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ABSTRACT 

Detecting smoke that precedes fire is a vital matter since it will detect fire 

incidents in a very early stage since these incidents have very high 

catastrophic effects on people's lives as well as industrial matters. In order 

to produce a more reliable detection system, in this article, we dove deeper 

to examine the effect of colour conversion of the captured footage to enhance 

the detection percentage using a pre-trained CNN model (ResNet50) that 

was altered to do a binary classification and was trained on a dataset that 

consists of smoke and non-smoke scenario images. We examined the system 

using the footage's original status (RGB) and also tested four colour spaces 

(HSV, YCbCr, LAB, and grayscale). The testing results showed that HSV had 

the highest accuracy of 92.1% and the lowest errors during training and 

testing. Regarding accuracy, the order after HSV was RGB, YCbCr, LAB, and 

finally, grayscale. Grayscale was the lowest in the testing results, with 85.4%. 

These results indicate that colour spaces do affect the detection quality and 

using them would improve the quality of smoke detection systems. 

 
1. INTRODUCTION  

Detection of early fire is critical for reducing fire's destructive effects on both humans and 

property[1]. Synthetic materials' increasing use in modern buildings that are high in flammability 

and promote fast fire propagation led to highlighting the demand for more sophisticated detection 

systems[2]. In the absence of early warning mechanisms, fires will quickly escalate, particularly in 

structures that contain these materials, which often release toxic gas and accelerate the fire 

spreading[3]. Old smoke detection systems which work on (ionization or photoelectric) principles 

have struggled in detecting early fire symptoms, such as smoke or slow-burning flames, that can 

potentially lead to a delay in responses[4]. Such limitations should concern environments where 

fires are not easy to detect. Also, it happens frequently, such as in industrial facilities, where early 

intervention is very vital to preventing damages and human and financial losses[5]. 

 For years, old fire detection systems, such as the ones mentioned above, have been used 

extensively in areas like residential, commercial, and industrial places. Ionization detectors are 

adept at identifying fast flaming fires but are less effective at detecting them in time [6]. On the 

contrary, photoelectric detectors would perform better in detecting larger smoke from growing 

fires, although they may be slower to respond to flaming fires at their start[7]. 

 Although they are widely adopted, both types of detectors have noticeable limitations, 

especially in areas that have high air circulation, open spaces, or places where early fire indicators, 

such as smoke, may scatter or go unnoticed[8]. The modern solutions involving AI (machine 

learning and computer vision) are presenting improvements regarding early smoke detection. Yet, 
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they also have challenges related to computational costs, need extensive training data, and high rate 

of false positive rates[9]. These restrictions highlighted the need for continuing innovation in fire 

detection methods to enhance response times and reduce false positive alarms. 

The primary aim of this research is to examine how colour space transformations[10] 

influence the accuracy of smoke detection using a deep learning model, specifically ResNet50[11]. 

Early smoke detection is crucial in preventing fires from spreading, enabling timely intervention to 

minimize damage to lives and property [12]. This study aims to focus on rating the various colour 

spaces' s impact on the model's accuracy in detecting smoke that precedes fire [13], stating the most 

effective of these colour spaces for smoke detection under multiple conditions, and shaping a 

methodology that could be considered robust for preprocessing, training and evaluating models. It 

also seeks to provide practical insights for improving real-world smoke detection systems, mostly 

in industrial and forest fire monitoring applications. Moreover, this research is aiming for future 

advancements, focusing on implementing the model on edge devices like smart cameras or drones 

and also expanding the dataset to include more varied environmental conditions such as lighting 

and weather conditions. 

Regarding the contribution of this work, a comprehensive analysis is presented of how 

different colour space statuses may affect the performance of the smoke detection process. This 

study names the most effective colour space that can be used for early fire detection using machine 

learning techniques. These findings present a comprehension that will help in optimizing detection 

models, leading to the development of their reliability and evolving safety technologies. 

1.1 Colour Spaces and Their Role in Smoke Detection 

The colour space status of the captured images can have an undeniable effect on the 

performance of the smoke detection system, usually in situations where varying lighting conditions 

and image quality are presented [14]. As the colour space RGB (Red, Green and Blue) is considered 

the most commonly used format, alternative colour spaces exist, such as HSV, LAB, YCbCr and 

greyscale. These colour spaces grant a distinct advantage by splitting the brightness and other 

essential components of the image. HSV is known to enhance the detection of delicate colour 

variations in low-contrast conditions, which is necessary in the early stages of smoke detection [15]. 

