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Abstract: This paper studies the effectiveness of feed forward neural networks 

(FFNNs) in comprehending fuzzy data, specifically analyzing the Brent crude oil price 

dataset from January 1, 2018, to December 31, 2021. Crude oil prices exhibit intrinsic 

unpredictability, characterized by uncertainty and imprecision, rendering them suitable 

for fuzzy data analytics. FFNNs, recognized for their ability to model complex and 

nonlinear associations, are employed to predict and analyze price fluctuations in this 

ambiguous domain. The research evaluates the performance of FFNN against 

conventional statistical and machine learning models, incorporating essential 

assessment metrics such as prediction accuracy, mean squared error, and resilience to 

noisy or absent data. The results of this study indicate that the application of fuzzy pre-

processing in combining with FFNNs decidedly improves model performance. Before 

employing fuzzy methodologies, the mean squared error (MSE) was recorded at 1.2959. 

Nonetheless, the incorporation of fuzzy pre-processing into the FFNN framework 

reduced the MSE to 1.0983, illustrating the enhanced ability of the combined strategy to 

address uncertainty and imprecision in the data. This augmentation illustrates the 

efficacy of fuzzy-enhanced neural networks in generating more precise forecasts for 

complex, volatile variables such as Brent crude oil prices. 

Keywords: Fuzzy Data Analytics, FFNN, Fuzzy Preprocessing, R2, MSE. 

 
 : دراسة مقارنة ة یالامام ةی ذات التغذ ة یعلى أداء الشبكات العصب  اناتیالب ةیضباب  ریتأث

 
 ٢محمد محمود فقى حسين ، أ.م.د. ١کشاو قادر محمدالباحثة: 

 

 ، السليمانية، العراق والاقتصادكلية الادارة  ،جامعة السليمانية (1،2)
 

( في فهم البيانات الضبابية، FFNNs)  ةي الامام  التغذية  العصبية ذاتيتناول هذا البحث فعالية الشبكات    المستخلص:

. تتميز أسعار  ٢0٢١ديسمبر    3١إلى    ٢0١8يناير    ١وتحديداً تحليل مجموعة بيانات أسعار خام برنت للفترة من  

مما   الدقة،  وعدم  اليقين  بعدم  تتسم  جوهرية،  بتقلبات  الخام  تسُتخدم    يجعلهاالنفط  الضبابية.  البيانات  لتحليل  مناسبة 

(، المعروفة بقدرتها على نمذجة العلاقات المعقدة وغير الخطية،  FFNNs)  ةي الامام  التغذيةالشبكات العصبية ذات  

ذات   العصبية  الشبكات  أداء  البحث  يقُيمّ  الغامض.  المجال  هذا  في  وتحليلها  الأسعار  بتقلبات   ةي مالاما  التغذيةللتنبؤ 

(FFNNs ،التنبؤ دقة  تقييم أساسية مثل  التعلم الآلي، مُدمجًا مقاييس  التقليدية ونماذج  بالنماذج الإحصائية  ( مقارنةً 
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تطبيق   أن  إلى  الدراسة  نتائج هذه  تشير  الغائبة.  أو  المشوشة  البيانات  الخطأ، والمرونة في مواجهة  ومتوسط مربع 

ا مع  بالتزامن  الضبابية  المسبقة  التغذ  لشبكاتالمعالجة  ذات  النموذج FFNNs)  ةي الامام  ة ي العصبية  أداء  يحُسّن   )

ل متوسط الخطأ التربيعي ) ّ . ومع ذلك،  ١.٢959( عند  MSEبشكل ملحوظ. قبل استخدام المنهجيات الضبابية، سُج 

  ما ، م١.0983إلى خفض متوسط الخطأ التربيعي إلى    FFNNأدى دمج المعالجة المسبقة الضبابية في إطار عمل  

يظُهر القدرة المُحسَّنة للاستراتيجية المُدمجة على معالجة عدم اليقين وعدم الدقة في البيانات. يوُضح هذا التحسين 

فعالية الشبكات العصبية المُحسَّنة بالضبابية في توليد تنبؤات أكثر دقة للمتغيرات المُعقَّدة والمتقلبة، مثل أسعار نفط 

 برنت الخام. 

