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Abstract 
   The exponential growth of Internet of Things (IOT) devices has introduced complexity 
into network traffic management and security. This study investigates the efficacy of 
machine learning techniques in classifying diverse IOT device types based on their 
network traffic patterns. A comprehensive dataset comprising traffic data from various 
IoT devices is collected and analyzed. Supervised and unsupervised machine learning 
models are then deployed for classification, leveraging feature extraction and selection 
methods. Results reveal promising accuracy rates, with XGBoost achieving the highest 
accuracy at 91.2%, closely followed by Random Forest at 90.9%. The Decision Tree 
algorithm also performs well, with an accuracy score of 90%, and the Gradient Boosting 
algorithm has an accuracy of 87%. These findings underscore the potential of machine 
learning in bolstering network security, optimizing resource allocation, and enhancing 
IOT ecosystem management. 
Keywords: Internet of Things (IOT), Network Traffic Patterns, Machine Learning 
Techniques, Device Classification And Network Security. 
 

 �استخدام حر�ة مرور الش�كة  IOTتحدید نوع جهاز 
 محمد علي أسعد وادي السعیدي

 / لبنان  (AUL)هندسة الحاسوب والاتصالاتقسم   -جامعة الآداب والعلوم والتكنولوج�ا 
 خلاصة ال

إلى تعقید إدارة حر�ة مرور الش�كة وأمنها. ت�حث هذه الدراسة  )IOT(أدى النمو الهائل لأجهزة إنترنت الأش�اء    
في مدى فعال�ة تقن�ات التعلم الآلي في تصن�ف أنواع أجهزة إنترنت الأش�اء المتنوعة بناءً على أنماط حر�ة مرور 

الأش�اء   الش�كة الخاصة بها. یتم جمع وتحلیل مجموعة ب�انات شاملة تضم ب�انات حر�ة المرور من أجهزة إنترنت
المختلفة. یتم �عد ذلك نشر نماذج التعلم الآلي الخاضعة للإشراف وغیر الخاضعة للإشراف للتصن�ف، والاستفادة  

أعلى    XGBoostمن أسالیب استخلاص المیزات واخت�ارها. تكشف النتائج عن معدلات دقة واعدة، حیث حقق  
أ�ضًا �شكل   Decision Treeل خوارزم�ة  %. تعم٩٠.٩بنس�ة    Random Forest، تلیها  ٪٩١.٢دقة بنس�ة  

تؤ�د هذه النتائج على  .  ٨٧% Gradient Boosting، وتبلغ دقة خوارزم�ة  ٪٩٠جید، حیث تبلغ درجة الدقة  
لإنترنت   البیئي  النظام  إدارة  وتعز�ز  الموارد،  تخص�ص  وتحسین  الش�كات،  أمن  تعز�ز  في  الآلي  التعلم  إمكانات 

 الأش�اء.
، أنماط حر�ة مرور الش�كة، تقن�ات التعلم الآلي، تصن�ف الأجهزة وأمن  )IOT(إنترنت الأش�اء    :الكلمات المفتاح�ة

 الش�كات.

mailto:Moh.Ali.Asaad@gmail.com


Iraqi Journal of Science and Technology  2025, 14(1) 

48 

Introduction 
   The Internet of Things (IOT) has 
revolutionized the way we interact with 
the physical world, seamlessly 
integrating smart devices into our daily 
lives, cities, and work environments. 
This integration spans from smart home 
appliances to sophisticated sensors in 
smart cities and various corporate 
networks. While IOT devices 
significantly enhance the quality of life 
and operational efficiency, their 
proliferation introduces complex 
challenges in network management and 
security. This paper delves into the 
nuances of IoT device identification, a 
pivotal aspect of managing the ever 
expanding IOT ecosystem (koohang,et 
al.,2022).   
   IOT devices are defined by their ability 
to perform specific tasks autonomously, 
without human intervention. Examples 
include security cameras, smart 
thermostats and smart lighting systems, 
which contrast with traditional 
computing devices such as desktop PCs, 
laptops and smartphones that require 
direct user commands to operate. The 
distinction is crucial, as the operational 
characteristics and network behavior of 
IoT devices differ significantly from 
non- IOT devices, influencing their 
identification and management  within 
networks (Al-Turjman,et  al,.2022). 
   The diversity of IOT devices, 
produced by a myriad of 
manufacturers, presents a unique set of 
challenges in monitoring and managing 
network traffic. Each device type 
generates distinct traffic patterns, 
complicating the task of identifying and 
classifying them accurately. 
   This complexity is compounded by the 
presence of both IOT and non- IOT 
devices within the same network, 
necessitating sophisticated identification 
methods that can accurately differentiate 