Also, YCbCr and LAB, are both focusing on both chrominance and luminance differences, making 

them effective in detecting smoke in high density environments where shadows or other visual 

obstacles may interfere with detection[16]. As for Grayscale, it makes images simpler by reducing 

their intensity values, resulting in the elimination of colour information. In scenarios where the 

texture and shape are considered the primary indicators of smoke rather than colour information, 

the grey scale colour space will be the most appropriate choice[17]. These colour space conversions 

improve a model's capability to handle multiple scenes regarding the detection purpose, as colour 

information stands out more, leading to higher detection accuracy across various datasets [18][19]. 

Additionally, the use of multiple colour spaces allows for a better feature extraction process, which 

is essential for fine-tuning deep learning models such as  ResNet50 in accurately detecting smoke 

in real-world conditions [20][21]. 

2. LITERATURE REVIEW  

 Researchers in [22] used (temporal and spatial) wavelet analysis in order to identify semi-

transparent smoke using a static camera. This method is effective in self-controlled environments 

but may struggle in dynamic circumstances like the difference between day and night, highlighting 

the need for adaptive methods. A model utilizing illumination invariant colour descriptors for 

smoke detection was conducted in[23]. While promising, its reliance on handmade features 

confines it from generalization, highlighting the value of deep learning for automated feature 

extraction. The authors in [18] proposed a semantic separation technique for forest fire smoke that 
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utilizes concentration weighting to moderate the smoke label ambiguity, lowering the separation 

performance due to smoke's transparency, unclear contours, and variable concentrations in 

supervised separation tasks.  The technique established a mathematical correlation between smoke 

concentrations and their corresponding pixel values based on the principle that variable smoke 

attentions yield distinct pixel values in an image. The authors afterwards trained the model using 

together concentration weighting labels and basic labels, allowing the network to distinguish the 

unique significance of forest fire smoke pixels, hence justifying the impact of ambiguity rising from 

smoke data annotation on the smoke detection model.  This approach improves accuracy but 

requires extensive manual annotation, suggesting a need for more scalable solutions. 

Using a technique developed by [24], this vision sensor-based method facilitates smoke and 

flame detection in open and enclosed indoor and outdoor situations. Rule-based thresholding was 

utilized to figure out parameters such as turbulence, growth, and flow rate for discovering smoke 

and fire.  Although efficient, fixed thresholds limit adaptability, favouring machine learning models 

that can dynamically adjust. Xu et al. proposed a deep domain-specific strategy that formed robust 

learned smoke detection features in films covering synthetic and real pictures. This method 

improves generalization but relies on large, labelled datasets, highlighting the need for techniques 

that work with limited data. The authors in [25] achieved improved separation outcomes by straight 

mixing features from RGB and depth images into their semantic separation model.  While effective, 

the need for depth sensors adds cost and complexity, favouring RGB-only solutions. In contrast, the 

authors in [26] applied several colour space transformations on RGB fire images covering flame 

regions and joined the resultant features through a chain to enhance cataloguing efficacy. This 

demonstrates the potential of colour spaces but lacks exploration in deep learning contexts, a gap 

addressed in this study. 

The research cited in [15] and [27] employed colour spaces (YUV and YCbCr, respectively) as 

colour metrics and integrated them through additional feature extraction procedures to recognize 

the smoke attendance in the video frames. These studies highlight the importance of Colour 

information but do not comprehensively compare multiple Colour spaces, a key contribution of this 

work. The quicker R-CNN model has been employed to recognize smoke in forest fires utilizing 

improved synthetic image data [28]. While accurate, its computational cost limits real-time 

applicability, emphasizing the need for efficient models like ResNet50. A fusion of the VGG16 and 

ResNet50 network strategies has been combined into a deep network to get better feature 

representation abilities while enhancing the general network complexity [20]. This improves 

performance but increases complexity, highlighting the importance of balancing efficiency and 

accuracy. 

Recent instances of CNN models for smoke detection include temporal development and 

network mixtures, together with the two-stage training of a Deep Convolutional Generative 

Adversarial Network (DCGAN) [29], dilated CNN, deep saliency network, and deep dual-channel 

CNN solutions [30][31]. These methods show promise but are resource-intensive, underscoring the 

need for lightweight and practical solutions. 

