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Abstract: This paper studies the effectiveness of feed forward neural networks
(FFNNs) in comprehending fuzzy data, specifically analyzing the Brent crude oil price
dataset from January 1, 2018, to December 31, 2021. Crude oil prices exhibit intrinsic
unpredictability, characterized by uncertainty and imprecision, rendering them suitable
for fuzzy data analytics. FFNNs, recognized for their ability to model complex and
nonlinear associations, are employed to predict and analyze price fluctuations in this
ambiguous domain. The research evaluates the performance of FFNN against
conventional statistical and machine learning models, incorporating essential
assessment metrics such as prediction accuracy, mean squared error, and resilience to
noisy or absent data. The results of this study indicate that the application of fuzzy pre-
processing in combining with FFNNs decidedly improves model performance. Before
employing fuzzy methodologies, the mean squared error (MSE) was recorded at 1.2959.
Nonetheless, the incorporation of fuzzy pre-processing into the FFNN framework
reduced the MSE to 1.0983, illustrating the enhanced ability of the combined strategy to
address uncertainty and imprecision in the data. This augmentation illustrates the
efficacy of fuzzy-enhanced neural networks in generating more precise forecasts for
complex, volatile variables such as Brent crude oil prices.

Keywords: Fuzzy Data Analytics, FFNN, Fuzzy Preprocessing, R2, MSE.
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Introduction

Crude oil is a fundamental element of both national and international economies. Key factors
contributing to heightened price volatility in the crude oil market include political events, extreme
weather conditions, and speculative activities in financial markets, among others. The economy and
communities are significantly affected by the fluctuations in oil prices, as they impact several
commodities and services. An Artificial Neural Network (ANN) is a black-box model that acquires
the nonlinear link between system inputs and outputs, emulating human brain function instead of
relying on intricate mathematical models. Both fuzzy logic and FFNN address the intrinsic non-
linearity of systems such as the crude oil market. Moreover, fuzzy logic provides tools like
membership functions to represent ambiguity but FFNNs are adept at extracting complex patterns
from data. A major issue in fields like energy economics financial forecasting and uncertainty-
based decision-making is analyzing volatile and uncertain data. One prominent example is the crude
oil market where intricate and frequently unanticipated factors like supply and demand fluctuations
natural disasters and geopolitical instability affect price swings. Fuzzy data analysis has emerged as
a reliable technique to lessen these limitations. This approach bridges the gap between strict
numerical analysis and real-world ambiguity by creating fuzzy sets to represent uncertainty
allowing for more nuanced modeling of imprecise data [1]. A time series is a group of observations
or data points that have been documented chronologically. It is frequently used to analyze dynamics
patterns and trends in temporally organized data from a range of disciplines such as economics
environmental studies and finance.

Fuzzy data analysis is enhanced by FNNs, a form of artificial neural network, which have the
capacity to acquire intricate, non-linear relationships. FNNs are composed of interconnected layers
of nodes that transform input data through weighted connections and activation functions, thereby
facilitating the extraction of patterns from highly complex datasets. They are particularly effective
for tasks such as prediction, classification, and regression due to their adaptability and
generalization capabilities.

1%t: Research Problems

Fuzzy preprocessing combined with FFNN provides a novel and beneficial approach to dealing
with uncertain datasets, such crude oil prices. Before neural network data processing, fuzzy pre-
processing converts traditional numeric input into fuzzy sets so that the model can handle
imprecision. This all-encompassing approach effectively addresses unstable markets by leveraging
the exceptional learning capabilities of FFNNs and the benefits of fuzzy logic in managing
uncertainty.

2nd: Goal of the Research:

This study focuses on the Brent crude oil price dataset from January 1, 2018, to December 31, 2021,
in order to evaluate the effectiveness of fuzzy pre-processing-enhanced FFNNs. The paper shows
how this approach improves predicted accuracy and noise resistance by comparing it to traditional
statistical and machine learning models. This work adds to the body of knowledge on advanced
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analytical techniques by highlighting their value in improving forecasting and decision-making in
intricate, uncertain situations.

3rd: Methodology
1- Fuzzy logic

In order to identify outputs, fuzzy logic uses membership functions, which resemble human
intuition. It operates with ranges, transforming precise inputs into varying degrees of membership.
Optimizing membership functions remains a central research focus in fuzzy logic systems.