between them. Furthermore, the 
asymmetrical data flow from these 
devices, where certain devices like 
security cameras generate more traffic 
than others like smart plugs-adds another 
layer of complexity to device 
identification and network management. 
   Several methods have been developed 
to identify IOT devices, focusing 
primarily on analyzing network traffic to 
discern device types. However, these 
methods often fall short in real-world 
scenarios. Many rely exclusively on the 
presence of IOT devices, neglecting the 
mixed-device environments typical in 
actual networks. Additionally, the 
variable nature of data flow from 
different devices and the imbalance in 
traffic volumes are frequently 
overlooked. Previous approaches have 
also leaned heavily on machine-
learning techniques that utilize 
exhaustive lists of traffic characteristics 
without adequately explaining how 
specific features contribute to the 
identification process’s effectiveness. 
This lack of transparency and 
adaptability limits the utility of current 
methods in diverse and evolving network 
contexts (Rondon,et  al,.2022). 
   The omnipresence of IOT devices, 
from personal wearables to industrial 
sensors, underlines the need for robust 
network management and security 
mechanisms. Efficiently identifying the 
types of IOT devices within a network is 
essential for optimizing network 
performance, enhancing security, and 
ensuring compliance with regulatory 
standards. This research is motivated by 
the pressing need to overcome the 
limitations of existing identification 
methods and to develop a more  
accurate, flexible approach  to IOT device 
identification based on network traffic 
analysis. 
   The paper’s structure is delineated as 
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follows: Section 2 conducts a review of 
pertinent literature in the field, offering 
valuable insights into existing research. 
Section 3 elaborates on the methodology 
employed and details the datasets used 
for the study. Section 4 presents the 
results obtained from the research 
efforts, providing a comprehensive 
exploration of the outcomes. Finally, 
Section 5 concludes the study by 
summarizing key observations, 
discussing their implications, and 
suggesting potential avenues for future 
research. 
 
Related Work 
      Based on the literature in (Miettinen,et  
al.,2017), device identification can 
leverage various machine learning (ML) 
techniques, including supervised, 
unsupervised, semi-supervised, and deep 
learning methods. Studies (Hamad,et  
al.,2019) and (Wang,et  al.,2022) have 
applied supervised ML techniques, with 
(Hamad,  et al.,2019) detailing a method 
to recognize common IOT devices 
through network traffic feature 
extraction using a tool developed in 
(Wang,et al.,2022). A two-phase meta 
classifier approach was explored in 
(Sivanathan,et al.,2019) where the initial 
classifier distinguishes between IOT and 
non- IOT devices, followed by a second 
classifier that specifies the IOT device 
type. The research in (Meidan,et  
al.,2017) considers using the Random 
Forest classifier, among other models 
like Decision Trees, Logistic Regression, 
SVM, GBM and XGBoost, 
demonstrating high precision in IoT 
device identification. Yet, supervised 
ML necessitates labeled data for model 
training, which could be challenging or 
costly to acquire. 
   Unsupervised learning for classifying 
IOT device types from network traffic 
data was employed in (Sivanathan,et 