3. METHODS 

Various deep-learning approaches have been utilized for fire and smoke detection; however, 

real-world conditions, such as varying lighting and environmental factors, can negatively impact 

their performance[32]. To address these challenges, this study focuses on the effectiveness of colour 

space transformations and employs the ResNet50 architecture for smoke detection. ResNet50 was 

selected due to its strong performance in image classification tasks[33]. Its residual learning 

framework mitigates the vanishing gradient problem, enabling the training of deep networks 

capable of capturing subtle visual features critical for smoke identification[11]. This study also 
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explores colour space transformations by converting RGB images into alternative spaces since 

colour information plays a vital role in distinguishing smoke from other visual elements, mostly 

under varying lighting conditions. 

Although other deep learning architectures, such as VGG16 and Inception, and other 

traditional methods like rule-based thresholding have been used for smoke detection[34], 

ResNet50 presents a balance between computational efficiency and accuracy. Alternate 

architectures were neglected due to their higher computation demands or lower interpretability, 

whereas ResNet50 provides a robust and efficient solution for this task. The methodology includes 

converting RGB images into multiple colour spaces (HSV, YCbCr, LAB, and Grayscale), followed by 

normalization[35]. 

The dataset was divided into training (70%), validation (15%), and test (15%) subsets using 

stratified sampling to ensure class balance[36]. A pre-trained ResNet50 model is adapted for binary 

smoke detection by modifying its architecture and training it with early stopping to prevent 

overfitting, As shown in Fig 1. 

 

Figure 1: Proposed Framework 
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3.1 Data Collection  

The "Smoke 100k" [37] presents a comprehensive dataset tailored for smoke detection. This 

dataset comprises 100,000 images, including those with smoke masks, smoke-free images, and 

annotated bounding box positions. Fig 2 shows an example of these images[38]. These annotations 

make the dataset valuable for training machine-learning models designed for smoke detection. To 

better simulate real-world conditions, the dataset was divided into three subsets categorized by 

complexity: low, medium, and high. Each subset contains synthesized smoke masks placed at 

different angles to imitate diverse smoke patterns, as shown in Table 1. 

 

Figure 2: Examples of smoke images 

Table 1: Summary of "Smoke 100k" Dataset 

Aspect Details 

Total Images 100,000 

Image Types Smoke masks, smoke-free images, annotated bounding boxes 

Subsets Low complexity, Medium complexity, High complexity 

Smoke Masks Synthesized at various angles to simulate real-world conditions 

Key Contribution Addresses challenges in complex smoke detection scenarios 
 

Because of hardware limitations, in this study, we used only 20% of the mentioned dataset, 

which is equal to 20,000 images, to train and test our model, splitting it evenly between the two 

classes. In which 10,000 images of scenes containing smoke and 10,000 images without smoke, as 

shown in Table 2. The dataset was preprocessed by converting the original RGB images into several 

colour spaces: HSV, YCbCr, LAB, and Grayscale. Every colour space was analyzed for its effect on 

model performance across training, validation, and testing.   

Table 2: Dataset Image Distribution 

Category Images Details 

Smoke Images 10.000 Scenes with visible smoke 
No Smoke Images 10.000 Scenes without visible smoke 

Total Images 20.000 - 
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3.2 Implementation Environment 

The implementation was carried out on the Kaggle platform, a cloud-based environment 

designed for machine learning and data science tasks. Kaggle Notebooks, which provide integrated 

access to datasets, libraries, and GPU resources, were used in all experiments. The hardware 

specifications included an NVIDIA Tesla P100 GPU (16 GB VRAM), an Intel Xeon Processor (2 cores), 

and 13 GB of RAM[39]. The environment utilizes Python 3.7.12, alongside libraries such as OpenCV 

for image preprocessing and colour space transformations, TensorFlow and Keras for building and 

training the ResNet50 model, NumPy[40]  is used for numerical computations, Scikit-learn for 

dataset splitting and stratified sampling, and Matplotlib and Seaborn for visualizing performance 

metrics. The ResNet50 model, pre-trained on ImageNet, was modified by adding a Global Average 

Pooling layer, a Dropout layer (50%), and a Dense layer with a sigmoid activation function for binary 

classification. The model was compiled using the Adam optimizer with a learning rate of 1e-5 and 

trained for 50 epochs with early stopping based on validation loss to prevent overfitting. 

3.3 Data Preprocessing  

To prepare the dataset for smoke detection, images from designated folders containing smoke-

free and smoke-laden images were loaded. Only `.png` files were considered for uniformity, and 

each image was resized to 128x128 pixels for consistency in the input dimensions. The images were 

then converted to arrays using NumPy and normalized to a range of [0, 1] by dividing the pixel 

values by 255 to ensure effective neural network training. 