المفتاحیة: الضبابية،    الكلمات  البيانات  المسبقة  FFNNتحليلات  المعالجة  الضبابية،   الضبابية،،  المسبقة  المعالجة 

 . متوسط مربعات الخطأ التحديد،معامل 

Corresponding Author: E-mail: Gashaw.muhammadameen@univsul.edu.iq    

Introduction 

Crude oil is a fundamental element of both national and international economies. Key factors 

contributing to heightened price volatility in the crude oil market include political events, extreme 

weather conditions, and speculative activities in financial markets, among others. The economy and 

communities are significantly affected by the fluctuations in oil prices, as they impact several 

commodities and services. An Artificial Neural Network (ANN) is a black-box model that acquires 

the nonlinear link between system inputs and outputs, emulating human brain function instead of 

relying on intricate mathematical models. Both fuzzy logic and FFNN address the intrinsic non-

linearity of systems such as the crude oil market. Moreover, fuzzy logic provides tools like 

membership functions to represent ambiguity but FFNNs are adept at extracting complex patterns 

from data. A major issue in fields like energy economics financial forecasting and uncertainty-

based decision-making is analyzing volatile and uncertain data. One prominent example is the crude 

oil market where intricate and frequently unanticipated factors like supply and demand fluctuations 

natural disasters and geopolitical instability affect price swings. Fuzzy data analysis has emerged as 

a reliable technique to lessen these limitations. This approach bridges the gap between strict 

numerical analysis and real-world ambiguity by creating fuzzy sets to represent uncertainty 

allowing for more nuanced modeling of imprecise data [1]. A time series is a group of observations 

or data points that have been documented chronologically. It is frequently used to analyze dynamics 

patterns and trends in temporally organized data from a range of disciplines such as economics 

environmental studies and finance.  

Fuzzy data analysis is enhanced by FNNs, a form of artificial neural network, which have the 

capacity to acquire intricate, non-linear relationships. FNNs are composed of interconnected layers 

of nodes that transform input data through weighted connections and activation functions, thereby 

facilitating the extraction of patterns from highly complex datasets. They are particularly effective 

for tasks such as prediction, classification, and regression due to their adaptability and 

generalization capabilities.  

1st: Research Problems 

Fuzzy preprocessing combined with FFNN provides a novel and beneficial approach to dealing 

with uncertain datasets, such crude oil prices. Before neural network data processing, fuzzy pre-

processing converts traditional numeric input into fuzzy sets so that the model can handle 

imprecision. This all-encompassing approach effectively addresses unstable markets by leveraging 

the exceptional learning capabilities of FFNNs and the benefits of fuzzy logic in managing 

uncertainty. 

2nd: Goal of the Research: 

This study focuses on the Brent crude oil price dataset from January 1, 2018, to December 31, 2021, 

in order to evaluate the effectiveness of fuzzy pre-processing-enhanced FFNNs. The paper shows 

how this approach improves predicted accuracy and noise resistance by comparing it to traditional 

statistical and machine learning models. This work adds to the body of knowledge on advanced 
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 analytical techniques by highlighting their value in improving forecasting and decision-making in 

intricate, uncertain situations. 

3rd: Methodology 

1- Fuzzy logic 

In order to identify outputs, fuzzy logic uses membership functions, which resemble human 

intuition. It operates with ranges, transforming precise inputs into varying degrees of membership. 

Optimizing membership functions remains a central research focus in fuzzy logic systems. 

2- The fuzzy and Crisp sets 

A fuzzy set is a set whose basics have varying degrees of membership, characterized by a 

membership function that assigns each element a value between 0 and 1. A crisp set is defined as a 

collection of elements with distinct, binary membership: each element is either a member of the set 

or it is not. There is no allowance for partial membership; each element is assigned a value of 1 if it 

belongs to the set and 0 if it does not. 

3- Membership Functions 

A membership function (MF) maps each point in an input space to a membership degree, ranging 

from 0 to 1. The membership degree quantifies the degree of membership in a fuzzy set, with values 

between 0 and 1 indicating partial membership. The membership function is crucial in designing 

fuzzy controllers, as it must reside within the [0,1] interval [6]. 

4- Features of Membership Function 

A- Support: The support of fuzzy set 𝐵 is the set of all point 𝘹 ∈ 𝘟 such that м𝐵(𝘹) >  0. 

Mathematically, we can present Support(B) = {(𝘹, м𝐵(𝘹))/м𝐵(𝘹)) > 0)}. 
B- Core: The core of a fuzzy set B is the set of all 𝘹 ∈ 𝘟 such that м𝐵(𝘹)=1. Mathematically, we 

can show core (B) = {(𝘹, м𝐵(𝘹))/м𝐵(𝘹)) = 1)} 

C- 𝜶-Cut: set of elements with degree ≥ 𝛼. Mathematically, we can indicate 𝛼−𝑐𝑢𝑡 𝐵𝛼 =
{𝘹𝜖𝘟| м𝐵(𝘹) ≥ 𝛼} 

D-Strong 𝜶-Cut: 𝐵𝛼 = {𝘹𝜖𝘟| м𝐵(𝘹) ≥ 𝛼}, in this case ‘B’ is defined as Crisp set. 

