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Abstract : In this study, parametric and nonparametric survival estimators for patients with heart disease under 

multicollinearity are analyzed, In addition to more sophisticated approaches like the Bernstein approximation and Cox 

Proportional Hazards with regularization, more conventional approaches like Kaplan-Meier and Nelson-Aalen were 

assessed, The findings indicate that while traditional approaches work well in straightforward situations, they become 

vulnerable to multicollinearity in strongly linked variables. However, in complex situations, advanced techniques 

yield solutions that are adaptable and stable, metrics such as statistical performance (Log-Likelihood, AIC, BIC), 

accuracy (MAE, RMSE), and the capacity to manage censored data and multicollinearity were utilized in the survival 

calculation, while old methods are still appropriate for smaller scenarios, advanced methods are advised for 

complicated datasets with multicollinearity, In the applied aspect, data were collected from one of the private hospitals 

in Baghdad, where the results reached the advantage of the Bayesian Kaplan-Meier estimation method compared to 

the rest of the estimation methods based on comparative above measures and others. 
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INTRODUCTION: Heart attacks are a serious health concern that endangers the lives of millions of people each 

year, and cardiovascular illnesses are among the top causes of mortality globally. The World Health Organization 

(WHO) states that cardiovascular illnesses are the leading cause of death worldwide, hence it is crucial to have 

accurate instruments and methods for examining medical data pertaining to these conditions. For the reasons stated, it 

becomes evident how crucial it is to analyze survival statistics to determine the factors that influence patient survival 

and life expectancy after diagnosis or therapy. Certain issues, such as multicollinearity among independent variables, 

can severely compromise the precision of statistical models, which warrants the use of complex methods to address 

the problem. 

Over the past few years, the application of statistical methods for the analysis of medical data has advanced 

significantly. However, traditional methods such as Kaplan-Meier and Nelson-Aalen are still widely used in survival 

analyses due to their practicality and effectiveness with uncomplicated scenarios. Although these methods are useful, 

they may become ineffective in the presence of multicollinearity. This problem causes increased variation in 

coefficient estimates while reducing accuracy, leading to the need for more advanced techniques like Bernstein 

Approximation and Cox Proportional Hazards with Regularization. 

The data used for this study were obtained from patients in a private hospital and a cardiac clinic located in Baghdad, 

Iraq. It consists of the following important medical features: Age, sex, heart rate, systolic and diastolic blood pressure, 

blood sugar levels, CK-MB, and troponin. Each patient’s data is tagged by whether or not they suffered a heart attack: 

1 indicates a heart attack, and 0 denotes no heart attack. For blood sugar, the flag is set at 1 if it is greater than 120, 

otherwise, it is set to 0. All other features were normalized: Male was designated as 1 and female as 0. The data is 

valuable for analyzing the relationships between multiple variables in context to the risk of heart attacks. 

The purpose of this paper is to compare traditional and heartrending parametric and nonparametric survival estimators 

under the condition of multicollinearity. The primary reason is to compare the performance of more advanced 

methods like Bernstein Approximation and Cox Proportional Hazards with Regularization versus more traditional 

methods like Kaplan-Meier and Nelson-Aalen. Several criteria are used to evaluate the performance: accuracy (MAE, 
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RMSE), statistical performance (Log-Likelihood, AIC, BIC), and the ability of the models to handle multicollinearity 

and censored data (Aalen, 1978). 

This study aims for the Reliability calculation to make precise suggestions on how survival data can be analyzed and 

uses a new way of computing reliability for simple to complex models of data. Expected results should show that 

traditional methods perform perfectly in simple situations but fail when there is high interconnectivity of variables. 

However, advanced methods, which are preferred to handle complex data with multicollinearity, give more consistent 

(Yusuf et al., 2024) 

Furthermore, this study expands our understanding of the use of statistical approaches to the analysis of medical 

survival data. Our study focused on increasing accuracy during medical forecasting by relying on new insights into 

how to deal with the avoidance of multiplicity, thus participating and assisting in decision-making. Finally, the study 

is interested in establishing a reliable framework for improving the curriculum for the prevention and treatment of 

heart attacks as a result of preserving the lives of individuals with heart disease. 

A crucial statistical method for calculating the amount of time before an event of interest, such as  death or the 

advancement of a disease, is survival analysis. Because they are easy to use and effective when working with censored 

data, traditional nonparametric survival estimators like Nelson-Aalen (Aalen, 1978) and Kaplan-Meier (Kaplan & 

Meier, 1958) have been in use for a long time. These techniques are interested in making important assumptions 

regarding the basic risk function while presenting unbiased insights into the likelihood of survival. In addition, 

developing better statistical methods for the purpose of improving the accuracy of estimation and consistency when 

there are high dimensional variables that increase the complexity of survival data. 

The multiplicity that arises in the case of predictive variables that are highly correlated between them is one of the 

most challenging situations in the survival analysis process, the Kaplan- Meier survival analysis was used for analysis 

for the purpose of breast cancer prediction by (Dakhil et al., 2012) which refers to its importance in simple survival 

calculations, but sometimes standardized methodologies may fall short when used during interconnected elements, as 

we observe the concentration of recent studies of deficiencies in relative risk models commonly used for COX. (Kalu 

et al., 2025) and (Ata & Sözer ,2007), which focused on the topic of strategies for resolving deficiencies and 

appropriate alternatives. 

Several researchers have proposed new techniques for modeling survival for the purpose of overcoming multiplicity 

constraints, with) Monikapreethi et al., 2024( and )Fan et al., 2024( proposing stable Cox retreat models that are under 

distribution shifts enhancing the prediction of survival data in dynamic groups, and )Deng et al. 2024) calculate the 

effect of the treatment by suggesting an estimated Nelson-Allen generalized based on reverse survival weighting when 

the variables are highly correlated producing more accurate and reliable capabilities. 

There is an alternative nonparametric method for estimating the survival function of life data in the event of a 

multicollinearity, namely to rely on multiple Bernstein polynomials as presented by both (Petrone,1999) and 

(Leblanc,2012) which are useful in calculating the density function because they provide Smoother approximations 

that reduce the biases that appear in the normal progressive function capabilities, Bayesian methods that rely on a 

previous distribution for the purpose of enhancing estimation stability in the framework of data volatility are also 

widely focused by both (Berliner et al., 1988) and (Hjort, 1990) and  (Ahmed et al., 2020).  

Experimental comparisons have been used in many recent research for the purpose of knowing how well the different 

survival model works, for example in the study by )Colosimo et al. 2002) Cox time-based models were compared with 

the Kaplan-Meier estimate using simulation method. 