2- The fuzzy and Crisp sets

A fuzzy set is a set whose basics have varying degrees of membership, characterized by a
membership function that assigns each element a value between 0 and 1. A crisp set is defined as a
collection of elements with distinct, binary membership: each element is either a member of the set
or it is not. There is no allowance for partial membership; each element is assigned a value of 1 if it
belongs to the set and 0 if it does not.

3- Membership Functions

A membership function (MF) maps each point in an input space to a membership degree, ranging
from 0 to 1. The membership degree quantifies the degree of membership in a fuzzy set, with values
between 0 and 1 indicating partial membership. The membership function is crucial in designing
fuzzy controllers, as it must reside within the [0,1] interval [6].

4- Features of Membership Function

A- Support: The support of fuzzy set B is the set of all point x € X such that mz(x) > 0.
Mathematically, we can present Support(B) = {(x, Mp(x))/Mp(x)) > 0)}.

B- Core: The core of a fuzzy set B is the set of all x € X such that Mg (x)=1. Mathematically, we
can show core (B) = {(x, Mg(x))/Mp(x)) = 1)}

C- a-Cut: set of elements with degree > a. Mathematically, we can indicate a—cut B, =
{xeX| Mp(x) = a}

D-Strong a-Cut: B, = {xeX| Mp(x) = a}, in this case ‘B’ is defined as Crisp set.

E-Triangular Membership Function — The subsequent text presents a collection of standard
mathematical functions that govern the configuration of membership functions (MFs):

A triangular MF is characterized by the following equation:

0 X< a«a
_Jx—a)/(b—a) a<x<bhb
M5 (X) =) (x = ) /(b — ¢ b<x<c (1
0 X=c

here the choice “a to ¢” shows the support of the fuzzy set and “p” is a unique point in the range
and has the highest membership function value.

5- Fuzzification and De-fuzzification

Fuzzification is the transformation of precise quantities into imprecise states, acknowledging that
many perceived deterministic quantities are actually characterized by significant uncertainty, often
imprecise and represented by a membership function. However, de-fuzzification is the conversion
of fuzzy set results from a fuzzy inference system into a precise numerical value, essential for real-
world control or decision-making tasks. and a common method is centroid [4].

6- A. Categories of Neural Network Architecture:

(1) Feedforward Neural Network (FFNN): Consists of layers of neurons with input from the layer
above and output from the layer below, devoid of feedback loops.
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(2) Feedback Neural Network (FBN): is sent output from one layer to the next, facilitate
bidirectional signal transmission through loops. They are powerful and complex, allowing synaptic
connections among neurons, used in optimization for optimal configuration [9].

B. The main layers of a typical artificial neural network [10]

In order to increase numerical precision in network mathematical operations, the input layer of an
artificial neural network (ANN) accepts external data, signals, characteristics, or measurements and
normalizes them within activation functions. Most of the internal processing in a network is also
carried out by the hidden or unseen layers and the neurons in these layers, which extract patterns
associated with the system or process under analysis. In addition, neurons make up the output layer,
which generates and displays the final network outputs from the processing done in earlier layers.

C. Training Procedures and Learning Neural Network Characteristics

The training process of a neural network involves tuning synaptic weights and thresholds to
generalize solutions, using a learning algorithm to extract discriminant features from samples,
enhancing the network's performance.

(1) Supervised Learning: Contains a training sample that includes input signals and the intended
outputs; input/output data must be in a table. The learning algorithm continuously modifies synaptic
weights and thresholds as the neural structures generate hypotheses based on this data.

(2) Unsupervised Learning: enables learning of clusters within a network, identifying similarities
between elements without requiring prior knowledge, thereby enhancing the network's self-
organization and accuracy.

(3) Reinforcement Learning: algorithms adjust neural parameters based on interaction with the
network environment, evaluating performance through trial and error, using stochastic methods to
modify probabilities for improved network performance.