Mathematically, the image normalization can be represented as in Equation (1): 
 

𝑋𝑖(𝑛𝑒𝑤) =  
𝑋𝑖

255
       … (1) 

 

where 𝑋𝑖 represents the original image, and 𝑋𝑖(new) is the normalized image. 

The used smoke dataset was divided into 3 (training, validation, and test) groups, and stratified 

sampling was used to maintain the two-class balance. In detail, the dataset was split into the 

following portions: 70% training, 15% validation, and 15% testing to ensure a balanced 

representation of smoke and non-smoke images across all sets. 

3.4 Model Architecture 

For each image, a different colour space conversion was applied to assess their influence on 

the smoke detection performance. Images were transformed from the RGB format (the initial state) 

into the four-colour spaces: HSV, YCbCr, LAB, and Grayscale. This conversion highlights specific 

visual features that may enhance the model's accuracy in detecting smoke under different 

conditions.  ResNet50, which was already pre-trained on ImageNet [41], was used as the base model 

for feature extraction. The top layers were removed, and new layers were added, including a Global 

Average Pooling [42] layer, a Dropout layer with a 50% rate to stop overfitting[43], and finally a 

Dense layer with a sigmoid activation function for binary classification.  

3.5 Model Training 

The model was compiled using the Adam optimizer with a learning rate of 1e-5 [44] and binary 

cross-entropy as the loss function[45]. Early stopping and model checkpoint callbacks were utilized 

to optimize the training performance and prevent overfitting. The training was performed for 50 

epochs with a batch size of 32, monitoring validation loss value to ensure the best model was saved. 
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3.6 Model Testing 

Upon the model's training being completed, its efficacy was evaluated utilizing 15% of the 

dataset reserved for testing. This assessment sought to evaluate the model's proficiency in 

accurately categorizing smoke and non-smoke images. The model's predictions on the test set were 

compared beside the true labels, and a confusion matrix was produced to visualize the classification 

outcomes. The confusion matrix contains the following components: 

• True positives (TP) refer to correctly identified smoke images. 

• True-negatives (TN) refer to correctly identified non-smoke images. 

• False Positives (FP) (False Positives) refers to non-smoke images incorrectly classified as 

smoke. 

• False-Negatives (FN) (False Negatives) refer to smoke images incorrectly classified as non-

smoke. 

Using these values, several performance metrics were calculated to assess the model's 

accuracy and reliability. These systems of measurement include accuracy, precision, recall, and F1-

score: 

• Accuracy: This determines the overall exactness of the model by dividing the number of 

correct predictions by the total number of predictions. It is defined as in Equation (2): 

Accuracy = (TP+TN)/(TP+TN+FP+FN) … (2) 

• Precision: This metric calculates how many images predicted as smoke are actually smoke. 

It focuses on the positive predictive value, helping to reduce the rate of false positives. 

Equation (3) for precision is: 

Precision= TP/(TP+FP) … (3) 

• Recall, sometimes called sensitivity or true positive rate, quantifies the model's ability to 

precisely identify smoke images among all genuine smoke images in the test set. Equation 

(4) for recall is: 

Recall= TP/(TP+FN) … (4) 

• The F1-score is the harmonic means of precision and recall, offering a singular metric that 

equilibrates false positives and false negatives. Achieving a balance between precision and 

recall is advantageous. Equation (5) represents the F1-score: 

F1-Score= 2*(Precision*Recall)/(Precision+Recall) … (5) 

A comprehensive evaluation of the model's performance was provided by calculating these 

metrics [46]. Precision highlights the proportion of relevant smoke predictions, recall emphasizes 

the model's ability to detect smoke instances, and the F1-score assesses both, ensuring a fair 

estimation when false positives and false negatives are concerned. Additionally, the model's 

accuracy exhibits its overall performance across both smoke and non-smoke images. By using the 

15% test set, these metrics offer a solid assessment of how well the trained model generalizes to 

unseen data, helping to ensure reliable performance in real-world smoke detection tasks. 
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4. EXPERIMENTS AND RESULTS 

The ResNet50 model was trained for 50 epochs for each colour space, utilizing 70% of the data 

for training, 15% for validation, and 15% for testing. We give the accuracy and loss during training 

and validation across all colour spaces, as illustrated in Table 3. 