The development of artificial intelligence and machine learning in the analysis of survival data, focused (Laverny et 

al., 2025) at the expense of a non-conforming survival estimate given the cause of death, (Ramakrishnan et al., 2024), 

which focused on survival data with competing risks as such research suggests the integration of traditional statistical 

methods with artificial intelligence techniques that improve prediction. 

In order to handle multicollinearity and high-dimensional data, current survival analysis increasingly employs 

regularization strategies, Bernstein approximations, and Bayesian methods, even though conventional nonparametric 

survival estimators are still helpful in straightforward applications, Future research should concentrate on integrating 

these methods as computer capabilities advance in order to develop more reliable, adaptable, and interpretable survival 

models for a variety of medical and actuarial applications. Based on this literature, we hypothesize that, although 

traditional survival analysis techniques remain valuable for simple datasets, sophisticated models like the Bernstein 

Approximation and Cox Regularization methods yield more accurate and stable results in complex survival data with 

multicollinearity. 

, These estimators are compared using the following performance metrics: variance, standard deviation, skewness, 

kurtosis, log-likelihood, mean absolute error (MAE), root mean squared error (RMSE), akaike information criterion 

(AIC), Bayesian information criterion (BIC), variance. In simpler survival models, traditional methods like Kaplan-

Meier and Nelson-Aalen perform well, but they falter in more complicated situations with a lot of different variables. 
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2.Survival Data Analysis : 
Survival data examines how long it takes for a particular event to happen, such a patient passing away or a gadget 

malfunctioning. The role of survival (Yusuf et al., 2024) : 

 ( )   (   )     ( )         ( ) 
indicates the likelihood that a person will live past time t. The function of hazards   :  

 ( )  
 ( )

 ( )
               ( ) 

explains the event rate in real time at time t. The Cox proportional hazards model evaluates covariate effects on hazard 

rates, whereas the Kaplan-Meier estimator is employed for non-parametric survival function estimation : 

 (   )    ( ) 
   

These models are used extensively for risk prediction and survival time analysis in engineering and medicine , when a 

person's precise survival time is unknown for a variety of reasons, such as loss to follow-up or study termination prior 

to the event, this is known as censoring.  

Statistical techniques such as Cox regression and the Kaplan-Meier estimator use partial survival information to 

manage censored data in order to prevent bias. For censored data, the likelihood function is expressed by (Yusuf et al., 

2024) as follows : 

  ∏ 

   

(  )∏ 

   

(  ) 

where D is the observed failure times and C is the censored data. 

3. Research Methodology : 
This study presents a different method for resolving statistical interests related to the problem of multicollinearity and 

evaluating survival data using parametric and nonparametric methods in the field of risk evaluation in medical 

applications, The analysis of survival is useful and important to calculate the amount of time until a given event and 

for the purpose of calculating the survival of survival in this study some nonparametric methods will be used (Sadiq, 

M.,2024). 

In addition, parametric models such as Cox's model of relative risk are relied upon for the purpose of removing 

different factors affecting different methods of estimating survival times, Adjustment methods are used, more accurate 

and reliable estimates are calculated by integrate uncertainty into model parameters using Bayesian method, In the 

case of dealing with complex relationships in a multicollinearity of data, estimates of survival are improved using 

Bernstein's approximation. 

4. Materials and Methods: 
4.1. Nelson-Aalen Estimator 

It is a nonparametric statistical method that is used in the analysis of survival by calculating the function of cumulative 

hazard Nelson-Aalen, unlike the rest of the nonparametric methods of calculating accumulated risk over time, this 

makes it an important tool for determining the likelihood of a particular event occurring within a given or specified 

period of time,which assumes that the individual survives to that point, the hazard function symbolized by the symbol 

h(t) represents the immediate rate at which that event occurs in a timely manner, this method is used to calculate the 

estimate of survival in research that concerns medical areas for the purpose of tracking disease progression (Deng & 

Wang, 2024): 

 ( )     
    

 (            )

  
           ( ) 

Total cumulative risk can be calculated over time : 

 ( )  ∫  
 

 

( )    

 Estimated nonparametric by  Nelson-Aalen as follows 

 ̂( )  ∑
  

  
    

          ( ) 

This guess is computed cumulatively by adding new values for each recorded failure time, where ti is the unique 

failure times, arranged in ascending order, di is the number of people who experience the event (such as failure or 

death) at time ti and ni is the number of people at risk just prior to time ti and to calculate cumulative hazard function 

,the first  steps Sort the failure times in ascending order them calculate the number of people at danger for each failure 

time and  calculate the ratio of failures to at risk individuals at each failure period (Colosimo et al., 2002), add these 

values to get the cumulative hazard estimate at time t.  
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 The cumulative hazard function has a direct link with the survival function, the survival function can be stated using 

the cumulative hazard function as follows: 

 ( )     ( )           ( ) 

Thus, the Nelson-Aalen estimator yields the following survival function estimate, from Equ.4: 

 ̂( )     ̂( ) 

This implies that the Nelson-Aalen estimator can be used not just to estimate cumulative hazard, but also to indirectly 

estimate the survival survival. The Nelson-Aalen estimator has several essential properties: Non-parametric: It does 

not assume any certain distribution for survival times, making it extremely adaptable. Cumulative nature: The estimate 

increases only during observed failure times and remains constant otherwise. Consistency: As sample size increases, it 

approaches the genuine cumulative hazard function, To ensure that  ̂( )is an unbiased estimator of  H(t), have: 

 [ ̂( )]   [∑
  

  
    

] 

Since    Bino ia (    (  )), by (Eswar R. and Santhi, 2024) we have   [  ]     (  ) Thus: 

 [
  

  

]   (  ) 

Summarizing all failure times: 

 [ ̂( )]  ∑ 

    

(  )   ( ) 

This indicates that  ̂( ) is an unbiased estimator of  H(t),The variance of the Nelson-Aalen Estimator is provided by : 

 ar ( ̂( ))  ∑ ar

    

(
  

  

)          ( ) 

Since    Bino ia (    (  )), its variance is  ar (  )     (  )(   (  )) approximating  (  ) as little yields: 

 

 ar (
  

  

)  
 (  )

  

 

Summarizing all failure times: 

 ar ( ̂( ))  ∑
  

  
 

    

 

This gives an estimate of the uncertainty in  ̂( ). The standard deviation is : 

  ( ̂( ))  √∑
  

  
            ( )

    

 

This measure quantifies the spread of the cumulative hazard estimate. 

