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Solving System of Nonlinear Fredholm Fractional Integro-Differential
Equations by Using A domain decomposition method and the modification
of He's Variational iteration method
Teaching Assistant: Hussein Yasser
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Abstract

This work presents a comparison between the A domain decomposition
technique (ADM) The process of adaption of He's method. iterative procedure
based on variation (MVIM) to get a close answer to a system of nonlinear
equations Integrated and differential equations with fractions. We give some
examples to check how well the methods work.

Keywords: Caputo derivative, fractional integro-differential equations, and
system of nonlinear fractional integro-differential equations, A domain
decomposition method, modification of He's variational iteration method.

1. Introduction

In recent years, the fractional calculus has been used increasingly in different
areas of applied science, has turn out that many phenomena in physics,
engineering, chemistry, and other sciences can be described very successfully by
models using mathematical tool from fractional calculus,([3],[4]). Some
important problems in science and engineering can usually be reduced to a
system of fractional integro-differential equations. since few of these equations
can be solved explicitly, it is often necessary to develop the numerical
integration and interpolation, ([1],[6],[14]). The our propose of this paper we
study A domain decomposition method (ADM), and the modification of He's
variational iteration method for approximating the solution of system of
nonlinear fractional integro-differential equations. We will consider fractional
order integro-differential equations of the form:
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D%y;(x) = g;(x)

1 m
+ jo Z ky (o OF@©lde, i

=12, ..., (1.1
with initial values y;(0) = ¢;;
where the functions g;(x), k;;(x, t) are known functions and for x,t € [0,1], a
are a numerical parameters,
and y;(x) are the unknown functions, D% i is the partial derivative of Caputo
and F;[y;(t)]are a nonlinear
continuous functions.

2. Basic definitions
This part talks about some basic terms and features of the fractional calculus
theory that are used in this work,([2],[5]).

Definition: 2.1
"A real function y(x), x > 0, is said to be in the space C,,u € R, if there exists a
real number P > pu, such that

y(x) = xPy;,(x),where y,(x) € C[0,1).Clearly C, c Cp if B < u."

Definition: 2.2
A function y(x), x > 0, is said to be in the space C* ,m € N U {0},if y™ €
C, .

Definition: 2.3
The left sided Riemann-Liouville fractional integral  operator
a = 0,0f a function, y € C,,u = —1, is defined as :

1%y (x) _ﬁf (x—t)* 1y(t)dt, a >0, x>0.
(2,1)
1°y(x) = y(x) ,(° =1Iidendity operator).
(2:2)
Definition: 2.4

Let ye C™, me NuUO0, thatthe Caputo's fractional derivative of y(x) is
defined as.
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Jm % y™(x), m—1<a<m, meN

D%y(x) = {pm
y(x) @ “=m
Dx™
(2.3)

Hence, we have the following properties:

1“IPy(x) = 1**Py(x), forall a,f =0, yeC,,u>0.
(2.4)

(2.5)

forx >0, a=>02>,y>-1.

xk

19Dy (x) = y(x) - Eito vy (0, x> 0.
(2.6)

Furthermore, Caputo fractional differentiation is a linear process that functions
similarly to inter-order differentiation.
D"a [A y(x) +1 g(x)] = A D*a y(x) + u D*a g(x), with A and p constants.

3. ""Numerical solution a system of nonlinear Fredholm fractional
integro-differential equations™

This section includes a domain decomposition method and a modified version of
He's variational iteration approach.

are applied for solving system of nonlinear fractional integro-differential
equations.

A domain decomposition method
Consider equations (1.1) where D%are the operator defined by (2.3), operating

with 1% on both sides
of equations (1.1) we obtain:

yi(x) =
1811
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k .
y;i(0) — X7%5! }’i(k)(OJF)% + I [gi(x) + fol Yiz1kij(x,t) F; [}’i(t)]dt] , L=
1,2,..,r (3.1)

we employ A domain decomposition method to solve the system of equation
(3.1) by the series,([7],[12]),

Yi(x) = Xm=0Yim (X)),
(3.2)

and nonlinear functions F; are decomposed as:

Fily:(©O] = Xn=0Ain,
(3.3)

Where 4; ,, are the A domain polynomials given by:

1
aan

Ai,n =
1,2,..,r (3. 4)

CR(ZEoAy)| =0, n=012,.. i

The components y;o, Vi1, Viz , ... are determined recursively by:

Vio(x) = y;(x) + 1*(g;(x)),
(3.5)

Vigers (0) = 19(gi(0)) + 190 [ By ey O, ) A (8 dt |, ke =
01,.., i=01,..,7r (3.6)

Having defined the components y; o, y;1,¥:2, the solution y; in series from
defined by (3.2) follows immediately.
"The Modified of He's Variational iteration Method"

First, we'll talk about a safe change to the (VIM) that can be used to solve a set
of nonlinear fractional integro-differential equations.