7- Feed-Forward Neural Network (FFNN)

A FFNN is a fundamental model in machine learning. It has four main mechanisms: the input layer,
one or more hidden layers, the output layer, and the weights that interconnect the neurons. A
Feedforward Neural Network has an input layer that signifies dataset properties and transmits this
information to hidden layers, which analyze the data via weighted neuron connections to facilitate
intricate transformations. The output layer generates the model's predictions. The weights that
determine the strength of these connections are essential to the model's performance, and the main
objective of a Feedforward Neural Network is to optimize these weights for precise input-to-output
mapping and efficient target variable prediction.

8- Types of Active Function
A. Hyperbolic Tangent Function (Tanh)

The tanh is an alternative activation function used in network processing, with many versions
utilized in deep learning applications. The tanh function, is a smoother zero-centred function whose
range lies between -1 to 1, thus the output of the tanh function is given by the equation

__ Exp*-Exp™™*
- ExpX+Exp—*

2

B. Linear Active function

The linear function calculates the neuron s output by simply returning the value passed to it.
Y = X 3)

9- Derivation of the Levenberg—Marquardt Algorithm

The Levenberg-Marquardt algorithm is an adaptive approach for solving nonlinear least squares
problems, which is widely used in curve fitting and parameter estimation. It dynamically adjusts a
damping factor to combine steepest descent's stability with the Gauss-Newton method's quick
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convergence. To update the model parameters, the approach first linearizes the goal function and
the solves a damped least squares problem. Its versatility makes it a reliable and effective tool for
improving complicated, nonlinear models.

Table (1): Specifications of different algorithms

Algorithms Update rule convergence

EBP algorithm Txs1 = Tk — Bgk Stable, Slow

Newton algorithm Tir1 = T — Hit gk Unstable, Fast

Gauss-Newton algorithm Taer = Tu — (ZLZ) 7 Zyc ey Unstable, Fast
Levenberg-Marquardt algorithm Tys1 = Tx — (ZE Zy + mD) ™1 Zy ey Stable, Fast

4th; Result and Discussions:
A. Data Description:

We extracted Brent crude oil production data daily spanning 1461 days, from 1 January 2018 to 31
of December 2022. The fuzzy time series model and FNN have been implemented to analyse the
data set. The data was sourced from the markets insider [15] used MATLAB and python software’s
for analysing the data [15].

B. The Process of Implementing FNN

The application for building an FFNN for time series prediction is included in this section. For the
data mentioned above, FFNN has been applied using the MATLAB software. The following
procedures were used in this paper to applying the FNN for time series prediction:

(1) First Step

In this instance, we utilize the MATLAB software to identify data, as we require a specific type of
data for the (FFNN) algorithm. The input data is denoted as (X;:t = 1,2,...,1461), while the
objective data is denoted as (T;t = 1,2,3, ...,1461). The Augmented Dickey-Fuller (ADF) test was
implemented to assess the stationary of the Brent petroleum oil price time series. The test results
offer critical insights into whether the data necessitates transformation, such as differencing, to
attain stationary for on-going time series analysis and model development.

Fig (1): Daily price of Brent Oil Crude

Hypothesis Test:
Ho:: The time series is non-stationary and has a unit root
Hi: The time series lacks a stationary unit root.
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Table (2): Represent the ADF Test of Brent Oil Crude price

Test Test Statistic P-Value Critical Value

1% :-3.434621

Augmented Dickey-Fuller test -1.427248 0.5702 5% :-2.863313

10%:-2.567763

Since the test statistic (-1.427248) is greater than the critical values at all significance levels (1%,
5%, and 10%) and the p-value (0.5702) is greater than the conventional cutoff of 0.05, we are
unable to reject the null hypothesis of the Augmented Dickey-Fuller test. Given that there is little
evidence to support the notion that the time series is stationary, it is likely to have a unit root and
may need to undergo some sort of transformation, such as a difference, to become stationary.

Table (3): Represent the ADF Test of Brent Oil Crude Price After First Difference.

Test Test Statistic P-Value Critical Value
1% :-3.434624
Augmented Dickey-Fuller test -38.38734 0.0000 5% :-2.863315

10%:-2.567763

The low p-value (0.0000) and the extremely negative test statistic of -38.38734, which is far more
negative than the critical values at all significance levels, lead us to strongly reject the null
hypothesis. This implies that the time series is stationary as it does not have a unit root and its
statistical properties do not change over time. There is no need for any transformation, including
differencing, because the series is inherently stationary.