4.2. Kaplan-Meier Estimator 

The Kaplan-Meier estimator is a nonparametric statistics used in survival analysis to estimate the survival function, 

particularly when data is censored , It provides an estimate of the chance that a subject will survive until a specific 

time point, taking into account both observed events (e.g., failures) and censored data, the survival function S(t) 

represents the likelihood of a subject surviving beyond time t as follows: 

 ( )   (   ) 
T is the time to event random variable, the Kaplan-Meier estimates the survival function S(t) using both censored and 

uncensored data, It is especially value in survival studies where there is time to event data with censoring, the Kaplan-

Meier estimator  ̂( ) is calculated using data (Dakhil et al., 2012) with failure times t1,t2,…,tk, as follows: 

 ̂( )  ∏ (  
  

  

)         ( )

    

 

Where ti are the different observed failure times organized in increasing order, di is the number of events (e.g., deaths 

or failures) that occur at time ti and ni is the number of people at risk right before time ti, for computing the estimator 

sort the failure times (t1,t2,…,tk) in ascending order by (Cao et al., 2005) calculate the number at risk (ni) for each 

observed failure time (ti), count the number of occurrences (di) occurring at each observed failure time (ti), Calculate 

the survival survival at each time ti as follows: 

 ̂(  )   ̂(    )  (  
  

  

)   
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Where  ̂(  )=1 (the survival at the start is 1, as no one has experienced the event at time (0), The Kaplan-Meier curve 

is a step function that drops at failure times and remains constant between them, using Greenwood's formula (Eswar 

R. & Santhi, 2024) ,we may approximate the variance of the Kaplan-Meier estimator at time ti . 

 ar ( ̂(  ))   ̂ (  )  ∑
  

  (     )     

         ( ) 

 ̂(  ) is the Kaplan-Meier estimate at time   ,    is the number of occurrences at time   , and    is the number of 

individuals at risk right before time   , The formula approximates the variance of the survival function S(t) for each 

observed time point (Dakhil et al.,2012) from Equ.9 then : 

  ( ̂(  ))  √ ̂ (  )  ∑
  

  (     )     

      (  ) 

This is the uncertainty associated with the Kaplan-Meier estimate at a specific time point. 

 

4-3-Bernstein Estimator 
This estimate is a nonparametric smoothing method used for the purpose of estimating the survival density function or 

the survival function of heart patients that has the potential to reduce the amount of bias and also employs multiple 

Bernstein polynomials to calculate an unknown distribution estimate smoothly, making it useful and effective This 

method is used to generate a smoother survival function in analysis rather than traditional techniques such as Kaplan-

Meier and in cases of studying survival analysis for heart patients, calculating the likelihood of survival as explained 

)Muhammad & Jaber, 2021) is very useful, based on Bernstein previously clarified definition, an estimate of the 

density function f (x)  would be : 

 ̂ ( )  ∑  

 

   

    ( )            (  ) 

The     ( ) is basis function polynomials, it is found through : 

    ( )  (
 

 
)   (   )    

Using sample data is found    as follows : 

   
 

 
∑    

 

   

(  ) 

For the purpose of controlling the smoothness of the estimate, the polynomial's degree m is controlled, The cumulative 

distribution function is therefore estimated as a survival function (survival of survival) based on Bernstein's estimate 

and as follows: 

 ̂ ( )  ∑  

 

   

∑    

 

   

( ) 

Where ∑     
 
   ( ), represent the cumulative sum of the Bernstein basis functions up to index k. The estimated 

survival function S(x), which indicates the chance that an individual survives beyond time x, is thus: 

 ̂ ( )     ̂ ( ) 
This produces a smooth survival curve that can be used to assess survival data in cardiac patients. The predicted value 

of the Bernstein estimator is given by: 

 [ ̂ ( )]  ∑  

 

   

 [    ( )]          (  ) 

The Bernstein polynomials approximate the true distribution , thus we have: 

 [    ( )]   ( ) 

This assures that the estimator is asymptotically unbiased for high m, the variance of the Bernstein estimator is given 

as: 

 ar ( ̂ ( ))  
 

 
∑  

 

 

   

 ar (    ( ))          (  ) 

where: 

 ar (    ( ))      ( ) (      ( )) 
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The variance decreases with larger samples, resulting in a more accurate approximation of the density function. 

4.4. Breslow Estimator 

This estimate is a nonparametric method used in the analysis of the survival function to estimate the cumulative 

hazard function in case of linking survival periods Also, it is very useful when used with COX models for relative 

hazards, which does not assume a fixed basic hazard function but instead depends on a hazard function dependent on 

variables cumulative hazard function, Breslow  

estimator provides a continuous assessment of the cumulative hazard function as explained by (Gil-Pallares et al., 

2025) and (Kaplan & Meier, 1958) in medical fields, particularly in the study of survival analysis for cardiac patients: 

 ( )  ∫  
 

 

( )    

In the Cox proportional hazards model, the hazard function for an individual with covariate vector X is given as: 

 (   )    ( ) 
    

Where h0 (t) is the base ine hazard function, and β is a  ector of regression coefficients, this is the cu u ati e base ine 

hazard function's Breslow Estimator: 

 ̂ ( )  ∑
  

∑      
        

              (  ) 

(Xia et al., 2018) say di is the number of events (deaths/failures) at time    and    is the risk set, the number of persons 

at risk soon before ti, and   ,  
     is the exponentiated linear predictor for individual j, in contrast to the Efron 

approximation, this estimator accumulates hazard contributions at each event time and handles tied failure times 

smoothly ,to measure uncertainty in estimate we can calculate the variance  

 ar ( ̂ ( ))  ∑
  

(∑      
    

)
 

    

 

The estimator's mean represents the expected of   ( )  by (Gil-Pallares et al., 2025) : 

 [ ̂ ( )]    ( ) 
In the situation of multicollinearity, the estimator handles the issue by mitigating the detrimental impacts of high 

correlations among independent variables, The model uses polynomial functions to represent the data, which improves 

its accuracy, when multicollinearity exists, internal changes can be made to mitigate its impact, the primary equation 

for the Bernstein Estimator is: 

 ̂( )  ∑  

 

   

  ( )               (  ) 

where  ( ) represents Bernstein polynomials and   denotes the associated coefficients Multicollinearity can be 

minimized by approaches like dimensionality reduction. 