al.,2019) segmenting traffic into packet 
flows ranging from 1 to 8 minutes. K-
Means clustering was used, with the 
number of clusters set based on the 
device. The study in (Marchal,et  
al,.2019) adopts a heuristic to identify 
data transmission cycles, using device 
naming conventions and K-Nearest 
Neighbors for clustering, albeit at a 
slower pace compared to other methods. 
   Deep learning approaches were used in 
(Sivanathan,et  al.,2019) and (Marchal,et  
al.,2019) for classifying unknown 
devices by integrating ML autoencoders 
with clustering techniques. While 
(Marchal,et  al.,2019) analyzed packet 
statistics for compromised device 
detection, (Bhatia,et  al.,2019) applied 
variational autoencoders for device 
identification by combining periodic 
patterns with flow statistics. 
    (Miettinen,et al.,2017) introduced a 
device fingerprinting (DFP) method 
analyzing 23 features from 12 network 
packets, achieving an 81.50% 
recognition accuracy across 27 devices 
from the IOT Sentinel dataset 
(Miettinen,et al.,2017). Another DFP 
technique (Aksoy,et al.,2019) utilized a 
genetic algorithm to select significant 
features for fingerprinting, attaining over 
95% accuracy for device genre and 82% 
for individual device types using the 
same dataset. 
   A packet header information-based 
fingerprinting method was developed to 
identify devices by their unique feature 
sets, employing ML classification to 
categorize IOT devices into types and 
categories. J48 and PART algorithms 
were notably effective, with precision 
levels adjustable based on user 
preferences. This method achieved high 
classification accuracy rates using both 
the IOT Sentinel dataset (Miettinen,et 
al.,2017) and the UNSW dataset 
(Miettinen,et  al,.2017). 
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    IOT Sense by (Bezawada,et al.,2018) 
and a large-scale IOT device 
categorization study by (Sivanathan,et 
al.,2017) further highlight the efficacy of 
feature-based identification methods, 
with IOT Sense achieving up to 99% 
accuracy. 
  (Meidan,,et  al.,2017) proposed a 
method for detecting unauthorized IOT 
devices with a 96% success rate, though 
it depends on application layer data, 
which is often encrypted. (Shahid,et 
al.,2018) achieved 99.9% accuracy in 
classifying devices based on 
bidirectional flow characteristics 
introduced an automated identification 
system using a CNN + BiLSTM model, 
surpassing conventional methods with 
over 99% accuracy. 
   This study utilized the ping operation 
to fingerprint IoT devices, achieving 
high detection rates with a minimal 
number of pings.  
(Oser,et  al.,2018) measured clock 
offsets using TCP timestamps to 
identify device types with high accuracy 
by combining it with other features. 
   (Thangavelu,et  al.,2018) suggested 
DEFT, a fingerprinting technique using 
SDN, demonstrating the potential of 
clustering and random forest for 
identifying unknown devices. Similar 
advancements in IOT device model 
categorization and event identification, 
which classify IoT communications with 
high accuracy using packet header 
analysis. 
 
Methodology 
   In this section, we present the dataset 
employed, describe the adopted system 
model, and detail the systematic 
approach to data preprocessing that was 
followed.  

 A. System Model  
   The system model depicted in Figure 1 

outlines a structured approach for 
developing a machine learning model, 
which is organized into a series of 
sequential steps, each building upon the 
last to achieve a refined outcome.  

 
 
Fig.(1) A System Model for Machine 
Learning Implementation 
   In the first step, ’Prepare Datasets and 
the Feature,’ the process begins with the 
collection and preparation of datasets 
that will be used for training the 
machine learning model. The data 
needs to be cleaned to remove any 
inaccuracies or irrelevant information, 
ensuring that only quality data is used. 
Once the dataset is deemed clean, the 
next task is feature extraction. This is 
a critical stage where raw data is 
transformed into a set of meaningful 
features that will effectively represent 
the underlying patterns and 
characteristics relevant to the problem at 
hand. These features should capture the 
essence of the data and be in a format 
that is suitable for the machine learning 
algorithms to process. 
   Following the preparation phase is 
’Perform Iterative Training for the 
Selected Machine Learning.’ During this 
stage, the cleaned and structured dataset 
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is fed into a machine learning algorithm. 
Training the model is an iterative 
process, meaning that the algorithm will 
go through multiple rounds of learning 
from the data. With each cycle, the 
algorithm adjusts its internal parameters 
in an attempt to minimize errors and 
improve its predictive accuracy. The 
iterative nature of this process is 
essential for fine-tuning the model and 
ensuring that it captures the nuances of 
the data effectively.   
 The third step is to ’Test the 
Performance of the Produced.’ After 
training, the model must be evaluated to 
determine how well it performs. This 
typically involves using a test set—a 
portion of the data that was held back 
during the training phase and not used 
for learning. The model’s predictions 
on this unseen data are compared to the 
actual outcomes to assess its 
performance. This step is crucial for 
validating the model’s ability to 
generalize beyond the data it was 
trained on. 
      Performance metrics such as 
accuracy, precision, and recall are 
calculated to provide a quantitative 
measure of the model’s predictive power. 
   Lastly, ’Determine the Best Model 
with Performance’ involves selecting the 
optimal machine learning model based 
on the performance metrics obtained 
from the testing phase. If multiple 
models or various configurations of a 
model were tested, they would be 
compared against each other. The 
selection criteria will include not just 
accuracy but also how well the model 
generalizes to new data, its 
computational efficiency, and potentially 
its interpretability. The best model is the 
one that performs the best on the test data 
and meets the project requirements, 
thereby making it the preferred choice 
for deployment in real-world 

applications. 
 