(2) Step two: Data normalization

This step's goal is to normalize the data by limiting it to either the (0, 1) or (-1, 1) ranges. This
coding depends on the features of the particular ANN or FFNN type used, especially when the
dataset has complex patterns. In these situations, using the first type of normalization described
above might be more beneficial.

(3) Step three: Partitioning the data

This research involved partitioning the dataset into training, testing, and validation subsets through
three distinct methodologies to ascertain the most effective allocation for the development and
evaluation of FFNN. The following proportions were used: 70% for training, 15% for testing, and
15% for validation; 60% for training, 20% for testing, and 20% for validation; and 80% for training,
10% for testing, and 10% for validation. Every partitioning technique was analyzed to determine
how it affected the predicted accuracy and generalization of the model. The main objective was to
improve the allocation ratio to balance model training, mitigate over fitting, and guarantee adequate
data availability for impartial testing and validation. The goal of the study is to compare the
outcomes in various proportions in order to determine the best partitioning strategy for controlling
the volatility and uncertainty in the Brent crude oil price dataset. The FFNN models' robustness and
reliability for forecasting and decision-making in complex situations are ensured by this
methodology.

(4) Step four: Develop the network architecture

Here, the FNN is composed of three layers: the input layer, hidden layer, and output layer. We
select the optimal approach for the network's performance at this stage by evaluating two critical
metrics: The minimum MSE and RMSE values. The selection of the optimal FFNN is contingent
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upon the minimum MSE and RMSE values. In this study the best FFNN chosen to analyse data,
one hidden layer network is used, which is explained in table (4) and figure (6) below.

Table (4) Represent the best architecture of (FFNN)

Layers Nodes Activation function
Input layer et
Hidden layers 16 Tansig (hyperbolic)
Output layer | Purelin

The table you gave appears to depict the architecture of a neural network, detailing the network's
layers, node count, and activation functions to be precise.

Fig (2) Represent the best architecture FFNN model (1-16-1)

The optimal neural network configuration is [1-16-1], determined by achieving minimum MSE and
RMSE values. By using the TANSIG activation function, the number of nodes of hidden layers
were adjusted iteratively. Partitioning of the dataset into training, testing, and validation was varied
to identify the best performance setup and we get the best model is [Tansig _ Pureline output].

Table (5): The optimal neural network configuration dataset

MSE RMSE MSE MSE MSE Rsq Rsq Rsq Rsq
(all) (training) (validate) (testing) (training)  (validation) (testing) (all)
1.2959 1.1384 1.3867 0.94405 0.92129 0.99283 0.9944 0.99465 0.99314

Table (6): Performance Metrics of Neural Network Models with Varying Architectures and Data Split

(training,t
esting,
validation)
Active
function
(hidden
lavawr)
MODEL
MSE
RMSE
trainRsq
valRsq
testRsq
Rsq(all)
trainMSE
valMSE
testMSE
iteration

%380, %10,
%10
%80, %10,
%10
%80, %10,

1.3135 1.1461  0.99309 0.99355  0.9921  0.99304 1.3411 1.0403 1.3663 18

=)
—

tansig 19

tansig 1-14-1 1.311 1.145  0.99301 0.99366 0.99288 0.99306 1.3486  1.0571 1.2636 19

tansig 1-16-1  1.2959 1.1384 0.99283  0.9944  0.99465 0.99314 13867 0.94405 0.92129 25

%10
%680, %10 , i 1-17-1 1 1.1402 2 2 14 12 142 21 14 2
%10 tansig -17- 3 .140 0.99266  0.99525  0.995 0.993 4203 0.8218  0.81497 8
0, 0,
780, %10, tansig 1-18-1 1.3037  1.1418 099289 09942  0.99378  0.9931 1.3714  1.0101 1.0558 17