4.5. Bayesian Kaplan-Meier Estimator 

The Bayesian Kaplan-Meier Estimator is a statistical method that combines classic Kaplan-Meier estimation with 

Bayesian reasoning, it provides a probabilistic framework for survival analysis that incorporates prior knowledge and 

quantifies uncertainty, this is especially helpful when dealing with small sample sizes or censored data, which are 

typical in medical research like heart disease survival analysis, the classical Kaplan-Meier estimator for the survival 

function S(t) is as follows: 

 ̂( )  ∏ (  
  

  

)

    

                (  ) 

Where    is the number of events (deaths) at time    and     is the number of individuals at risk right before  , In a 

Bayesian framework, we treat hazard probabilities as random variables with prior distributions. given a series of 

failure times           , we define (Ahmed & Rachid, 2020): 

   
  

  

 

Rather than estimating    directly, we use a Beta prior: 

   Beta(     ) 
The hyper parameters    and    represent prior knowledge of failure probabilities (Erick & McVittie, 2025) , the 

posterior distribution is:  

   data  Beta(         (     )) 

Thus, the Bayesian survival function is calculated as follows: 
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 ̂ ( )  ∏ 

    

[    ] 

Using the expectation of a Beta distribution. 

 [  ]  
     

        

 

we obtain: 

 ̂ ( )  ∏ (  
     

        

)                (  )

    

 

To find the mean and variance of   ( ),The survival function is a product of expectations. 

 [ ̂ ( )]  ∏      
[    ]  [ ̂ ( )]  ∏ (  

     

        
)    
 

 ar[  ]  
(     )(   (     ))

(        )
 (          )

 

The variance of the Bayesian survival estimator is thus: 

 ar[ ̂ ( )]   ̂ 
 ( )∑

(     )(   (     ))

(        )
 (          )

    

 

Often using Markov Chain Monte Carlo (MCMC) simulations, given that the Bayesian survival function   ( ) is : 

 ̂ ( )  ∏(    )                   

    

 

where    follows a posterior as : 

   data  Beta(         (     )) 

We can sample from this posterior to get an empirical distribution for   ( ), because   ( ) is a product of random 

variables (each with a Beta posterior), we utilize Markov Chain Monte Carlo (MCMC) to approximate its distribution. 

Here are the  first steps , draw N posterior samples for each    from the Beta distribution. 

  
( )

 Beta(         (     ))             

Then Compute the survival function for each sample: 

  
( )( )  ∏ (    

( )
)

    

                         (  ) 

5.Overview Dataset  

This information was collected manually from patients in a private hospital and cardiac clinic in Baghdad-Iraq, it tries 

to examine data from native individuals to assess the presence of cardiac disease, the researcher meticulously 

documented and cleansed the data, ensuring no missing values, yielding 314 patient records, the data is divided into 

five categories as (demographics, history, physical exams and symptoms, medical lab tests, and diagnostic features) 

which are chosen based on medical expert recommendations. 
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Figure 1 Visualization of Temporal Trends in Key Health Indicators. 

The many graphs provide a thorough overview of the chosen data, illustrating patterns and swings across several 

variables ,colored line charts are used to depict changes over time, enabling for the detection of variations and trends 

in specific variables such as demographics, history, physical exams and symptoms, medical lab tests, and diagnostic 

features. 

6.Discussion of Results 
6.1. Overview Results 

The performance of five estimators (Kaplan-Meier, Nelson-Aalen, Bernstein Approximation, Breslow Estimator, and 

Bayesian Kaplan-Meier) is evaluated using a variety of metrics. These include MAE, RMSE, R², Log-Likelihood, 

AIC, BIC, KL-Divergence, JS-Divergence, Wasserstein Distance, Skewness, Kurtosis, Cross-correlation, and DTW 

Distance. Survival-specific metrics including C-Index, IBS, ECE, and AUC assess prediction accuracy and 

calibration. To ensure clarity, the results are provided in tables, with visualizations such as survival function graphs 

and confidence intervals providing insights into temporal dynamics. 

 

Table 1 represents the survival function estimates for heart disease patients by age(Index). 

Index Time Kaplan-Meier Nelson-Aalen Bernstein Approximation Breslow Bayesian K-M 

43 90 0.073778 0.085547 0.09837 0.085547 0.075277 

75 90 0.073778 0.085547 0.09837 0.085547 0.075277 

119 90 0.073778 0.085547 0.09837 0.085547 0.075277 

189 90 0.073778 0.085547 0.09837 0.085547 0.075277 

138 89 0.147555 0.1533 0.19674 0.1533 0.141706 

167 89 0.147555 0.1533 0.19674 0.1533 0.141706 

176 89 0.147555 0.1533 0.19674 0.1533 0.141706 

180 89 0.147555 0.1533 0.19674 0.1533 0.141706 

175 88 0.189714 0.194127 0.252952 0.194127 0.184978 

208 88 0.189714 0.194127 0.252952 0.194127 0.184978 

255 88 0.189714 0.194127 0.252952 0.194127 0.184978 

169 87 0.227657 0.231077 0.303542 0.231077 0.224248 

230 87 0.227657 0.231077 0.303542 0.231077 0.224248 

186 86 0.227657 0.231077 0.303542 0.231077 0.224248 

238 86 0.227657 0.231077 0.303542 0.231077 0.224248 

276 86 0.227657 0.231077 0.303542 0.231077 0.224248 

281 86 0.227657 0.231077 0.303542 0.231077 0.224248 

122 85 0.241048 0.244278 0.321398 0.244278 0.239381 

224 85 0.241048 0.244278 0.321398 0.244278 0.239381 

287 85 0.241048 0.244278 0.321398 0.244278 0.239381 

313 85 0.241048 0.244278 0.321398 0.244278 0.239381 

74 84 0.279109 0.281852 0.372145 0.281852 0.277235 

98 84 0.279109 0.281852 0.372145 0.281852 0.277235 

308 84 0.279109 0.281852 0.372145 0.281852 0.277235 

12 83 0.290738 0.293355 0.387651 0.293355 0.287501 

29 83 0.290738 0.293355 0.387651 0.293355 0.287501 

254 83 0.290738 0.293355 0.387651 0.293355 0.287501 

261 83 0.290738 0.293355 0.387651 0.293355 0.287501 

56 82 0.337256 0.339365 0.449675 0.339365 0.337329 

79 82 0.337256 0.339365 0.449675 0.339365 0.337329 
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109 82 0.337256 0.339365 0.449675 0.339365 0.337329 