We are going to look at the following set of fractional functional equations,

Ly;(x) + Ry;(x) + Ny;(x) = g;(x) , i=0,1,2, ..., 7
(3.7)
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g_I is the source term; R is a linear differential operator; L x=D"ai; N is the set
of nonlinear terms. We obtain by applying the inverse L_x”(-1) to both sides of
(3.7) (2.6):

yi(x) = fi(x) = Ly' [Ry; ()] = Ly [Ny;(x)], i =1,2,..,7
(3.8)

L x*(-1)=I"ai, and L _x"(-1) [g_i (X)]=f_i (X). We can use both (1.1) and the
general idea of He's method to come up with a fixed fraction for (3.7), which
says,

Vin1 () = yin () + [ L O[Ly:N () + RFN(E) + N; (8) —
g:(0)]dt, (3:9)

y_(i,n) is the nth number, and A is a Lagrange factor that can be found best using
variational theory [10].

To find a close answer to (1.1), let y _(i,n) represent a restricted variation and

gy _in=0, =0. To solve equations (3.9), use a Lagrange factor that you get from
integrating by parts.

With the help of Two variables, y and the Lagrange multiplier _0 (x), you can
get closer and closer to the answer y_i (x) with 'y _(i,n) (x), where n>0. You can
get the correct answer by using,

lim, 0 yin (x) =y;(x), i=12,..,r.
(3.10)

Because of this, we have the following solution for variational iteration: (3.8),

{ Yio(x) is an arbitrary initial guess,

yi,n+1(x) = filx) — Lgl[Ryi,n(x)] - Lgl[Nyi,n(x)]-
(3.11)

Now, let's say that the function fi(x) of the iterative relation (3.11) can be split
into two parts, which we call f_(i,0) (x) and f_(i,1) (x),

fi(x) = fio(x) + fi1(x) .
(3.12)
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We come up with the following variational iteration formula based on
assumption (3.12) and equation (3.6),

Vio(x) = fio(x),
Vi1 (0) = fi(x) = L3 [Rfio ()] = L[N fi0 ()], (3.13)
yi,n+1(x) = fl(x) - L;1[RYi,n(x)] - Lgl[NYi,n(x)]-

4.Numerical Examples

In this section we present some numerical examples, of a system of nonlinear
fractional integro-differential equations by using A domain decomposition
method and the modified of He's Variational iteration method an[d compare the
results.

Example 4.1

Consider the following system of nonlinear fractional integro-differential
equation:

D2y, (x) = g, (x) + J, x t[y; (O)y, (0)]dt,

(4.1)
DV2y,(x) = g, () + [ % [y2(O)y(D]dt,
8 x3/2 16 x5/2  x . L. ..
where g,(x) = PRV ,gz(x) =5 = v with the initial condition

y1(0) = 0,y,(0), and the exact solutions are y, (x) = x2,y,(x) = x°.
The solution according to(ADM)

Equation (4.1) requires us to use operator on both sides. 1"(12) to get to

yi () = 72 (0) + 12 [0 ] 12 [ [ty (B ()],

7
16 x

y2(x) = 72(0) + V22X~ 24 21 X [y2 6y, (0)]de

Y1,0(%) = /2 [ix\/i —g],

_y1/2[16x%2  x
}’2,0(35) I 5 v 6],
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{yl,o(x) = x? — 0.1074646826x%/2,

Vo000 = x> — 0.1253754630x3/2,
(4.2)

Now , we using equation (3.6) obtain to

Y11 (0) = IV2([] xt [Ay0(D)]dt,
Va1 () = 12 (f! S [Az0(0)]dt),

{ym(x) = 0.07990674461x3/2

v,1(x) = 0.08151421943x3/2,
(4.3)

The same way we find

{'yl,z(x) = 0.002184970692x3/2

¥2(x) = 0.003007566127x3/2,
(4.4)

substituting from (4.2),(4.3),and (4.3) into equation (3.2) we obtain

{yl(x) ~ x2 — 0.02537296729x3/2,

y,(x) = x3 — 0.4085367747x3/2,
(4.5)

Equations (4.5) implies the approximate solution of (4.1).