%10
%80, %10,
%10
%80, %10,
%10
%70 , %15
Y15
%70 , %15
15
%70, %15
15

tansig 1-19-1  1.2992  1.1398 0.99384 0.99569 0.98369 0.99312 1.1867 0.77608 2.72 34

tansig 1-20-1 1.32 1.1489 099277 0.99508 0.99297 0.99301 13917 0.90049  1.1655 12

tansig 141 1.346  1.1602  0.99388 0.99278  0.98809 0.99287  1.188 1.182 2.2478 16

tansig 1.51 1.3223  1.1499 099289  0.9917  0.99471 0.993 1.3889  1.3841  0.94981 13

tansig 171 1.328 1.1524 099287  0.9926 099382 0.99297 1.4141 1.2005 1.0541 14
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%70, %15
%15
%70, %15
Y15
%70, %15
Y15
%70, %15
%15
%70, %15
%15
%70, %15
Y15

tansig 1111 13177 1.1479 0.99427 098748 0.99171 099302 1.1315  2.1165 1.3875 16

tansig 1121 13095 1.1444 09925 0.9951  0.99406 0.99306 1.4741 0.82776  1.0234 25

tansig 1-16-1 13006 1.1404 0.99274 0.99427 0.99399 0.99311 1.4326  0.9489 1.0367 27

tansig 1-17-1 13129  1.1458 0.99284  0.99217 0.995 0.99305 1.4127 1.2986 0.86117 34

tansig 1-18-1 1.321 1.1493  0.99294  0.9921  0.99416 0.993 1.3919  1.2948 1.0163 13

tansig 1-20-1  1.3612  1.1667 0.99233  0.9944  0.99361 0.99279 1502  0.96022  1.1052 8

%60 , )
vob  tansig 151 13206 11492 099283 09925 099377 099301 14439 L1919 10795 15
0,

%2/‘;)6&’20 tansig 115 1 13092 1.1442 099444 099032 099117 099307 1.0966 17655 14907 33
%60 , )

vogwpo  ESiE 161 13255 LISI3 099389 09917 099098 099298 12292 13573 15827 27
%60 , .

vobwpo  SiE 1-9- 13201 1149 099428 099183 098983 099301 11238 14638 17653 21

In conclusion, this model appears to be doing rather well; it has low MSE/RMSE values and high
R? values across training, validation, and testing datasets, indicating that it generalizes to unknown
data with ease.

The model with the lowest MSE and highest R? values, 1-16-1 (80%, 10%, 10%), performs the best.
Although it may result in overfitting, increasing the number of hidden neurons (e.g., 19, 20) can
improve accuracy. Because it provides more training data, the (80%, 10%, 10%) split performs
better than 60%, 20%, and 20%. The dataset split and ideal hidden layers are essential for striking a
balance between generalization and accuracy.

(5): step five: Training FFNN

Figure3 illustrates the training process of the feedforward neural network (FNN) employing the
Levenberg-Marquardt optimization algorithm, displaying three essential metrics across 25 epochs.
The initial figure monitors the gradient, which diminishes consistently, signifying effective
optimization and convergence of the model. The second plot illustrates the parameter "mu," which
dynamically adjusts to equilibrate the gradient descent and Gauss-Newton methods, diminishing as
the model nears the best solution. The third plot illustrates validation checks, emphasizing
validation performance across epochs, culminating in a final validation failure count of six. These
measures indicate successful training and imply the model's capacity to generalize effectively to
novel data while reducing overfitting.

Gradient = 9.4304e-05, at epoch 25

N

Mu = 1e-09, at epoch 25

=]
e

gradient
=
[-]

g 10°
10-10
Validation Checks = 6, at epoch 25
10 - N T -
=
8
s 5 v o*
= * *
* - * *
DP#OQQ? 4444 ‘0000?
0 5 10 15 20 25
25 Epochs

Fig (3): Training dataset Brent Crude Oil price
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Best Validation Performance is 0.00083946 at epoch 19

Mean Squared Error (mse)

0 5 10 15 20 25
25 Enochs
—

Figure (4): The training performance

Figure 4 depicts the training, validation, and testing performance of the FFNN across 25 epochs,
utilizing mean squared error (MSE) as the performance metric. The graph shows a rapid decrease in
MSE in the early epochs, indicating that the model learned well. The green circle represents epoch
19, which has the best validation performance with an MSE of 0.00083946. The validation error
stabilizes after this point, suggesting that the model has effectively converged without over fitting.
The robustness and generalization capabilities of the model for predicting patterns in the dataset are
supported by the tight correspondence of training, validation, and testing errors. For all models, this
model's performance is equivalent to an MSE of 0.2959. Table (5) shows the best of the best phases
of the architectural model in (FFNN) for the