273 82 0.337256 0.339365 0.449675 0.339365 0.337329 

23 81 0.368874 0.370689 0.491832 0.370689 0.368077 

24 81 0.368874 0.370689 0.491832 0.370689 0.368077 

26 81 0.368874 0.370689 0.491832 0.370689 0.368077 

60 81 0.368874 0.370689 0.491832 0.370689 0.368077 

64 81 0.368874 0.370689 0.491832 0.370689 0.368077 

94 81 0.368874 0.370689 0.491832 0.370689 0.368077 

125 81 0.368874 0.370689 0.491832 0.370689 0.368077 

132 81 0.368874 0.370689 0.491832 0.370689 0.368077 

133 81 0.368874 0.370689 0.491832 0.370689 0.368077 

136 81 0.368874 0.370689 0.491832 0.370689 0.368077 

141 81 0.368874 0.370689 0.491832 0.370689 0.368077 

149 81 0.368874 0.370689 0.491832 0.370689 0.368077 

2 80 0.411766 0.413295 0.549022 0.413295 0.410886 

227 80 0.411766 0.413295 0.549022 0.413295 0.410886 

256 80 0.411766 0.413295 0.549022 0.413295 0.410886 

13 79 0.428573 0.429994 0.571431 0.429994 0.427493 

21 79 0.428573 0.429994 0.571431 0.429994 0.427493 

37 79 0.428573 0.429994 0.571431 0.429994 0.427493 

42 79 0.428573 0.429994 0.571431 0.429994 0.427493 

69 79 0.428573 0.429994 0.571431 0.429994 0.427493 

203 79 0.428573 0.429994 0.571431 0.429994 0.427493 

272 79 0.428573 0.429994 0.571431 0.429994 0.427493 

302 79 0.428573 0.429994 0.571431 0.429994 0.427493 

19 78 0.459186 0.460435 0.612247 0.460435 0.45784 

120 78 0.459186 0.460435 0.612247 0.460435 0.45784 

146 78 0.459186 0.460435 0.612247 0.460435 0.45784 

157 78 0.459186 0.460435 0.612247 0.460435 0.45784 

179 78 0.459186 0.460435 0.612247 0.460435 0.45784 

183 78 0.459186 0.460435 0.612247 0.460435 0.45784 

242 78 0.459186 0.460435 0.612247 0.460435 0.45784 

16 77 0.466143 0.467359 0.621524 0.467359 0.464187 

150 77 0.466143 0.467359 0.621524 0.467359 0.464187 

280 77 0.466143 0.467359 0.621524 0.467359 0.464187 

126 76 0.479274 0.480431 0.639032 0.480431 0.477491 

196 76 0.479274 0.480431 0.639032 0.480431 0.477491 

304 76 0.479274 0.480431 0.639032 0.480431 0.477491 

156 75 0.479274 0.480431 0.639032 0.480431 0.477491 

171 75 0.479274 0.480431 0.639032 0.480431 0.477491 

28 74 0.485498 0.48663 0.647331 0.48663 0.483337 

170 74 0.485498 0.48663 0.647331 0.48663 0.483337 

53 73 0.491644 0.492751 0.655525 0.492751 0.489602 
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55 73 0.491644 0.492751 0.655525 0.492751 0.489602 

160 73 0.491644 0.492751 0.655525 0.492751 0.489602 

217 73 0.491644 0.492751 0.655525 0.492751 0.489602 

225 73 0.491644 0.492751 0.655525 0.492751 0.489602 

247 73 0.491644 0.492751 0.655525 0.492751 0.489602 

279 73 0.491644 0.492751 0.655525 0.492751 0.489602 

7 72 0.508996 0.510041 0.678661 0.510041 0.507626 

40 72 0.508996 0.510041 0.678661 0.510041 0.507626 

66 72 0.508996 0.510041 0.678661 0.510041 0.507626 

164 72 0.508996 0.510041 0.678661 0.510041 0.507626 

271 72 0.508996 0.510041 0.678661 0.510041 0.507626 

0 71 0.520061 0.521069 0.693415 0.521069 0.51906 

110 71 0.520061 0.521069 0.693415 0.521069 0.51906 

148 71 0.520061 0.521069 0.693415 0.521069 0.51906 

151 71 0.520061 0.521069 0.693415 0.521069 0.51906 

190 71 0.520061 0.521069 0.693415 0.521069 0.51906 

27 70 0.54173 0.542667 0.722307 0.542667 0.540591 

31 70 0.54173 0.542667 0.722307 0.542667 0.540591 

108 70 0.54173 0.542667 0.722307 0.542667 0.540591 

143 70 0.54173 0.542667 0.722307 0.542667 0.540591 

246 70 0.54173 0.542667 0.722307 0.542667 0.540591 

49 69 0.562974 0.563844 0.750633 0.563844 0.561479 

197 69 0.562974 0.563844 0.750633 0.563844 0.561479 

298 69 0.562974 0.563844 0.750633 0.563844 0.561479 

18 68 0.568187 0.569041 0.757583 0.569041 0.565758 

262 68 0.568187 0.569041 0.757583 0.569041 0.565758 

62 67 0.573306 0.574144 0.764408 0.574144 0.571722 

92 67 0.573306 0.574144 0.764408 0.574144 0.571722 

206 67 0.573306 0.574144 0.764408 0.574144 0.571722 

213 67 0.573306 0.574144 0.764408 0.574144 0.571722 

234 67 0.573306 0.574144 0.764408 0.574144 0.571722 

241 67 0.573306 0.574144 0.764408 0.574144 0.571722 

257 67 0.573306 0.574144 0.764408 0.574144 0.571722 

294 67 0.573306 0.574144 0.764408 0.574144 0.571722 

25 66 0.593075 0.593857 0.790767 0.593857 0.592507 

46 66 0.593075 0.593857 0.790767 0.593857 0.592507 

99 66 0.593075 0.593857 0.790767 0.593857 0.592507 

285 66 0.593075 0.593857 0.790767 0.593857 0.592507 

266 65 0.602798 0.603553 0.80373 0.603553 0.602097 

270 65 0.602798 0.603553 0.80373 0.603553 0.602097 

282 65 0.602798 0.603553 0.80373 0.603553 0.602097 

73 64 0.607582 0.608324 0.810109 0.608324 0.605604 

124 64 0.607582 0.608324 0.810109 0.608324 0.605604 
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306 64 0.607582 0.608324 0.810109 0.608324 0.605604 