E-Triangular Membership Function – The subsequent text presents a collection of standard 

mathematical functions that govern the configuration of membership functions (MFs): 

A triangular MF is characterized by the following equation: 

                                       м𝐵(𝑥) = {

   0                                    𝘹 ≤ 𝛼
(𝑥 − 𝛼)/(𝑏 − 𝛼)           𝛼 < 𝘹 ≤ 𝑏
(𝑥 − 𝑐)/(𝑏 − 𝑐)            𝑏 < 𝘹 < 𝑐
        0                                        𝘹 ≥ 𝑐

                       (1) 

 

here the choice “𝛼  to c” shows the support of the fuzzy set and “ɒ” is a unique point in the range 

and has the highest membership function value. 

5- Fuzzification and De-fuzzification 

Fuzzification is the transformation of precise quantities into imprecise states, acknowledging that 

many perceived deterministic quantities are actually characterized by significant uncertainty, often 

imprecise and represented by a membership function. However, de-fuzzification is the conversion 

of fuzzy set results from a fuzzy inference system into a precise numerical value, essential for real-

world control or decision-making tasks. and a common method is centroid [4]. 

6- A. Categories of Neural Network Architecture:  

(1) Feedforward Neural Network (FFNN): Consists of layers of neurons with input from the layer 

above and output from the layer below, devoid of feedback loops. 
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 (2) Feedback Neural Network (FBN): is sent output from one layer to the next, facilitate 

bidirectional signal transmission through loops. They are powerful and complex, allowing synaptic 

connections among neurons, used in optimization for optimal configuration [9]. 

B. The main layers of a typical artificial neural network [10] 

In order to increase numerical precision in network mathematical operations, the input layer of an 

artificial neural network (ANN) accepts external data, signals, characteristics, or measurements and 

normalizes them within activation functions. Most of the internal processing in a network is also 

carried out by the hidden or unseen layers and the neurons in these layers, which extract patterns 

associated with the system or process under analysis. In addition, neurons make up the output layer, 

which generates and displays the final network outputs from the processing done in earlier layers. 

C. Training Procedures and Learning Neural Network Characteristics 

The training process of a neural network involves tuning synaptic weights and thresholds to 

generalize solutions, using a learning algorithm to extract discriminant features from samples, 

enhancing the network's performance. 

(1) Supervised Learning: Contains a training sample that includes input signals and the intended 

outputs; input/output data must be in a table. The learning algorithm continuously modifies synaptic 

weights and thresholds as the neural structures generate hypotheses based on this data.  

(2) Unsupervised Learning: enables learning of clusters within a network, identifying similarities 

between elements without requiring prior knowledge, thereby enhancing the network's self-

organization and accuracy. 

(3) Reinforcement Learning: algorithms adjust neural parameters based on interaction with the 

network environment, evaluating performance through trial and error, using stochastic methods to 

modify probabilities for improved network performance. 

7- Feed-Forward Neural Network (FFNN) 

A FFNN is a fundamental model in machine learning. It has four main mechanisms: the input layer, 

one or more hidden layers, the output layer, and the weights that interconnect the neurons. A 

Feedforward Neural Network has an input layer that signifies dataset properties and transmits this 

information to hidden layers, which analyze the data via weighted neuron connections to facilitate 

intricate transformations. The output layer generates the model's predictions. The weights that 

determine the strength of these connections are essential to the model's performance, and the main 

objective of a Feedforward Neural Network is to optimize these weights for precise input-to-output 

mapping and efficient target variable prediction.  

8- Types of Active Function 

A. Hyperbolic Tangent Function (Tanh) 

The tanh is an alternative activation function used in network processing, with many versions 

utilized in deep learning applications. The tanh function, is a smoother zero-centred function whose 

range lies between -1 to 1, thus the output of the tanh function is given by the equation 

 

                                                                      𝖸 =
Expx−Exp−x

Expx+Exp−x                (2) 

B. Linear Active function  

The linear function calculates the neuron s output by simply returning the value passed to it.  

                                                                    𝖸 =  𝗑                               (3) 

9- Derivation of the Levenberg–Marquardt Algorithm  

The Levenberg-Marquardt algorithm is an adaptive approach for solving nonlinear least squares 

problems, which is widely used in curve fitting and parameter estimation. It dynamically adjusts a 

damping factor to combine steepest descent's stability with the Gauss-Newton method's quick 



University of Kirkuk Journal For Administrative 

and Economic Science (2025) 15 (2): 427-441 

 

ISSN:2222-2995   E-ISSN:3079-3521   Vol. 15 No. 2                                                                431 

 convergence. To update the model parameters, the approach first linearizes the goal function and 

the solves a damped least squares problem. Its versatility makes it a reliable and effective tool for 

improving complicated, nonlinear models. 

