. Ordinal encoding the DNA sequences is crucial
for transforming the raw genetic information
into a format that deep learning models can
understand. Various encoding schemes can be
utilized, such as one-hot encoding or embedding
techniques, to represent the DNA sequences as
numerical inputs. This encoding allows the
model to capture the underlying patterns and
relationships within the DNA sequences.

5. Normalization is another essential stage in the
pipeline, which aims to standardize the features'
scale and range. This step ensures that different
features have a similar influence on the model's
training process. Normalization prevents certain
features from dominating others, which can
result in biased predictions and hinder the
model's performance. the min—max normaliza-
tion method is applied to all genes for normal-
izing the values to avoid high values that might
affect the calculation of the results, according to
the Equation (1):

X_norm = (X - X_min) / (X_max - X_min) (1)

All the numeric values of the genes in the DNA
dataset that serve as input to the feature selection
method were normalized to be in the range zero and
one.

6. Feature selection: The sequential feature selec-
tion method was applied in a study on the
detection of diabetes using DNA sequencing.
Three feature selection methods, namely “One-
way ANOVA,” “F-regressor,” and “Mutual In-
formation,” were employed.

In the first step, the “One-way ANOVA” method
was used to identify variables that exhibit statistical
significance in distinguishing between different
groups of diabetic patients and healthy individuals.
The probability value was utilized to determine
variables that show significant statistical differences
between the different groups.

The equation for calculating the Mutual Infor-
mation between a feature X and a target variable Y
is as equation (2):

MI(X, Y) = 22 p(x, y) * log(p(x, y) / (p(x) *p(¥))) (2)

Where:

p (x, y) is the joint probability mass function of X
and Y.

p(x) and p(y) are the marginal probability mass
functions of X and Y, respectively.

Next, in the subsequent step, the “F-regressor”
method was employed to identify variables that are
highly correlated with the disease. This method re-
lies on estimating the strength of the relationship
between independent variables and the dependent
variable using regression analysis. Variables with
the highest correlation strength with the disease
were selected to form a subset of the data.

The equation for calculating the Fisher Ratio for a
feature is as in equation (3):

FR = (meanl - mean2)"2 / (varl + var2) 3)

Where:

meanl&2 are the means of the feature in two
different classes.

varl &2 are the variances of the feature in two
different classes.

In the final step, the “Mutual Information”
method was utilized to select variables that carry
important and informative insights for distinguish-
ing between diabetic patients and healthy in-
dividuals. This method measures the mutual
dependence between variables to determine the
extent of their shared influence.

The equation for calculating the F-value for
a feature using one-way ANOVA is as in equation

(4):

F = (MSB / MSW) 4

Where:

Mean Square Between (MSB) is the mean square
of the variance between the groups.

Mean Square Within (MSW) is the mean square
of the variance within the groups.

By employing the sequential feature selection
methods, a subset of the data containing the most
important variables for diabetes detection using
DNA sequencing was obtained. This selected subset
was then used as input for deep learning models
(specifically, a CNN-LSTM model) to achieve
improved accuracy in discriminating between dia-
betic patients and healthy individuals. The classifi-
cation models were trained on 70% of the subset as
training data and then used to predict the
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classification of patients and healthy individuals in
the remaining 30% of the data.

E. Hybrid deep learning layers

The proposed approach illustrated in Fig. 6 com-
bines LSTM and CNN architectures. It consists of
several layers, including ConvlD, MaxPooling1D,
LSTM, and Dense layers. It has a total of 19,874
trainable parameters. The model follows a sequen-
tial connectivity, where each layer transforms the
input data and passes it to the next layer. The model
starts with ConvlD layers for feature extraction,
followed by MaxPoolinglD layers for down-
sampling. LSTM layers are then used to capture
temporal dependencies. Another ConvlD layer is
applied, followed by MaxPoolinglD and LSTM
layers. Finally, a Flatten layer reshapes the data, and
a Dense layer with two output units is used for
classification purposes. The model's architecture
enables efficient processing of sequential data and
learning meaningful representations for prediction
tasks. Fig. 7 shows the CNN- LSTM architectures.

Layer (type) Output Shape Param #
c::r:':;j :(Conv‘l D) (None, 26, 16) 9%
max_pooling1d_1 (MaxPooling1 (None, 26, 16) 0
convld_2 (ConviD) (None, 22, 32) 2592
max_pooling1d_2 (MaxPooling1 (None, 22, 32) 0
Istm_1 (LSTM) (None, 22, 32) 8320
max_pooling1d_3 (MaxPooling1 (None, 22, 32) 0
convl1d_3 (Conv1D) (None, 18, 32) 5152
max_pooling1d_4 (MaxPooling1 (None, 18, 32) 0
Istm_2 (LSTM) (None, 18, 16) 3136
max_pooling1d_5 (MaxPooling1 (None, 18, 16) 0
flatten_1 (Flatten) (None, 288) 0

dense_1 (Dense) (None, 2) 578

Total params: 19,874
Trainable params: 19,874
Non-trainable params: 0

Fig. 7. The CNN- LSTM architectures.

3. Results and discussion

The experimental tests were performed on the
INS gene dataset, and the dataset was divided into
two groups. The first group comprised 50% of the
features and involved 6 batches of kmer, while the
second group represented 20% of the features and
also consisted of 6 batches of kmer. Table 2 shows
the number of the selected features with respect to
k-mer sizes. The performance of the trained model,
CNN-LSTM, was evaluated using performance
metrics, namely accuracy, recall, and F1 score.
Notably, most metrics achieved a remarkable accu-
racy of 100%. The experimental results, including
the performance of the proposed model, are pre-
sented in Tables 3—14 of the research. These find-
ings highlight the effectiveness of the CNN-LSTM

Table 2. Number of the selected features with respect to k-mer sizes.