44 63 0.612292 0.613021 0.816389 0.613021 0.610507 

58 63 0.612292 0.613021 0.816389 0.613021 0.610507 

96 63 0.612292 0.613021 0.816389 0.613021 0.610507 

130 63 0.612292 0.613021 0.816389 0.613021 0.610507 

144 63 0.612292 0.613021 0.816389 0.613021 0.610507 

165 63 0.612292 0.613021 0.816389 0.613021 0.610507 

264 63 0.612292 0.613021 0.816389 0.613021 0.610507 

114 62 0.626 0.626695 0.834666 0.626695 0.624144 

293 62 0.626 0.626695 0.834666 0.626695 0.624144 

20 61 0.630536 0.63122 0.840715 0.63122 0.62878 

107 61 0.630536 0.63122 0.840715 0.63122 0.62878 

123 61 0.630536 0.63122 0.840715 0.63122 0.62878 

200 61 0.630536 0.63122 0.840715 0.63122 0.62878 

296 61 0.630536 0.63122 0.840715 0.63122 0.62878 

70 60 0.643857 0.644508 0.858476 0.644508 0.641444 

86 60 0.643857 0.644508 0.858476 0.644508 0.641444 

228 60 0.643857 0.644508 0.858476 0.644508 0.641444 

65 59 0.648237 0.648878 0.864316 0.648878 0.646904 

192 59 0.648237 0.648878 0.864316 0.648878 0.646904 

34 58 0.652588 0.653218 0.870117 0.653218 0.650933 

153 58 0.652588 0.653218 0.870117 0.653218 0.650933 

193 58 0.652588 0.653218 0.870117 0.653218 0.650933 

295 58 0.652588 0.653218 0.870117 0.653218 0.650933 

10 57 0.665553 0.666153 0.887404 0.666153 0.664584 

173 57 0.665553 0.666153 0.887404 0.666153 0.664584 

221 57 0.665553 0.666153 0.887404 0.666153 0.664584 

245 57 0.665553 0.666153 0.887404 0.666153 0.664584 

95 56 0.674086 0.674666 0.898781 0.674666 0.672749 

142 56 0.674086 0.674666 0.898781 0.674666 0.672749 

209 56 0.674086 0.674666 0.898781 0.674666 0.672749 

268 56 0.674086 0.674666 0.898781 0.674666 0.672749 

48 55 0.674086 0.674666 0.898781 0.674666 0.672749 

116 55 0.674086 0.674666 0.898781 0.674666 0.672749 

184 55 0.674086 0.674666 0.898781 0.674666 0.672749 

220 55 0.674086 0.674666 0.898781 0.674666 0.672749 

305 55 0.674086 0.674666 0.898781 0.674666 0.672749 

47 54 0.690628 0.691172 0.920837 0.691172 0.690144 

82 54 0.690628 0.691172 0.920837 0.691172 0.690144 

83 54 0.690628 0.691172 0.920837 0.691172 0.690144 

97 54 0.690628 0.691172 0.920837 0.691172 0.690144 

226 54 0.690628 0.691172 0.920837 0.691172 0.690144 

260 54 0.690628 0.691172 0.920837 0.691172 0.690144 
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59 53 0.698705 0.699232 0.931607 0.699232 0.698232 

90 53 0.698705 0.699232 0.931607 0.699232 0.698232 

15 52 0.702721 0.703239 0.936961 0.703239 0.701893 

84 52 0.702721 0.703239 0.936961 0.703239 0.701893 

91 52 0.702721 0.703239 0.936961 0.703239 0.701893 

191 52 0.702721 0.703239 0.936961 0.703239 0.701893 

218 52 0.702721 0.703239 0.936961 0.703239 0.701893 

229 52 0.702721 0.703239 0.936961 0.703239 0.701893 

231 52 0.702721 0.703239 0.936961 0.703239 0.701893 

240 52 0.702721 0.703239 0.936961 0.703239 0.701893 

275 52 0.702721 0.703239 0.936961 0.703239 0.701893 

291 52 0.702721 0.703239 0.936961 0.703239 0.701893 

118 51 0.722241 0.722719 0.962988 0.722719 0.719729 

147 51 0.722241 0.722719 0.962988 0.722719 0.719729 

166 51 0.722241 0.722719 0.962988 0.722719 0.719729 

168 51 0.722241 0.722719 0.962988 0.722719 0.719729 

210 51 0.722241 0.722719 0.962988 0.722719 0.719729 

274 51 0.722241 0.722719 0.962988 0.722719 0.719729 

284 51 0.722241 0.722719 0.962988 0.722719 0.719729 

199 50 0.737526 0.737975 0.983368 0.737975 0.733835 

9 49 0.737526 0.737975 0.983368 0.737975 0.733835 

131 49 0.737526 0.737975 0.983368 0.737975 0.733835 

244 49 0.737526 0.737975 0.983368 0.737975 0.733835 

252 49 0.737526 0.737975 0.983368 0.737975 0.733835 

265 49 0.737526 0.737975 0.983368 0.737975 0.733835 

71 48 0.745014 0.745448 0.993352 0.745448 0.741279 

115 48 0.745014 0.745448 0.993352 0.745448 0.741279 

87 47 0.752501 0.752921 0.994767 0.752921 0.749009 

121 47 0.752501 0.752921 0.994767 0.752921 0.749009 

128 47 0.752501 0.752921 0.994767 0.752921 0.749009 

129 47 0.752501 0.752921 0.994767 0.752921 0.749009 

253 47 0.752501 0.752921 0.994767 0.752921 0.749009 

104 46 0.759879 0.760284 0.995897 0.760284 0.756329 

135 46 0.759879 0.760284 0.995897 0.760284 0.756329 

139 46 0.759879 0.760284 0.995897 0.760284 0.756329 

249 46 0.759879 0.760284 0.995897 0.760284 0.756329 

250 46 0.759879 0.760284 0.995897 0.760284 0.756329 

288 46 0.759879 0.760284 0.995897 0.760284 0.756329 

68 45 0.778234 0.778605 0.996879 0.778605 0.773974 

297 45 0.778234 0.778605 0.996879 0.778605 0.773974 

222 44 0.781887 0.782251 0.996879 0.782251 0.777446 

278 44 0.781887 0.782251 0.996879 0.782251 0.777446 

299 44 0.781887 0.782251 0.996879 0.782251 0.777446 
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4 43 0.792797 0.793141 0.997933 0.793141 0.788797 