 Table (1): Specifications of different algorithms  

Algorithms Update rule convergence 

EBP algorithm 𝑇k+1 = Tk − βgk Stable, Slow 

Newton algorithm Tk+1 = Tk − 𝖧k
−1 gk Unstable, Fast 

Gauss-Newton algorithm 𝑇k+1  =  Tk − (𝑍k
t  Zk)−1 𝑍k ek Unstable, Fast 

Levenberg-Marquardt algorithm Tk+1 =  𝑇k − (𝑍k
𝑡  𝑍k + mI)−1 𝑍k ek Stable, Fast 

 

4th: Result and Discussions: 

A. Data Description: 

We extracted Brent crude oil production data daily spanning 1461 days, from 1 January 2018 to 31 

of December 2022. The fuzzy time series model and FNN  have been implemented to analyse the 

data set. The data was sourced from the markets insider [15] used MATLAB and python software’s 

for analysing the data [15]. 

B. The Process of Implementing FNN  

The application for building an FFNN for time series prediction is included in this section. For the 

data mentioned above, FFNN has been applied using the MATLAB software. The following 

procedures were used in this paper to applying the FNN for time series prediction: 

(1) First Step  

In this instance, we utilize the MATLAB software to identify data, as we require a specific type of 

data for the (FFNN) algorithm. The input data is denoted as (𝑋𝑡: 𝑡 = 1,2, … ,1461), while the 

objective data is denoted as (𝑇; 𝑡 = 1,2,3, … ,1461). The Augmented Dickey-Fuller (ADF) test was 

implemented to assess the stationary of the Brent petroleum oil price time series. The test results 

offer critical insights into whether the data necessitates transformation, such as differencing, to 

attain stationary for on-going time series analysis and model development. 

 

 

 

 

 

 

 

 

 

 

 
Fig (1): Daily price of Brent Oil Crude 

 

Hypothesis Test: 

𝐻0:: The time series is non-stationary and has a unit root  

𝐻1: The time series lacks a stationary unit root. 
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 Table (2):  Represent the ADF Test of Brent Oil Crude price 

Test Test Statistic P-Value Critical Value 

Augmented Dickey-Fuller test -1.427248 0.5702 

1% :-3.434621 

5% : -2.863313 

10%:-2.567763 

 

Since the test statistic (-1.427248) is greater than the critical values at all significance levels (1%, 

5%, and 10%) and the p-value (0.5702) is greater than the conventional cutoff of 0.05, we are 

unable to reject the null hypothesis of the Augmented Dickey-Fuller test. Given that there is little 

evidence to support the notion that the time series is stationary, it is likely to have a unit root and 

may need to undergo some sort of transformation, such as a difference, to become stationary. 

Table (3): Represent the ADF Test of Brent Oil Crude Price After First Difference. 

Test Test Statistic P-Value Critical Value 

Augmented Dickey-Fuller test -38.38734 0.0000 

1% :-3.434624 

5% : -2.863315 

10%:-2.567763 

 

The low p-value (0.0000) and the extremely negative test statistic of -38.38734, which is far more 

negative than the critical values at all significance levels, lead us to strongly reject the null 

hypothesis. This implies that the time series is stationary as it does not have a unit root and its 

statistical properties do not change over time. There is no need for any transformation, including 

differencing, because the series is inherently stationary. 

(2) Step two: Data normalization  

This step's goal is to normalize the data by limiting it to either the (0, 1) or (-1, 1) ranges. This 

coding depends on the features of the particular ANN or FFNN type used, especially when the 

dataset has complex patterns. In these situations, using the first type of normalization described 

above might be more beneficial.  

(3) Step three: Partitioning the data  

This research involved partitioning the dataset into training, testing, and validation subsets through 

three distinct methodologies to ascertain the most effective allocation for the development and 

evaluation of FFNN. The following proportions were used: 70% for training, 15% for testing, and 

15% for validation; 60% for training, 20% for testing, and 20% for validation; and 80% for training, 

10% for testing, and 10% for validation. Every partitioning technique was analyzed to determine 

how it affected the predicted accuracy and generalization of the model. The main objective was to 

improve the allocation ratio to balance model training, mitigate over fitting, and guarantee adequate 

data availability for impartial testing and validation. The goal of the study is to compare the 

outcomes in various proportions in order to determine the best partitioning strategy for controlling 

the volatility and uncertainty in the Brent crude oil price dataset. The FFNN models' robustness and 

reliability for forecasting and decision-making in complex situations are ensured by this 

methodology. 

(4) Step four: Develop the network architecture  

Here, the FNN is composed of three layers: the input layer, hidden layer, and output layer. We 

select the optimal approach for the network's performance at this stage by evaluating two critical 

metrics: The minimum MSE and RMSE values. The selection of the optimal FFNN is contingent 
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 upon the minimum MSE and RMSE values. In this study the best FFNN chosen to analyse data, 

one hidden layer network is used, which is explained in table (4) and figure (6) below. 