(6): Regression Plot:

Regression plots show that the model's mistakes are small and fairly evenly distributed, which is an
essential indication of robustness and reliability. Moreover, the weights throughout all levels of the
network have been meticulously adjusted to discern the fundamental patterns and correlations
within the data. The results affirm that the proposed FFNN architecture is adept at handling the
dataset's complexity and volatility, substantiating its predictive accuracy and overall efficacy in this
investigation.

Training: R=0.99641 Validation: R=0.99724
o o
= S ©  Data
=3 =1 Fit
;; T os} ¥=T
3 -
g o
5 & of
= -
? ! &
5 - 3 05} o
2 =) a0
o
3 < s
0.5 ] 05
Target Target

Test: R=0.99737 _All: R=0.99656

Qutput ~= 0.98'Target +0.0032
Output ~= 0.99*Target +0.0021
[=3

Target

Fig (5): Regression plot of training, testing, validation and all data
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Figure 5 presents regression charts that thoroughly assess the FFNN model with the architecture (1-
16-1), encompassing training, validation, testing, and the aggregate data. The elevated correlation
coefficients (R-values) for each dataset—R=0.99641 (training), R=0.99724 (validation), R=0.99737
(testing), and R=0.99656 (all data)—demonstrate exceptional concordance between the predicted
and actual values, affirming the model's capacity to generalize proficiently across all datasets. This
chart illustrates the superior performance of the proposed FFNN architecture, chosen following
comprehensive experiments to identify the optimal configuration.

Error Histogram with 20 Bins

A Trzining
N validation
N Test

Zero Error

500 |-

400

300

Instances

200

100 |-

=

------ = g =

= =
2 2
< =]

ut

Errors = "I'arget's -0

Fig (6) Error Histogram

The error histogram illustrates the distribution of errors (discrepancies between targets and outputs)
for training, validation, and testing datasets subsequent to the implementation of the FFNN. The
majority of errors are concentrated around zero, signifying elevated prediction accuracy across all
subsets. The symmetrical and constrained error distribution validates the model's efficacy in
identifying patterns and reducing discrepancies within the dataset.

C. Fuzzy Pre-processing with FFNN

Figure 7 compares the de-fuzzified data (red line), which were produced by Python using the
centroid de-fuzzification technique, with the initial crude oil prices (blue line). In fuzzy logic, the
centroid technique is frequently used to identify the fuzzy set's center of gravity and provide a
single, distinct output. Through noise reduction and the preservation of key patterns and trends, this
technique ensures that the de-fuzzified values faithfully represent the original fuzzy data. Using the
centroid method, the fuzzy logic process, which was implemented in Python, converted the raw data
into fuzzy sets and then de-fuzzed it, resulting in an exact match between the de-fuzzed values and
the initial pricing. The effectiveness of fuzzy logic in data pre-processing to improve FFNN's
performance for modeling and forecasting intricate, erratic datasets like crude oil prices is
demonstrated here.

Fuzzy Logic: Original vs Defuzzified Values

0 200 400 600 800 1000 1200 1400

Fig (7) Applying Fuzzy Logic by Centroid Method
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Table (7): Pre-processing fuzzy logic of data sets

University of Kirkuk Journal For Administrative
and Economic Science (2025) 15 (2): 427-441

Number Original De-fuzzified
1 66.87 66.273799
2 66.57 65.975268
3 67.84 67.24258
4 68.07 67.473086
5 67.62 67.022382
6 67.62 67.022382

1459 79.23 69.91368
1460 79.32 69.91368
1461 77.78 69.91368
Output
OQutput

i

/u::. 'O_I

Fig (8): Show the top-performing FFNN architecture (1-20-1).