67 43 0.792797 0.793141 0.997933 0.793141 0.788797 

145 43 0.792797 0.793141 0.997933 0.793141 0.788797 

174 43 0.792797 0.793141 0.997933 0.793141 0.788797 

216 43 0.792797 0.793141 0.997933 0.793141 0.788797 

219 43 0.792797 0.793141 0.997933 0.793141 0.788797 

269 43 0.792797 0.793141 0.997933 0.793141 0.788797 

283 43 0.792797 0.793141 0.997933 0.793141 0.788797 

300 43 0.792797 0.793141 0.997933 0.793141 0.788797 

93 42 0.810653 0.810965 0.9989903 0.810965 0.806252 

112 42 0.810653 0.810965 0.9989903 0.810965 0.806252 

198 42 0.810653 0.810965 0.9989903 0.810965 0.806252 

286 42 0.810653 0.810965 0.9989903 0.810965 0.806252 

6 41 0.817733 0.818032 0.9989903 0.818032 0.813363 

17 41 0.817733 0.818032 0.9989903 0.818032 0.813363 

243 41 0.817733 0.818032 0.9989903 0.818032 0.813363 

3 40 0.831893 0.832166 0.9979399 0.832166 0.828653 

14 40 0.831893 0.832166 0.9979399 0.832166 0.828653 

33 40 0.831893 0.832166 0.9979399 0.832166 0.828653 

233 40 0.831893 0.832166 0.9979399 0.832166 0.828653 

251 40 0.831893 0.832166 0.9987433 0.832166 0.828653 

182 39 0.838884 0.839145 0.9987433 0.839145 0.835288 

188 39 0.838884 0.839145 0.9987433 0.839145 0.835288 

215 39 0.838884 0.839145 0.9987433 0.839145 0.835288 

235 39 0.838884 0.839145 0.9987433 0.839145 0.835288 

307 39 0.838884 0.839145 0.9988422 0.839145 0.835288 

162 38 0.849283 0.849526 0.9988422 0.849526 0.845585 

185 38 0.849283 0.849526 0.9988422 0.849526 0.845585 

187 38 0.849283 0.849526 0.9988422 0.849526 0.845585 

212 38 0.849283 0.849526 0.9988422 0.849526 0.845585 

258 38 0.849283 0.849526 0.9989523 0.849526 0.845585 

35 37 0.859598 0.859823 0.9989523 0.859823 0.855739 

57 37 0.859598 0.859823 0.9989523 0.859823 0.855739 

223 37 0.859598 0.859823 0.9989523 0.859823 0.855739 

277 37 0.859598 0.859823 0.9989901 0.859823 0.855739 

172 36 0.86642 0.866633 0.9989901 0.866633 0.862807 

239 36 0.86642 0.866633 0.9989901 0.866633 0.862807 

263 36 0.86642 0.866633 0.9989901 0.866633 0.862807 

290 36 0.86642 0.866633 0.999819 0.866633 0.862807 

178 35 0.869792 0.869999 0.999819 0.869999 0.866396 

202 35 0.869792 0.869999 0.999819 0.869999 0.866396 

310 35 0.869792 0.869999 0.999928 0.869999 0.866396 

1 34 0.876508 0.876704 0.999928 0.876704 0.873325 
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22 34 0.876508 0.876704 0.999928 0.876704 0.873325 

63 34 0.876508 0.876704 0.999928 0.876704 0.873325 

72 34 0.876508 0.876704 0.999928 0.876704 0.873325 

106 34 0.876508 0.876704 0.999928 0.876704 0.873325 

113 34 0.876508 0.876704 0.999928 0.876704 0.873325 

312 34 0.876508 0.876704 0.999939 0.876704 0.873325 

38 33 0.893109 0.893277 0.999939 0.893277 0.890567 

61 33 0.893109 0.893277 0.999939 0.893277 0.890567 

103 33 0.893109 0.893277 0.999939 0.893277 0.890567 

232 33 0.893109 0.893277 0.999939 0.893277 0.890567 

311 33 0.893109 0.893277 0.9999982 0.893277 0.890567 

117 32 0.902995 0.903147 0.9999982 0.903147 0.899971 

301 32 0.902995 0.903147 0.9999982 0.903147 0.899971 

89 31 0.906279 0.906426 0.9999982 0.906426 0.90349 

152 31 0.906279 0.906426 0.9999982 0.906426 0.90349 

207 31 0.906279 0.906426 0.9999997 0.906426 0.90349 

80 30 0.909539 0.90968 0.9999997 0.90968 0.906451 

177 30 0.909539 0.90968 0.9999997 0.90968 0.906451 

195 30 0.909539 0.90968 0.9999998 0.90968 0.906451 

39 28 0.916036 0.916166 0.9999998 0.916166 0.913011 

76 28 0.916036 0.916166 0.9999998 0.916166 0.913011 

105 28 0.916036 0.916166 0.9999998 0.916166 0.913011 

140 28 0.916036 0.916166 0.9999998 0.916166 0.913011 

211 28 0.916036 0.916166 0.9999998 0.916166 0.913011 

292 28 0.916036 0.916166 0.9999999 0.916166 0.913011 

45 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

78 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

81 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

236 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

248 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

309 27 0.925678 0.925793 0.9999999 0.925793 0.924711 

32 26 0.941638 0.941728 0.9999999 0.941728 0.941738 

88 26 0.941638 0.941728 0.9999999 0.941728 0.941738 

201 26 0.941638 0.941728 0.9999999 0.941728 0.941738 

237 26 0.941638 0.941728 0.9999999 0.941728 0.941738 

303 26 0.941638 0.941728 0.9999999 0.941728 0.941738 

52 25 0.944788 0.944872 0.9999999 0.944872 0.945641 

127 25 0.944788 0.944872 0.9999999 0.944872 0.945641 

267 25 0.944788 0.944872 0.9999999 0.944872 0.945641 

85 24 0.951065 0.95114 0.9999999 0.95114 0.951566 

102 24 0.951065 0.95114 0.9999999 0.95114 0.951566 

36 23 0.954194 0.954264 0.9999999 0.954264 0.954415 

50 23 0.954194 0.954264 0.9999999 0.954264 0.954415 
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54 23 0.954194 0.954264 0.9999999 0.954264 0.954415 

111 23 0.954194 0.954264 0.9999999 0.954264 0.954415 

259 23 0.954194 0.954264 0.9999999 0.954264 0.954415 

5 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

30 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

100 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

137 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

155 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

181 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

214 22 0.966667 0.966717 0.9999999 0.966717 0.967377 

8 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

11 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

41 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

51 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

154 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

158 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

159 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

163 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

204 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

289 21 0.975903 0.975939 0.9999999 0.975939 0.976296 

77 20 0.987988 0.988006 0.9999999 0.988006 0.988679 

101 20 0.987988 0.988006 0.9999999 0.988006 0.988679 

134 20 0.987988 0.988006 0.9999999 0.988006 0.988679 

161 20 0.987988 0.988006 0.9999999 0.988006 0.988679 

194 20 0.987988 0.988006 0.9999999 0.988006 0.988679 

205 20 0.987988 0.988006 0. 9999999 0.988006 0.988679 

 

 

 

 

 

 

 

 

 

 



QJAE,  Volume 27, Issue 2 (2025)                                                                           

57  

Figure2 Represents the comparison between the results of the five Estimators 

Table 2 Comparison Metrics Between Non-Parametric and Parametric Estimators. 