Table (4) Represent the best architecture of (FFNN) 

Layers Nodes Activation function 

Input layer 1 --------------- 

Hidden layers 16 Tansig (hyperbolic) 

Output layer 1 Purelin 

 

The table you gave appears to depict the architecture of a neural network, detailing the network's 

layers, node count, and activation functions to be precise. 

 

 

 

 

 

 

 

 
Fig (2) Represent the best architecture FFNN model (1-16-1) 

 

The optimal neural network configuration is [1-16-1], determined by achieving minimum MSE and 

RMSE values. By using the TANSIG activation function, the number of nodes of hidden layers 

were adjusted iteratively. Partitioning of the dataset into training, testing, and validation was varied 

to identify the best performance setup and we get the best model is [Tansig _ Pureline output]. 

Table (5): The optimal neural network configuration dataset 

MSE 

(all) 
RMSE 

MSE 

(training) 

MSE 

(validate) 

MSE 

(testing) 

Rsq 

(training) 

Rsq 

(validation) 

Rsq 

(testing) 

Rsq 

(all) 

1.2959 1.1384 1.3867 0.94405 0.92129 0.99283 0.9944 0.99465 0.99314 

 

Table (6): Performance Metrics of Neural Network Models with Varying Architectures and Data Split 
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%80, %10 , 
%10 

tansig 1_9_1 1.3135 1.1461 0.99309 0.99355 0.9921 0.99304 1.3411 1.0403 1.3663 18 

%80, %10 , 

%10 
tansig 1-14-1 1.311 1.145 0.99301 0.99366 0.99288 0.99306 1.3486 1.0571 1.2636 19 

%80, %10 , 
%10 

tansig 1-16-1 1.2959 1.1384 0.99283 0.9944 0.99465 0.99314 1.3867 0.94405 0.92129 25 

%80, %10 , 

%10 
tansig 1-17-1 1.3 1.1402 0.99266 0.99525 0.99514 0.99312 1.4203 0.8218 0.81497 28 

%80, %10 , 
%10 

tansig 1-18-1 1.3037 1.1418 0.99289 0.9942 0.99378 0.9931 1.3714 1.0101 1.0558 17 

%80, %10 , 

%10 
tansig 1-19-1 1.2992 1.1398 0.99384 0.99569 0.98369 0.99312 1.1867 0.77608 2.72 34 

%80, %10 , 
%10 

tansig 1-20-1 1.32 1.1489 0.99277 0.99508 0.99297 0.99301 1.3917 0.90049 1.1655 12 

%70 , %15 

,%15 
tansig 1_4_1 1.346 1.1602 0.99388 0.99278 0.98809 0.99287 1.188 1.182 2.2478 16 

%70 , %15 

,%15 
tansig 1_5_1 1.3223 1.1499 0.99289 0.9917 0.99471 0.993 1.3889 1.3841 0.94981 13 

%70 , %15 

,%15 
tansig 1_7_1 1.328 1.1524 0.99287 0.9926 0.99382 0.99297 1.4141 1.2005 1.0541 14 
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 %70 , %15 

,%15 
tansig 1_11_1 1.3177 1.1479 0.99427 0.98748 0.99171 0.99302 1.1315 2.1165 1.3875 16 

%70 , %15 

,%15 
tansig 1_12_1 1.3095 1.1444 0.9925 0.9951 0.99406 0.99306 1.4741 0.82776 1.0234 25 

%70 , %15 

,%15 
tansig 1-16-1 1.3006 1.1404 0.99274 0.99427 0.99399 0.99311 1.4326 0.9489 1.0367 27 

%70 , %15 

,%15 
tansig 1-17-1 1.3129 1.1458 0.99284 0.99217 0.995 0.99305 1.4127 1.2986 0.86117 34 

%70 , %15 
,%15 

tansig 1-18-1 1.321 1.1493 0.99294 0.9921 0.99416 0.993 1.3919 1.2948 1.0163 13 

%70 , %15 

,%15 
tansig 1-20-1 1.3612 1.1667 0.99233 0.9944 0.99361 0.99279 1.502 0.96022 1.1052 8 

%60 , 
%20,%20 

tansig 1_5_1 1.3206 1.1492 0.99283 0.9928 0.99377 0.99301 1.4439 1.1919 1.0795 15 

%60 , 

%20,%20 
tansig 1_15_1 1.3092 1.1442 0.99444 0.99032 0.99117 0.99307 1.0966 1.7655 1.4907 33 

%60 , 
%20,%20 

tansig 1_6_1 1.3255 1.1513 0.99389 0.9917 0.99098 0.99298 1.2292 1.3573 1.5827 27 

%60 , 

%20,%20 
tansig 1-19-1 1.3201 1.149 0.99428 0.99183 0.98983 0.99301 1.1238 1.4638 1.7653 21 

 

In conclusion, this model appears to be doing rather well; it has low MSE/RMSE values and high 

R2 values across training, validation, and testing datasets, indicating that it generalizes to unknown 

data with ease. 