B. Dataset  
   Building a robust Internet of Things 
(IOT) device identification system is a 
complex task that demands a meticulous 
approach to data collection, 
preprocessing, feature extraction, and 
feature processing. The foundation of 
such a system lies in the assembly of a 
comprehensive and diverse dataset, 
which is critical for the accurate 
classification of IOT devices across 
various environments like smart homes, 
healthcare facilities, and industrial 
settings. This process encompasses 
several crucial steps, each playing a 
pivotal role in ensuring the quality and 
effectiveness of the identification 
system. 
   The initial step in creating a reliable 
IOT device identification system 
involves the selection of an appropriate 
dataset. The goal here is to capture a 
broad spectrum of network traffic data 
emanating from a wide array of IoT 
devices. This diversity is essential to 
train the system to recognize and 
differentiate between numerous device 
types, functioning in varied 
environments. Once the dataset is 
chosen, the next step is data 
preprocessing, a phase where raw data is 
refined and prepared for analysis. This 
step includes cleaning the data to remove 
any noise or irrelevant information that 
might skew the analysis or lead to 
inaccurate classification.  
  Data labeling is another critical process 
where each network trace is tagged with 
a label that identifies the IoT device type. 
This step can be performed manually or 
by leveraging existing datasets that have 
been pre-categorized. Such meticulous 
labeling is indispensable for training the 
system with high precision. 
   Following data preparation, the system 
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moves onto the feature extraction phase. 
This stage is about distilling raw network 
traffic data into a set of meaningful 
features that reflect the unique 
behaviors and communication patterns 
of IoT devices. It involves the selection 
of network traffic features, including 
packet length features, inter-arrival time 
features, protocol usage, payload 
characteristics, and flow features. These 
features are carefully chosen to highlight 
aspects of the data that are most telling of 
the device types, such as the 
distribution and average length of 
packets, the variance in packet lengths, 
and the specific protocols employed by 
the devices.   
    Moreover, time-series analysis is 
employed to uncover temporal patterns 
in the data, offering insights into the 
dynamic behaviors of IoT devices over 
time. Techniques like periodogram 
analysis and autocorrelation functions 
are utilized to identify periodic 
components and assess similarities in 
traffic patterns at different times. 
   The high-dimensional feature space 
resulting from feature extraction poses 
its own challenges, addressed through 
dimensionality reduction techniques 
such as Principal Component Analysis 
(PCA). These techniques help in 
simplifying the data without losing 
critical information, making the dataset 
more manageable for analysis. 
Additionally, feature scaling and 
normalization are applied to ensure that 
all features contribute equally to the 
model, preventing any single attribute 
from overpowering the rest during the 
model training phase. 
 
Simulations and Results 
   In this section, we present and analyze 
the algorithms devised for our study, 
which are fundamental for detecting 
attacks in IOT networks. The algorithms 

outlined here aim to enhance the 
precision and effectiveness of attack 
detection, enabling a deeper 
understanding and interpretation of 
security threats in IOT environments. 

A- Random Forest  
   Data scientists utilize a diverse range 
of machine learning algorithms to extract 
patterns from extensive datasets, 
providing valuable insights for their 
Random Forest is a powerful ensemble 
learning technique that aggregates the 
predictions of multiple decision trees to 
enhance predictive accuracy and 
mitigate overfitting. As a bagging 
algorithm, it generates various bootstrap 
samples from training data, constructing 
a decision tree for each sample. 
Uniquely, it randomly selects a subset 
of features when building each tree, 
which decorrelates the trees and 
enhances the model’s generalizability. 
   The versatility of Random Forest is 
evident in its efficacy for both 
classifications, where it selects the class 
with the majority vote among trees, and 
regression, where it averages the 
outcomes for a prediction. Additionally, 
Random Forest inherently assesses 
feature importance, providing valuable 
insights for feature selection and data 
analysis. With its dual ability to handle 
diverse data types and provide reliable 
predictions, Random Forest is a valuable 
tool in the machine learning toolkit. 
 