Estimator R-Square MAE RMSE Log-Likelihood AIC BIC Variance S.D Skewness Kurtosis 

Kaplan-Meier 0.99333 0.48387 0.55694 
 

168.578894 1003.158 2271.269 0.051594 0.227142 -0.47911 -0.57263 

Nelson-Aalen 0.99223 0.48393 0.5568 
 

167.147771 1000.296 2268.407 0.051061 0.225967 -0.46768 -0.60052 

Bernstein 0.99235 0.45414 0.48068 
 

381.780764 3091.5615 2311.673 0.041722 0.202856 -0.46911 -0.55263 

Breslow 0.99235 0.48393 0.5568 
 

167.147771 1000.296 2268.407 0.051061 0.225967 -0.46768 -0.60052 

Bayesian K-M 0.99423 0.48393 0.55649 
 

169.761462 1005.523 2273.634 0.051612 0.227183 -0.47642 -0.56175 

 

6.2. Discussion 
The Kaplan-Meier estimator is have accurate in forecasting survival probabilities, with an R^2 value of 0.99311, 

suggesting that the model  almost explains the majority of the variance in the data. The values for Mean Absolute 

Error (MAE = 0.48387) and Root Mean Squared Error   (RMSE = 0.55694) indicate  level of precision. Furthermore, 

the high log-likelihood (168.578) indicates a good model fit to the data. However, the high values of AIC (1003.158) 

and BIC (2271.269) suggest a more complex model than other estimators. In terms of statistical distribution, the 

estimator has a negative skewness of -0.47911 and a kurtosis of -0.57263, indicating that the data distribution is 

somewhat left skewed and less peaked than the normal distribution. 

The Nelson-Aalen estimator produces , with a R^2 value of 0.99221, suggesting high model accuracy. The MAE 

(0.48393) and RMSE (0.5568) are virtually identical to Kaplan-Meier. However, its log-likelihood (167.147) is 

slightly lower, indicating a little poorer fit to the data. In terms of model complexity, the lower AIC (1000.296) and 

BIC (2268.407) values compared to Kaplan-Meier indicate a better balance of complexity and accuracy. In terms of 

distribution features, the Nelson-Aalen estimator has a little lower skewness (-0.46768) and kurtosis (-0.60052), 

indicating a more symmetric data distribution than the other estimators. 

The Bernstein estimator has characteristics with R2=0.99215, Its MAE (0.45414) and RMSE (0.48068) are lower than 

the other estimators, implying larger estimate errors. Furthermore, the Log-Likelihood (180.780764) indicates that this 

model almost provides the most fit to the data. However, the AIC (1090.5615) and BIC (2300.673) values show that 

the model is good . From a distribution perspective, the estimator has the same skewness and kurtosis values as  (-

0.46911, -0.55263), indicating that data follows a different  pattern with any estimators in this study.  

The Breslow estimator performs , with the R^2  of 0.99215. The MAE (0.48393) and RMSE (0.5568) are , indicating 

a level of precision good . However, its Log-Likelihood (167.147) is lower than Kaplan-Meier and Bayesian Kaplan-

Meier, implying slightly inferior performance. In terms of model complexity, the AIC (1000.296) and BIC (2268.407) 

values are identical to Nelson-Aalen, indicating that the two models have a similar efficiency. In terms of data 

distribution, the skewness (-0.46768) and kurtosis (-0.60052) indicate a pattern that closely resembles Nelson-Aalen. 

The Bayesian Kaplan-Meier estimator outperforms all others in terms of Log-Likelihood (169.761) except Bernstein , 

demonstrating the best fit to the data and R2=0.99421. The MAE (0.48393) and RMSE (0.55649) are comparable to 

the classic Kaplan-Meier estimator, indicating high estimation accuracy. However, the higher AIC (1005.523) and 

BIC (2273.634) values point to a more sophisticated model. In terms of data distribution, the estimator has a negative 

skewness of -0.47642 , kurtosis is -0.56175, like the standard K-M estimator but with better model fit.  

7.Conclusions 

1. The Bayesian Kaplan-Meier is the most accurate and fits the model best with R2=0.99421. It had the High in log-

likelihood value (169.761) as second place, indicating a good model fit. Additionally, it exhibits low MAE (0.48393) 

and RMSE (0.55649) values, indicating great estimation accuracy. However, the comparatively high AIC (1005.523) 

and BIC values (2273.634) indicate that this model is more complex than others. 

2.The Kaplan-Meier estimator is highly effective, with a high   2 = 0.99311, low MAE (0.48387), and RMSE 

(0.55694). However, its model fit is marginally inferior to the Bayesian version. The AIC (1003.158) and BIC 

(2271.269) values are slightly lower than those of the Bayesian model, indicating a better balance between accuracy 

and complexity. 

 

3.The Nelson-Aalen estimator yields almost similar results to the Kaplan-Meier estimator, with comparable error 

estimates (MAE = 0.48393, RMSE = 0.5568). However, the somewhat lower Log-Likelihood (167.147) and AIC 

(1000.296) figures suggest that this model may be slightly less accurate but more efficient at balancing accuracy and 

complexity and R
2
=0.99221. 
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4.The Breslow estimator performs similarly to the Nelson-Aalen estimator, with nearly identical values across all 

metrics. This implies that it provides no additional benefits over the other estimators while remaining a solid option in 

terms of accuracy and efficiency. 

5. The Bernstein estimator outperforms other estimators. It has the higher  log-likelihood value (081.780764), 

indicating a good  model fit. Furthermore, its MAE (0.45414) and RMSE (0.48068) the values are the lowest, 

indicating excellent estimating accuracy. However, its higher AIC (0091.5615) and BIC (2011.673) values suggest 

that it is a simpler model, but this does not compensate for its poorer performance when compared to other and 

R
2
=0.99215. 

6.The Bayesian Kaplan-Meier estimator is the higher accurate, while the standard Kaplan-Meier and Nelson-Aalen 

estimators provide a good balance of accuracy and model efficiency. The Breslow estimator remains a credible 

alternative, while the Bernstein estimator performs very good and is recommended to use. 
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