The model with the lowest MSE and highest R2 values, 1-16-1 (80%, 10%, 10%), performs the best. 

Although it may result in overfitting, increasing the number of hidden neurons (e.g., 19, 20) can 

improve accuracy. Because it provides more training data, the (80%, 10%, 10%) split performs 

better than 60%, 20%, and 20%. The dataset split and ideal hidden layers are essential for striking a 

balance between generalization and accuracy. 

(5): step five: Training FFNN 

Figure3 illustrates the training process of the feedforward neural network (FNN) employing the 

Levenberg-Marquardt optimization algorithm, displaying three essential metrics across 25 epochs. 

The initial figure monitors the gradient, which diminishes consistently, signifying effective 

optimization and convergence of the model. The second plot illustrates the parameter "mu," which 

dynamically adjusts to equilibrate the gradient descent and Gauss-Newton methods, diminishing as 

the model nears the best solution. The third plot illustrates validation checks, emphasizing 

validation performance across epochs, culminating in a final validation failure count of six. These 

measures indicate successful training and imply the model's capacity to generalize effectively to 

novel data while reducing overfitting. 

Fig (3): Training dataset Brent Crude Oil price 
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Figure (4): The training performance 

Figure 4 depicts the training, validation, and testing performance of the FFNN across 25 epochs, 

utilizing mean squared error (MSE) as the performance metric. The graph shows a rapid decrease in 

MSE in the early epochs, indicating that the model learned well. The green circle represents epoch 

19, which has the best validation performance with an MSE of 0.00083946. The validation error 

stabilizes after this point, suggesting that the model has effectively converged without over fitting. 

The robustness and generalization capabilities of the model for predicting patterns in the dataset are 

supported by the tight correspondence of training, validation, and testing errors. For all models, this 

model's performance is equivalent to an MSE of 0.2959. Table (5) shows the best of the best phases 

of the architectural model in (FFNN) for the 

(6): Regression Plot:  

Regression plots show that the model's mistakes are small and fairly evenly distributed, which is an 

essential indication of robustness and reliability. Moreover, the weights throughout all levels of the 

network have been meticulously adjusted to discern the fundamental patterns and correlations 

within the data. The results affirm that the proposed FFNN architecture is adept at handling the 

dataset's complexity and volatility, substantiating its predictive accuracy and overall efficacy in this 

investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5): Regression plot of training, testing, validation and all data 
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  Figure 5 presents regression charts that thoroughly assess the FFNN model with the architecture (1-

16-1), encompassing training, validation, testing, and the aggregate data. The elevated correlation 

coefficients (R-values) for each dataset—R=0.99641 (training), R=0.99724 (validation), R=0.99737 

(testing), and R=0.99656 (all data)—demonstrate exceptional concordance between the predicted 

and actual values, affirming the model's capacity to generalize proficiently across all datasets. This 

chart illustrates the superior performance of the proposed FFNN architecture, chosen following 

comprehensive experiments to identify the optimal configuration. 

 

 

Fig (6) Error Histogram 

The error histogram illustrates the distribution of errors (discrepancies between targets and outputs) 

for training, validation, and testing datasets subsequent to the implementation of the FFNN. The 

majority of errors are concentrated around zero, signifying elevated prediction accuracy across all 

subsets. The symmetrical and constrained error distribution validates the model's efficacy in 

identifying patterns and reducing discrepancies within the dataset. 

C. Fuzzy Pre-processing with FFNN  

Figure 7 compares the de-fuzzified data (red line), which were produced by Python using the 

centroid de-fuzzification technique, with the initial crude oil prices (blue line). In fuzzy logic, the 

centroid technique is frequently used to identify the fuzzy set's center of gravity and provide a 

single, distinct output. Through noise reduction and the preservation of key patterns and trends, this 

technique ensures that the de-fuzzified values faithfully represent the original fuzzy data. Using the 

centroid method, the fuzzy logic process, which was implemented in Python, converted the raw data 

into fuzzy sets and then de-fuzzed it, resulting in an exact match between the de-fuzzed values and 

the initial pricing. The effectiveness of fuzzy logic in data pre-processing to improve FFNN's 

performance for modeling and forecasting intricate, erratic datasets like crude oil prices is 

demonstrated here. 

 

 

 

 

 

 

 

 

 

 

 

Fig (7) Applying Fuzzy Logic by Centroid Method 
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 Table (7): Pre-processing fuzzy logic of data sets 

Number Original De-fuzzified 

1 66.87 66.273799 

2 66.57 65.975268 

3 67.84 67.24258 

4 68.07 67.473086 

5 67.62 67.022382 

6 67.62 67.022382 

. . . 