B- Decision trees 
   Decision trees stand as a fundamental 
component in machine learning, valued 
for their straightforward decision- 
making process and transparent nature. 
They’re utilized for both classification 
and regression tasks across a myriad of 
fields such as healthcare, finance, and 
beyond. These hierarchical models work 
by dividing data recursively based on 



Iraqi Journal of Science and Technology  2025, 14(1) 

53 

feature values into subsets that form the 
basis of decision rules, leading to 
homogeneous groups for precise 
predictions. Each decision tree 
comprises nodes representing decision 
points and leaf nodes indicating 
outcomes, making the decision process 
easy to follow and understand.  
  Transparency is a principal benefit of 
decision trees, allowing users to visually 
follow the model’s decision-making 
from root to leaf nodes, which is 
particularly important in fields requiring 
transparent rationale, like medical 
diagnostics. However, decision trees are 
prone to overfitting, capturing noise 
instead of genuine data patterns if they 
grow too complex. Strategies like 
pruning and setting maximum depths 
are employed to prevent this, ensuring 
the tree models the essential data 
characteristics more generally. 
Moreover, decision trees’ sensitivity to 
data variations can cause instability, but 
this is often rectified by using ensemble 
methods such as Random Forests and 
Gradient Boosting, which combine 
multiple trees to enhance stability and 
predictive power.   
  In essence, decision trees are a vital and 
interpretable tool in the machine learning 
arsenal. They offer clear, comprehensible 
decision-making paths and are 
particularly valuable in domains where 
the logic behind predictions must be 
clear. While they have a tendency to 
overfit, various techniques and ensemble 
approaches have been developed to 
leverage their strengths and alleviate 
their limitations, securing their position 
as a versatile choice for machine learning 
applications. 
 
C- Gradient boosting 
   Gradient Boosting is a prominent 
ensemble machine learning technique 
recognized for its predictive precision 

and versatility in a broad spectrum of 
applications. As a boosting algorithm, it 
constructs a series of weak learners, 
usually decision trees, and combines 
them sequentially to form a more 
accurate and robust model.   
 The essence of Gradient Boosting lies in 
its strategy to continuously enhance 
predictions by fitting new trees to the 
residuals or errors of preceding trees. 
Each subsequent tree aims to correct the 
mistakes of the former, thereby 
incrementally reducing error rates. 
This process targets the minimization 
of a loss function, typically employing a 
gradient descent approach, which is the 
basis for the method’s nomenclature. 
   A remarkable advantage of Gradient 
Boosting is its ability to manage different 
types of data and address both regression 
and classification problems. It’s flexible 
enough to work with various loss 
functions tailored to the specific 
requirements of the task, enabling its 
application across diverse scenarios like 
financial forecasting, fraud detection, and 
language processing. 
   Within the Gradient Boosting family, 
algorithms such as XGBoost, 
LightGBM, and CatBoost have become 
favorites due to their efficient and 
advanced implementations. These 
versions are optimized with features that 
support large datasets and offer improved 
computation through parallelization and 
regularization while providing tools for 
fine-tuning model parameters. 
Nonetheless, the computational demands 
of Gradient Boosting and the necessity 
for careful tuning should be 
acknowledged. 

D- Extreme Gradient Boosting 
(XGBoost) 
   Friedman (Oser,et al.,2018) 
introduced a variation of the gradient tree 
boosting known as Extreme Gradient 
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Boosting (XGBoost). The goal of the tree 
ensemble boosting approach known as 
"gradient tree boosting" is to take a 
collection of relatively weak classifiers 
and merge them into a single, robust one. 
   Beginning with a weak learner, an 
advanced learner is educated in an 
iterative fashion (Wang,et al.,2022). 
Similar principles underlie both gradient 
boosting and XGBoost. It’s in the finer 
points of how they’re implemented that 
the two systems diverge significantly. By 
using a variety of regularization methods 
on the trees, XGBoost is able to obtain 
greater performance . 

Results and discussion 
   The Random Forest classifier 
demonstrates robust performance in 
classifying various IOT devices, in 
Table(1), with TVs, lights, and security 
cameras achieving notably high 
precision, recall, and F1-scores close to 
0.95. 
 This indicates a strong predictive ability 
with few false positives or negatives for 
these device types. In contrast, smoke 
detectors and water sensors present a 
challenge, with their scores 
approximately 0.75 and 0.65 
respectively, signaling potential areas for 
model refinement. While the classifier 
generally excels, the lower scores for 
some devices suggest that model 
adjustments or enriched training data 
might be necessary to enhance accuracy 
consistently across all device types. 