The figure depicts an FFNN with a single input node, a hidden layer with twenty neurons, and a
single output neuron.Weighted sums and biases undergo activation functions to represent intricate
relationships, whereas the output layer employs a linear function for regression applications. This
architecture was optimized to adeptly manage the volatility and uncertainty inherent in the fuzzy-

processed crude oil price dataset.
Table (8): Represent the best architecture of (FFNN)

Active
(t’f;ii':li’:i?;;“g’ f('l‘l'l‘;fi‘:: MODEL MSE RMSE  frainRsq valRsq festRsq Rsq(all) trainMSE valMSE  testMSE iteration
layer)
%80,%10.%10  tansig 141  LII1 10541 099133 098701 098613 09904 10114 13735  1.6453 432
%80, %10,%10  tansig 151 11079  1.0526 098943 099321 099588 099043  1.2346 072195  0.47956 14
%80, %10,%10  tansig 161 1109  1.0531 099386 096468 098974 099042 070546 42395  1.2066 31
%80, %10,%10  tansig 171 1209  1.0995 098866  0.99242 0.99443 098956  1.3341  0.80229  0.61497 "
%80, %10,%10  tansig 1111 11026 105 098997 099119 099414 099048  1.1802  0.94895  0.63584 19
%80,%10 %10  tansig  1-14-1 11043 10509 099122 099457 098048 099046  1.024 059114 226 32
%80,%10 %10  tansig  1-181 1105 10512 098954 099429 0.99444 099045 1227  0.63289  0.60177 26
%80, %10,%10  tansig  1-20-1  1.0983  1.048 098964 099526 09931 099051 12145 054471  0.72286 2
%70,%I15 %15 tansig 131 11446 10698 099085 099309 098416 099011 10793 07009 18927 49
%70,%15,%15  tansig 151 11092  1.0532 099111 098078 099601 099042  1.0454 20549 046143 129
%70,%15,%15  tansig 181 1103 1.0502 098989 099382 099027 099047 12087  0.62544  1.087 31
%70,%15,%15  tansig 1111 1104  1.0507 099037 098933 099199 099046  1.1467  1.1385  0.86982 54
%70, %15,%15  tansig  1-14-1 11047 1051 099112 09924 098553 099046  1.0499 079026  1.6746 20
%70, %15,%15  tansig  1-18-1 L1188  1.0577 098917 09919 099481 099034 12997 082178  0.57196 9
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%70, %15 ,%15 tansig 1-19-1 1.1051 1.0513 0.99032 0.9954 0.98644  0.99045 1.1534 0.48204 1.5032 39
%70, %15 ,%15 tansig 1-20-1 1.1262 1.0612 0.98905 0.99348  0.99343  0.99027 1.3092 0.67977 0.71877 8
%60 , %20,%20 tansig 1.31 1.1242 1.0603 0.99061 0.99316  0.98656  0.99029 1.1314 0.70197 1.5246 78
%60 , %20,%20 tansig 1.51 1.1093 1.0532 0.99326 0.97668  0.99462  0.99042 0.80342 2.537 0.59937 72
%60 , %20,%20 tansig 1.81 1.1035 1.0505 0.98949 0.99401  0.99028  0.99047 1.2822 0.61864 1.0522 88
%60 , %20,%20 tansig 1.12_1 1.1193 1.058 0.98831 0.99248  0.99487  0.99033 1.4165 0.78241 0.5648 20
%60 , %20,%20 tansig 1-18-1 1.1458 1.0704 0.99063 0.98416  0.99406 0.9901 1.1283 1.6931 0.65111 8
%60 , %20,%20 tansig 1-19-1 1.2286 1.1084 0.98913 0.99083  0.98876  0.98939 1.3121 0.95421 1.2524 8
%60 , %20,%20 tansig 1-20-1 1.1301 1.063 0.99055 0.98541  0.99388  0.99024 1.1344 1.5752 0.67196 8

All training, validation, and testing datasets show strong R? values, suggesting that the model is
operating at a high level. The model's predictions, particularly on the validation and testing datasets,
are in close agreement with the actual values, as evidenced by the comparatively low MSE and
RMSE. Overfitting is not evident, and the model appears to generalize well to fresh, untested data.