K-mer Number Number of Number of Number of
size of words features 20% features 50% features 75%
3 299 60 149 224

4 298 60 149 223

5 297 60 148 222

6 296 59 148 222

7 295 59 147 221

8 294 59 147 220

Table 3. Feature selection with N = 50 and K = 3.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
Table 4. Feature selection with N = 50 and K = 4.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
Table 5. Feature selection with N = 50 and K = 5.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
Table 6. Feature selection with N = 50 and K = 6.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
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Table 7. Feature selection with N = 50 and K = 7.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
Table 8. Feature selection with N = 50 and K = 8.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 1.00 1.00 1.00 1.00

MI 1.00 1.00 1.00 1.00
Table 9. Feature selection with N = 20 and K = 3.

Feature method Accuracy  Precision Recall F1-Score
One-way ANOVA  0.99 0.99 0.99 0.99

FR 0.99 0.99 0.99 0.99

MI 0.94 0.94 0.94 0.94
Table 10. Feature selection with N = 20 and K = 4.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  0.98 0.98 0.98 0.98

FR 0.96 0.96 0.96 0.96

MI 0.97 0.97 0.97 0.97
Table 11. Feature selection with N = 20 and K = 5.

Feature method Accuracy Precision Recall F1-Score
One-way ANOVA  0.96 0.96 0.96 0.96

FR 0.92 0.92 0.92 0.92

MI 0.99 0.99 0.99 0.99
Table 12. Feature selection with N = 20 and K = 6.

Feature method Accuracy  Precision Recall F1-Score
One-way ANOVA  0.97 0.97 0.97 0.97

FR 1.00 1.00 1.00 1.00

MI 0.98 0.98 0.98 0.98
Table 13. Feature selection with N = 20 and K = 7.

Feature method Accuracy  Precision Recall F1-Score
One-way ANOVA  0.99 0.99 0.99 0.99

FR 1.00 1.00 1.00 1.00

MI 0.91 0.91 0.91 0.91
Table 14. Feature selection with N = 20 and K = 8.

Feature method Accuracy  Precision Recall F1-Score
One-way ANOVA  1.00 1.00 1.00 1.00

FR 0.99 0.99 0.99 0.99

MI 0.99 0.99 0.99 0.99

model in accurately predicting and analyzing the
INS gene dataset.

The tables above present the results of feature
selection experiments with different values of N
(number of features) and K (kmer value). Each table
shows accuracy, precision, recall, and F1 score for
three feature selection methods: one-way ANOVA,
FR, and MI.

1. The feature selection methods achieved high
performance when 50% of N (number of fea-
tures) were selected. The accuracy, precision,
recall, and F1 score were consistently recorded
as 1.00 for each feature selection method.

2. The performance varied for different values of
K (kmer value) by 20%. The table indicates
that the path 8 achieved the highest performance
in terms of accuracy, precision, recall, and F1
score for all three feature selection methods:
one-way ANOVA, FR, and MI. However, the
recall and F1 score decreased to 94% and 88%,
respectively, for the MI method at K = 7, as
shown in Table 12.

When comparing and discussing the results from
the above tables based on the 50% and 20% feature
ratios, along with the K values, the following main
points can be noted:

e The results indicate that the feature selection
methods (one-way ANOVA, FR, MI) are highly
effective in selecting features from the INS gene
dataset.

e The 50% feature ratio achieved higher accuracy
in classifying types of diabetes with high
precision.

o The performance of K (kmer value) varied at the
20% feature ratio, and its optimal path was
observed at K = 8.

Overall, the experimental results shows that
CNN-LSTM model is effective in accurate predic-
tion and analysis of the INS gene dataset. The model
achieves high accuracy, recall, and F1 score, and
different feature selection methods show similar
performance.

4. Conclusion

The experimental results presented in this paper
shows how the CNN-LSTM model is effective in
accurately predicting and analyzing the INS gene
dataset. The model achieved a remarkable accuracy
of 100% across all feature selection methods and
performed well in both of the metrics of recall and
F1 score.
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The feature selection methods (one-way ANOVA,
FR, MI) proved to be highly effective in selecting
features from the INS gene dataset. When 50% of
the features were selected, the classification accu-
racy and precision were notably high. This indicates
that the selected features were able to successfully
classify different types of diabetes.

Additionally, the performance of the model varied
with different values of K (kmer value) at the 20%
feature ratio. The optimal performance was observed
at K = 8, where the model gained higher values of
accuracy, precision, recall, and F1 score metrics.

Overall, the hybrid LSTM-CNN model has
demonstrated excellent results in predicting dia-
betes using DNA sequence data. It achieved a
remarkable accuracy rate and perfect scores in
precision, recall, and F1 score, highlighting the
effectiveness of deep learning approaches in
addressing complex biological problems.

5. Future works

Moving forward, there are several important av-
enues for future research. Firstly, incorporating
CNNs into the research can further enhance the
automation, detection, and prediction of diabetes.
CNNs excel in analyzing complex patterns in large
datasets, making them well-suited for diabetes
detection and prediction can lead to improved ac-
curacy and efficiency.

Furthermore, future research can explore the
possibility of applying the proposed model in other
healthcare and medical domains. Predicting other
diseases or enhancing the diagnosis of complex
conditions could benefit from similar deep learning
approaches.
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