Table 3: Model Performance Across Different Colour Spaces 

Colour Space Training Accuracy Validation Accuracy Training Loss Validation Loss 

RGB 92.4% 91.3% 0.18 0.22 

HSV 93.8% 92.6% 0.14 0.19 

YCbCr 91.5% 90.2% 0.20 0.23 

LAB 92.1% 91.1% 0.19 0.22 

Grayscale 88.3% 86.7% 0.31 0.35 
 

The results indicate that the models using the HSV colour space outperformed the other colour 

spaces, achieving the highest training accuracy of 93.8% and validation accuracy of 92.6%. The 

Grayscale model had the lowest performance, indicating that removing colour information 

negatively affected the detection of smoke, as shown in Fig 3. 

 

Figure 3: Model Performance Across Different colour Spaces 

4.1 Test Results 

 Upon completing the training process, the models underwent evaluation using the test set. Table 4 

presents each colour space's accuracy, precision, recall, and F1-Score. The HSV colour space again 

showed superior performance in the test phase with a 92.1% accuracy and the highest F1-score of 

92.1%. In contrast, the lowest test accuracy of 85.4% was exhibited by the Grayscale model, 

suggesting that enough visual features necessary for robust smoke detection are not captured by 

grayscale images Fig 4 

Table 4: Test Performance Across Different colour Spaces 

Colour Space Test Accuracy Precision Recall F1-Score 

RGB 90.9% 91.2% 90.5% 90.8% 

HSV 92.1% 92.3% 91.9% 92.1% 

YCbCr 89.8% 90.0% 89.6% 89.8% 

LAB 90.6% 91.0% 90.3% 90.7% 

Grayscale 85.4% 85.8% 85.0% 85.4% 
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Figure 4: Test Performance Across Different Colour Spaces 

4.2 Confusion Matrices 

A detailed view of the model's performance is provided by the confusion matrices for each 

colour space by illustrating the distribution of true positives, true negatives, false positives, and 

false negatives. Valuable insights into how well the model distinguishes between smoke and non-

smoke images across different colour spaces are presented by these matrices. The confusion 

matrices generated for each colour space are presented in Table 5, highlighting the variations in the 

prediction accuracy and error distribution. By analysing these matrices, the specific strengths and 

weaknesses in the model's capability to determine smoke can be identified, depending on the 

chosen colour space. 

 

Figure 5: Training and Validation Performance Across Different Colour Spaces 

The fewest false positives and false negatives are shown by the HSV colour space confusion 

matrix, creating it the top performer with regard to balanced predictions. The highest number of 

false negatives and false positives is exposed by the Grayscale model, representing its difficulty in 

accurately detecting smoke in images, as shown in Fig 5. 
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Table 5: Confusion Matrix Results Across Colour Spaces 

Colour 
Space 

True-Positives 
(TP) 

True-Negatives 
(TN) 

False-Positives 
(FP) 

False- Negatives 
(FN) 

RGB 4,540 4,560 440 460 

HSV 4,620 4,610 390 380 

YCbCr 4,480 4,500 500 520 

LAB 4,530 4,540 460 470 

Grayscale 4,270 4,320 680 730 
 

5. DISCUSSION AND CONCLUSION 

The results across different colour spaces are shown by colour information acting as a 

significant task in smoke detection. The others were consistently outperformed by the HSV colour 

space, likely due to its capability to separate colour and intensity information, which helps in 

detecting smoke in inspiring lighting settings. However, considering the worst performance was 

shown by the grayscale model, as important colour features critical for distinguishing smoke from 

other elements in the image failed to be leveraged. These results are associated with previous 

studies that underline the importance of selecting the right colour space for image classification 

tasks. 

Future research should focus on developing a real-time smoke detection system by integrating 

the current machine-learning models with live video feeds. This would significantly enhance early 

smoke detection capabilities, particularly in critical applications like forest fire prevention and 

industrial safety. Additionally, expanding the dataset to include a wider variety of environmental 

conditions, smoke types, and geographic locations would improve the model's generalization and 

robustness, especially when incorporating smoke from different fuel sources. Exploring hybrid 

models that combine convolutional neural networks (CNNs) with other techniques, such as 

recurrent neural networks (RNNs) or attention mechanisms, may further enhance temporal pattern 

recognition and overall performance in smoke detection tasks. Another important direction is to 

deploy the model on edge devices, such as drones or IoT systems, for real-time monitoring in remote 

or hazardous environments. Optimizing the performance on hardware-constrained devices through 

techniques like model pruning or quantization could be a key step toward efficient real-world 

applications. Also, implementing these systems on a smaller device makes real-time monitoring 

more accessible to everyone. 
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