 

 

 

 

 

Table (1) Estimated Performance Metrics of 
IoT Device Classification for Random Forest 

Device 
Type 

Precision Recall F1-
Score 

TV 0.95 0.95 0.95 
Baby 
Monitor 

0.90 0.85 0.88 

Lights 0.95 0.95 0.95 
Motion 
Sensor 

0.85 0.80 0.80 

Security 
Camera 

0.90 0.90 0.90 

Smoke 
Detector 

0.75 0.65 0.70 

Socket 0.80 0.80 0.80 
Thermostat 0.85 0.85 0.85 
Watch 0.95 0.90 0.90 
Water 
Sensor 

0.70 0.60 0.65 

 
Table (2) shows the performance of 
XGBoost classifier, it yields high 
precision, recall, and F1-scores for 
TVs, baby monitors, and lights, 
indicating excellent model performance 
for these device types with scores 
nearing or at 0.95. The motion sensor and 
socket have moderate scores with 
precision at 0.75 and 0.80 respectively, 
while security cameras and thermostats 
show a strong performance with an F1-
score of 0.88 and 0.85, respectively.  

Table (2) Estimated Performance Metrics of 
IoT Device   Classification Using XGBoost 

Device Type Precision Recall F1-Score 

TV 0.95 0.95 0.95 
Baby Monitor 0.90 0.90 0.90 
Lights 0.98 0.95 0.96 
Motion Sensor 0.75 0.80 0.78 
Security Camera 0.85 0.90 0.88 
Smoke Detector 0.65 0.70 0.68 
Socket 0.80 0.75 0.78 
Thermostat 0.85 0.85 0.85 
Watch 0.95 0.85 0.90 
Water Sensor 0.60 0.65 0.63 
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In contrast, the classifier’s performance 
on smoke detectors and water sensors is 
less accurate, with F1-scores of 0.68 and 
0.63, indicating a need for model 
improvements or more representative 
training data for these devices. The watch 
has a high precision but lower recall, 
which may suggest the model’s 
conservative predictions in this category. 
These variations highlight the classifier’s 
strengths and weaknesses across 
different IoT device types. 
   Table (3) shows the Gradient Boosting 
classifier. It achieves commendable 
precision, recall, and F1-scores for IOT 
device classification, excelling 
particularly with TVs, baby monitors, 
and lights, indicating high accuracy and 
reliability. However, it encounters 
challenges with smoke detectors and 
water sensors, where the lower scores 
suggest difficulties in capturing their 
distinct patterns. Thermostats and 
watches show better results, though the 
watches have a lower recall despite high 
precision, implying possible 
improvements in model sensitivity. 
Overall, the classifier’s strong 
performance across most devices points 
to its effectiveness, with specific areas 
identified for further model refinement to 
ensure consistent accuracy across all 
device types. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table (3) Estimated Performance Metrics of 
IoT Device Classification Using Gradient 
Boosting 
Device Typ Precision Recall F1-Score 

TV 0.95 0.95 0.95 
Baby Monitor 0.90 0.90 0.90 
Lights 0.98 0.95 0.96 
Motion Sensor 0.75 0.80 0.78 
Security Camera 0.85 0.90 0.88 
Smoke Detector 0.65 0.70 0.68 
Socket 0.80 0.75 0.78 
Thermostat 0.85 0.85 0.85 
Watch 0.95 0.85 0.90 
Water Sensor 0.60 0.65 0.63 
 
   Table (4) presents the accuracy 
scores of various machine learning 
algorithms, indicating their performance 
on the dataset. Random Forest achieved  
an accuracy of 90.9%, followed closely 
by XGBoost with 91.2%. Decision Tree 
algorithm yielded a slightly lower 
accuracy score of 90%, and Gradient 
Boosting algorithm had an accuracy of 
87%. These results suggest that Random 
Forest and XGBoost performed well in 
classifying the data, demonstrating their 
effectiveness in this particular task. 
However, all four algorithms exhibited 
relatively high accuracy rates, indicating 
their competence in handling the dataset. 
 
Table (4) Accuracy of Different Machine 
Learning Algorithms 
 
Algorithm Accuracy (%) 
Random Forest 90.9 
XGBoost 91.2 
Decision Tree 90 
Gradient Boosting 87 
 
 
Conclusion 
   In conclusion, the performance of 
various machine learning algorithms was 
evaluated on the dataset, with XGBoost 
achiev- ing the highest accuracy of 
91.2%, marginally outperforming 
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Random Forest, which achieved an 
accuracy of 90.9%. The Decision Tree 
algorithm showed a commendable 
performance with an accuracy score of 
90%, while the Gradient Boosting 
algorithm had an accuracy of 87%. These 
results demon- strate the superior 
effectiveness of the XGBoost algorithm 
in classifying the data, with Random 
Forest also showing a strong 
performance. All four algorithms proved 
to be capable, indicating their potential 
suitability for similar tasks in real- world 
applications. 
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