Table (9): The optimal neural network configuration after fuzzy logic pre-processing dataset

Layers Nodes Activation function
Input layer et
Hidden layers 20 Tansig (hyperbolic)
Output layer 1 purelin

Table (10): Performance Metrics of NN with Varying Architectures and Data Split

b e —_ b = —_
of = =)
2 o~ & = £ = & = £ = ~
2 E @®E @nT n e T E T 22 F £ g =
) z = & = e

1.0983 1.048 1.2145 0.54471  0.72286  0.98964  0.99526 0.9931 0.99051

This table illustrates how model performance is affected by several neural network configurations,
including variations in the number of hidden neurons and training-validation-testing splits. Simpler
models may function well and converge more quickly, saving training time, but more complicated
models (with more hidden neurons) typically score higher on R-squared values and have lower
error metrics (MSE, RMSE). These models perform better in terms of generalization when the data
split is 80/10/10, but models trained with 70/15/15 or 60/20/20 splits also do well.

Gradient = 0.00022127, at epoch 22
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Fig (9): Training dataset after applying fuzzy pre-processing
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Figure 9 illustrates the training process of the FNN following fuzzy pre-processing, with the
gradient diminishing to 0.00022127 by epoch 22, signifying effective convergence. The "mu" value
dynamically reduces to 1e-09, optimizing the balance between stability and speed. The validation
checks remain at six, indicating that the model generalizes effectively without over fitting following
the fuzzy pre-processing phase.

) Best Validation Performance is 0.00048436 at epoch 16
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Fig (10): The training performance after applying fuzzy

Figure 10 illustrates the mean squared error performance of the FFNN subsequent to the
implementation of fuzzy pre-processing. The optimal validation performance, evidenced by an
MSE of 0.00048436, occurs at epoch 16, as denoted by the green circle. The tight correspondence
of training, validation, and testing curves validates the efficacy of fuzzy pre-processing in
enhancing the model's generalization and precision.
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Fig (11): Regression plot of (training, testing, validation, and all data)

The regression plots illustrate the efficacy of the FFNN subsequent to fuzzy pre-processing,
exhibiting high correlation coefficients: R=0.99481 (training), R=0.9977 (validation), R=0.99657
(testing), and R=0.99525 (overall). These figures affirm a robust correlation between expected and
actual outputs, signifying the model's precision. The fuzzy preprocessing improved the network's
capacity to generalize and accurately identify intricate patterns in the data.
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Fig (12): The error histogram

The error histogram depicts the distribution of errors (discrepancies between targets and outputs)
for training, validation, and testing datasets subsequent to the implementation of fuzzy pre-
processing and the FFNN. The majority of mistakes are clustered around zero, signifying elevated
prediction accuracy and negligible variance across all datasets. The limited distribution further
illustrates the efficacy of fuzzy preprocessing in enhancing the precision and robustness of the
FFNN.

Table (11): Comparison of FFNN Performance Before and After Applying Fuzzy Logic

Metrics FFNN before using fuzzy FFNN after using fuzzy
Mean Square Error 1.2959 1.0983
Root Mean Square Error 1.1384 1.048
Trainin (MSE) 1.3867 1.2145
Validation (MSE) 0.94405 0.54471
Testing (MSE) 0.92129 0.72286
R-Squared (all) 0.99314 0.99051
Trainin Rsq 0.99283 0.98964
Validation Rsq 0.9944 0.99526
Testing Rsq 0.99465 0.9931
Iteration 25 22

For both training and testing data, fuzzy logic lowers prediction errors by improving the model's
error metrics (MSE, RMSE). Additionally, as seen by lower validation and testing MSE, it
improves generalization. The model continues to fit the data well even when R-squared values
marginally decline. Additionally, because it takes fewer iterations to converge, fuzzy logic
improves training efficiency.
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5th: Conclusion and Recommendation
1- Conclusion

This study demonstrates the efficacy of FFNNs in conjunction with fuzzy pre-processing for the
analysis of volatile data, including the price of Brent crude oil. The fuzzy-enhanced FFNNs'
improved capacity to handle uncertainty is seen by the mean squared error (MSE) dropping from
1.2959 to 1.0983. When fuzzy approaches are combined with neural networks, the accuracy of data
processing is greatly increased.

2- Recommendation’s

For the analysis of complicated datasets with uncertainty, this methodology is advised. Hybrid
models should be examined in future studies to improve prediction accuracy even more. Further
performance gains could result from investigating different fuzzy and deep learning techniques.
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