. . . 

. . . 

1459 79.23 69.91368 

1460 79.32 69.91368 

1461 77.78 69.91368 

 

 

 

 

 

 

       

 

 

Fig (8): Show the top-performing FFNN architecture (1-20-1). 

 

The figure depicts an FFNN with a single input node, a hidden layer with twenty neurons, and a 

single output neuron.Weighted sums and biases undergo activation functions to represent intricate 

relationships, whereas the output layer employs a linear function for regression applications. This 

architecture was optimized to adeptly manage the volatility and uncertainty inherent in the fuzzy-

processed crude oil price dataset. 

Table (8): Represent the best architecture of (FFNN) 

(training,testing, 

validation) 

Active 

function 

(hidden 

layer) 

MODEL MSE RMSE trainRsq valRsq testRsq Rsq(all) trainMSE valMSE testMSE iteration 

%80 , %10 ,%10 tansig 1_4_1 1.111 1.0541 0.99133 0.98701 0.98613 0.9904 1.0114 1.3735 1.6453 432 

%80 , %10 ,%10 tansig 1_5_1 1.1079 1.0526 0.98943 0.99321 0.99588 0.99043 1.2346 0.72195 0.47956 14 

%80 , %10 ,%10 tansig 1_6_1 1.109 1.0531 0.99386 0.96468 0.98974 0.99042 0.70546 4.2395 1.2066 31 

%80 , %10 ,%10 tansig 1_7_1 1.209 1.0995 0.98866 0.99242 0.99443 0.98956 1.3341 0.80229 0.61497 11 

%80 , %10 ,%10 tansig 1_11_1 1.1026 1.05 0.98997 0.99119 0.99414 0.99048 1.1802 0.94895 0.63584 19 

%80 , %10 ,%10 tansig 1-14-1 1.1043 1.0509 0.99122 0.99457 0.98048 0.99046 1.024 0.59114 2.26 32 

%80 , %10 ,%10 tansig 1-18-1 1.105 1.0512 0.98954 0.99429 0.99444 0.99045 1.227 0.63289 0.60177 26 

%80 , %10 ,%10 tansig 1-20-1 1.0983 1.048 0.98964 0.99526 0.9931 0.99051 1.2145 0.54471 0.72286 22 

%70 , %15 ,%15 tansig 1_3_1 1.1446 1.0698 0.99085 0.99309 0.98416 0.99011 1.0793 0.7009 1.8927 49 

%70 , %15 ,%15 tansig 1_5_1 1.1092 1.0532 0.99111 0.98078 0.99601 0.99042 1.0454 2.0549 0.46143 129 

%70 , %15 ,%15 tansig 1_8_1 1.103 1.0502 0.98989 0.99382 0.99027 0.99047 1.2087 0.62544 1.087 31 

%70 , %15 ,%15 tansig 1_11_1 1.104 1.0507 0.99037 0.98933 0.99199 0.99046 1.1467 1.1385 0.86982 54 

%70 , %15 ,%15 tansig 1-14-1 1.1047 1.051 0.99112 0.9924 0.98553 0.99046 1.0499 0.79026 1.6746 20 

%70 , %15 ,%15 tansig 1-18-1 1.1188 1.0577 0.98917 0.9919 0.99481 0.99034 1.2997 0.82178 0.57196 9 
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%70 , %15 ,%15 tansig 1-19-1 1.1051 1.0513 0.99032 0.9954 0.98644 0.99045 1.1534 0.48204 1.5032 39 

%70 , %15 ,%15 tansig 1-20-1 1.1262 1.0612 0.98905 0.99348 0.99343 0.99027 1.3092 0.67977 0.71877 8 

%60 , %20,%20 tansig 1_3_1 1.1242 1.0603 0.99061 0.99316 0.98656 0.99029 1.1314 0.70197 1.5246 78 

%60 , %20,%20 tansig 1_5_1 1.1093 1.0532 0.99326 0.97668 0.99462 0.99042 0.80342 2.537 0.59937 72 

%60 , %20,%20 tansig 1_8_1 1.1035 1.0505 0.98949 0.99401 0.99028 0.99047 1.2822 0.61864 1.0522 88 

%60 , %20,%20 tansig 1_12_1 1.1193 1.058 0.98831 0.99248 0.99487 0.99033 1.4165 0.78241 0.5648 20 

%60 , %20,%20 tansig 1-18-1 1.1458 1.0704 0.99063 0.98416 0.99406 0.9901 1.1283 1.6931 0.65111 8 

%60 , %20,%20 tansig 1-19-1 1.2286 1.1084 0.98913 0.99083 0.98876 0.98939 1.3121 0.95421 1.2524 8 

%60 , %20,%20 tansig 1-20-1 1.1301 1.063 0.99055 0.98541 0.99388 0.99024 1.1344 1.5752 0.67196 8 

 

All training, validation, and testing datasets show strong R2 values, suggesting that the model is 

operating at a high level. The model's predictions, particularly on the validation and testing datasets, 

are in close agreement with the actual values, as evidenced by the comparatively low MSE and 

RMSE. Overfitting is not evident, and the model appears to generalize well to fresh, untested data. 