"The solution according to(MVIM)"

"On both sides of equation (4.1), we put operator 1"(12) to get to"
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yi () = 2 (0) + 12 B2~ 2| 4 12 [Vt [ya (007, 0Ole],

Y2 (x) = y,(0) + '/ [f% R [T HOAOI

From the first VIM (3.8) and the repetitive method (3.11) that goes with it, we
get:

GO = fuo(@) + fialo) = 172 [222 -1,

7
() = f0() + fo100) = V2 [RE2 3],

{fl(x) = x% — 0.1074646826x3/2,
£, (x) = x3 — 0.1253754630x3/2,

by assuming

fro(x) =x%, f1,(x) = —0.1074646826x%/2,
fo1(x) =x3, fo1(x) =—0.1253754630x°/2,

Along with the start of initial

{3’1,0(95) = fl,O(x) = x?,
V2,0(X) = fo0(x) = x3,

y11(x) = x% — 0.1074646826x%/% + Il/z[folx t [(yl,o(t)yz,o(t))]dt],

1
Y21 () = x° = 0.1253754630x%/% + IV/2 (12 [y2(0)yo(D)]dt],
(4.6)

{ym(x) = x2,
y2,1(x) = x3,

Vins1(X) = x% — 0.1074646826x3/2 + L1 [(ylin(x),yzjn(x))] =x% n=1.
Vonsz(x) = x3 = 0.1253754630x%/2 + L [(y10 (%), Y2, ()] = %3, n>1.
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"In similarly view equation (4.6) it is obtained":

{yl(x) = xZ ’
yZ(x) = x3 ’

"where those are the exact answers to equation (4.1)".
The numbers from Example 4.1 are shown in Table 1 and Figures 1 and 2.
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=== approximate by (ADM) — — exact by (MVIM) |

Figure 1: Numerical result of example 1

Figure 2: Approximate solution of example 1
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Figure 3: Numerical result of example 1

Figure 4: Approximate solution of example 1
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X exact
= (MVIM) Approximantby(ADM) Errorof (ADM)
0.1 0.01 0.0009197636324
0.000802363676
0.2 0.04 0.03773057281
0.00226942719
0.3 0.09 0.08583079604
0.00416920396
0.4 0.16 0.1535810906
0.0064189094
0.5 0.25 0.2410293014
0.0089706986
0.6 0.36 0.3482077104
0.0117922896
0.7 0.49 0.4751400168
0.0148599832
0.8 0.64 0.6218445825
0.0181554175
0.9 0.81 0.7883361807
0.0216638193
1 1.00 0.9746270327
0.0253729673
Table 1. Show how much mistake there is in example 4.1:[y, (x) = x3]..
X exact
= (MVIM) Approximant by(ADM) Error of (ADM)
0.1 0.001 0.000291906716
0.001291906716
0.2 0.008 0.004345936002
0.003654063998
0.3 0.027 0.02028705579
0.00671294421
0.4 0.064 0.05366474627

0.01033525373
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0.5 0.125 0.1105560438
0.0144439562

0.6 0.216 0.1970129265
0.0189870735

0.7 0.343 0.3190735528
0.0239264472

0.8 0.512 0.4827674880
0.0292325120

0.9 0.729 0.6941185187
0.0348814813

1 1000 0.9591463225
0.0408536775

Table 2. Show how much mistake there is in example 4.1[y, (x) = x3].

Example 4.2

Take a look at this set of nonlinear fractional integro-differential equations:

D34y, (x) = g, (x) + [ x t[yZ (t) + 3 (O)]dt,
D¥4y, (x) = g,(x) + [ xVEly2(©)y2 (D]dt,
4.7)

64 x°/*2r(3/4) 7 16 x5/2\2r(3/4) 2

Where g,(x) = = - 52X g,(x) = s = x, with

the initial condition y,(x) =0, y,(x) =0,and the exact solutions are
y1(x) = %%, y,(x) = x?.

The solution according to (ADMM)

Putting operator ["(3/4) on both sides of equation (4.7) gives us

64 x%/*\2T'(3/4) 7 1
R x| [ x Ve + y3(0)de],

y1(x) = y1(0) + 13/
16 x5/242T'(3 /4 2 1
y2(x) = yp(0) + 13/ 20 — 2|4 A S [y (oyR (0]t
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_ 73/4 64 x9/4\/2 1"(3/4)

yi(x) =1 [15 ]
3/4 [16 x5/2V2 F(3/4) 2

y.(x) =1 [5 —x ]

{YI,O(x) = x3 — 0.1813442087x7/4,

V0(x) = x2 — 0.05406535416x7/*
(4.8)

Now , we using equation (3.6) obtain to

Y1 () = 13/% ([} x t[Ayo(D)]dt),
V2,1 (x) = 3/ (fol X \/E[AZ,O(t)]dt) ,

y1,1(x) = 0.1402922716x7/%,
V2,1 (x) = 0.03065131084x7/%,

(4.9)
The same way we find

{;vl,z(x) = 0.05151853355x"/%,

Y2,2(x) = 0.001165525150x7/*,
(4.10)

Substituting (4.8) , (4.9) , and (4.10) into equation (3.2) we obtain

{yl(x) ~ x2 — 0.02537296729x3/2,

y,(x) = x3 — 0.04085367747x3%/2,
(4.11)

Equations (4.11) implies the approximate solution of the system (4.8) .
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"The solution according to (MVIM)"
"We put operator 1"(3/4) on both sides of equation (4.7) to get to "

9/4
Y100) =y, (0) + 13/4 [SXECD Ty 3]y i [ [Ty (0) + y3(©)1de]

15 4 24—

16 x5/2/2T'(3 /4 2 1
y2(x) = y,(0) + PP/AEREEICID _ 2 oy 3L 2 (0)y3 (0)]de

Based on the first VIM (3.8) and the method that repeats itself (3.11) that goes
with it, we get:

64 x9/4\/_1“(3/4)

() = fio(x) + fia(x) = /4| ZEZE0

£ = Foo() + foa () = /4 [1”5/2m3/4) ]

2
23

fi(x) = x* — 0.181342087x7/*,
£>(2) = x? — 0.05406535416x7/4,

By assuming

fro(®) = x3, fi,(x) = —0.1813442087x7/4,
fo1(x) = x2, fo1(x) = —0.05406535416x7/4,

With starting of initial approximate

{y1,o(x) = f1,o(x) = x3,
YZ,o(x) = fz,o(x) = x?,

1822
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(Q

y11(x) = x3 — 0.1813442087x7/* + [3/4 [folx tlyZo(t) + yz%o(t)]],

y21(x) = x? — 0.05406535416x7/* + [3/* [ folx \/?[yfo(t)yz%o(t)]],
(4.12)

{3’1,1(95) = x3,
YZ,1(X) = x?,

Vine(6) = x% = 0.1813442087x7/* + L3 [(y1,2(6), y2.0 ()] =
Vams () = x2 = 0.05406535416x7/* + L3 [(y1,2(6), y2.0 ()] =

(4.13)
In the same way, look at equation (4.16) and get:
{Y1 (x) = x3,
Y2 (x) = x%,

Where those are the exact solution of equation (4.7).
Tables 3, and 4 Figures 3and 4 shown the number that comes up in example 4.2

1 /
/
/
0.8 VA
e x=3/4 /.‘
¥ (¥) £
#
0.6 ya
/
/
/
041 #
/
&
4*
0.2 e
b
-~
.f"//
0 dpmme—mr=™ ;
0 0.2 04 06 OS 1
Approximate by (ADM) exact by

(MVIM)
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Figure (5) Numerical result of example 2

X exact =
(MVIM) Approximate by (ADM) Errorof (ADM)
0.1 1.001 0.001186125329
0.000186125329
0.2 0.008 0.08862604847
0.000626048487
0.3 0.027 0.02827282200
0.00127282200
0.4 0.064 0.6610576771
0.00210576771
0.5 0.125 0.1281117377
0.0031117377
0.6 0.216 0.2202812458
0.0042812458
0.7 0.343 0.34860069547
0.0056069547
0.8 0.512 0.5190829301
0.0070829301
0.9 0.729 0.7377042202
0.0087042202
1 1.000 1.010466596
0.010466596

Table 2 . Show how much mistake there is in example 4.2 : [y, (x) = x3].
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Figure 6: Approximate solution of example 2

N
Q

1
¥
o e =34 //
¥y(x)
- 4_
06 /
4
s
4-
0.41 /
/.
/
02 7
>
z.
-e-'/' -
0 o e o P
0 02 0.4 06 08
X
[+ee- approximate by (ADM) — — exact by (MVIM) |

Figure 7: Numerical result of example 2
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Figure 8: Approximate solution of example_2

X exact

= (MVIM) Approximant by (ADM) Error of (ADM)
0.1 0.01 0.00960259182
0.000395640818

0.2 0.04 0.3866922822
0.00133077178

0.3 0.09 0.98729440189
0.00270559811

0.4 0.16 0.1555238351
0.0044761649

0.5 0.25 0.2433854760
0.0066145240

0.6 0.36 0.3508994890

0. 0091005110
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0.7 0.49 0.4780814709
0.0119185291
0.8 0.64 0.6249440360
0.0150559640
0.9 0.81 0.7914977101
0.0185022899
1 1.00 0.9777514818
0.0222485182

Table 2. Show how much mistake there is in example 4.2: [y, (x) = x?]

5. Conclusion

Based on the results above, we can say that the changes to He's variation
iteration method (MVIM) work better.

The results you get by using Maple 16 are better than those you get with the
ADM method.
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