Table (9): The optimal neural network configuration after fuzzy logic pre-processing dataset 

 

 

 

 

 

Table (10): Performance Metrics of NN with Varying Architectures and Data Split 
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1.0983 1.048 1.2145 0.54471 0.72286 0.98964 0.99526 0.9931 0.99051 

 

This table illustrates how model performance is affected by several neural network configurations, 

including variations in the number of hidden neurons and training-validation-testing splits. Simpler 

models may function well and converge more quickly, saving training time, but more complicated 

models (with more hidden neurons) typically score higher on R-squared values and have lower 

error metrics (MSE, RMSE). These models perform better in terms of generalization when the data 

split is 80/10/10, but models trained with 70/15/15 or 60/20/20 splits also do well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (9): Training dataset after applying fuzzy pre-processing 

Layers Nodes Activation function 

Input layer 1 --------------- 

Hidden layers 20 Tansig (hyperbolic) 

Output layer 1 purelin 
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 Figure 9 illustrates the training process of the FNN following fuzzy pre-processing, with the 

gradient diminishing to 0.00022127 by epoch 22, signifying effective convergence. The "mu" value 

dynamically reduces to 1e-09, optimizing the balance between stability and speed. The validation 

checks remain at six, indicating that the model generalizes effectively without over fitting following 

the fuzzy pre-processing phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (10): The training performance after applying fuzzy 

Figure 10 illustrates the mean squared error performance of the FFNN subsequent to the 

implementation of fuzzy pre-processing. The optimal validation performance, evidenced by an 

MSE of 0.00048436, occurs at epoch 16, as denoted by the green circle. The tight correspondence 

of training, validation, and testing curves validates the efficacy of fuzzy pre-processing in 

enhancing the model's generalization and precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (11): Regression plot of (training, testing, validation, and all data) 

The regression plots illustrate the efficacy of the FFNN subsequent to fuzzy pre-processing, 

exhibiting high correlation coefficients: R=0.99481 (training), R=0.9977 (validation), R=0.99657 

(testing), and R=0.99525 (overall). These figures affirm a robust correlation between expected and 

actual outputs, signifying the model's precision. The fuzzy preprocessing improved the network's 

capacity to generalize and accurately identify intricate patterns in the data. 
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Fig (12): The error histogram 

The error histogram depicts the distribution of errors (discrepancies between targets and outputs) 

for training, validation, and testing datasets subsequent to the implementation of fuzzy pre-

processing and the FFNN. The majority of mistakes are clustered around zero, signifying elevated 

prediction accuracy and negligible variance across all datasets. The limited distribution further 

illustrates the efficacy of fuzzy preprocessing in enhancing the precision and robustness of the 

FFNN. 

Table (11): Comparison of FFNN Performance Before and After Applying Fuzzy Logic 

Metrics FFNN before using fuzzy FFNN after using fuzzy 

Mean Square Error 1.2959 1.0983 

Root Mean Square Error 1.1384 1.048 

Trainin (MSE) 1.3867 1.2145 

Validation (MSE) 0.94405 0.54471 

Testing (MSE) 0.92129 0.72286 

R-Squared (all) 0.99314 0.99051 

Trainin Rsq 0.99283 0.98964 

Validation Rsq 0.9944 0.99526 

Testing Rsq 0.99465 0.9931 

Iteration 25 22 

 

For both training and testing data, fuzzy logic lowers prediction errors by improving the model's 

error metrics (MSE, RMSE). Additionally, as seen by lower validation and testing MSE, it 

improves generalization. The model continues to fit the data well even when R-squared values 

marginally decline. Additionally, because it takes fewer iterations to converge, fuzzy logic 

improves training efficiency. 
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 5th: Conclusion and Recommendation  

1- Conclusion 

This study demonstrates the efficacy of FFNNs in conjunction with fuzzy pre-processing for the 

analysis of volatile data, including the price of Brent crude oil. The fuzzy-enhanced FFNNs' 

improved capacity to handle uncertainty is seen by the mean squared error (MSE) dropping from 

1.2959 to 1.0983. When fuzzy approaches are combined with neural networks, the accuracy of data 

processing is greatly increased. 

2- Recommendation’s 

For the analysis of complicated datasets with uncertainty, this methodology is advised. Hybrid 

models should be examined in future studies to improve prediction accuracy even more. Further 

performance gains could result from investigating different fuzzy and deep learning techniques. 
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